材料科学基础-第2章晶体结构

合集下载

上海交大-材料科学基础-第二章-2

上海交大-材料科学基础-第二章-2

体心立方八面体间隙
体心立方四面体间隙
八面体间隙: 由一个面上四个角和相邻两个晶胞体心共6个原子围成, 位置: 位于晶胞每个面中心和每个棱边的中点;
➢数目:12/4 + 6/2 = 6 ➢大小rB:
4R 3a a 4 R
3
rB 2a/2 - R 0.633R 110
a / 2 - R 0.154R 001
n个。
4)空隙大小 四面体间隙大小:r=0.225R 八面体间隙大小:r=0.414R
n个球作体心立方堆积时,存在3n个八 面体空隙、6n个四面体空隙,空隙较多。
2.2.2 多晶型性
多晶型性指某些金属在不同温度和压力下具有 不同的晶体结构。
多晶型性转变指金属在外部条件 (如 T 和 P) 改变时,其内部从一种晶体结构向另一种晶体结构 的转变,又称同素异构(同素异性)转变,转变的 产物称为同素异构体 例如纯铁:
2R a
rB
3 4
a2 ( 2 a(sin60o ))2 -R 0.225R 3
密排六方晶格八面体间隙
密排六方晶格四面体间隙
空隙分布
每个球周围有8个 四面体空隙;
每个球周围有6个 八面体空隙
空隙数量
n个等径球最紧密堆积时,整个系统四面体空
隙数为
8n 4
2n个,八面体空隙数为
6n 6
✓ 晶粒:组成晶体的结晶颗粒。 ✓ 多晶体:凡由两颗以上晶粒组成的晶体一般金属都
是多晶体。。
晶粒
多相合金
本节的基本要求
需掌握如下的概念和术语: ▪ 各向异性、多晶型性,配位数、致密度 ▪ 三种典型晶体结构的特征(包括:原子的排
列方式、点阵参数、晶胞原子数、原子半径、 配位数、致密度、各类间隙尺寸与个数,最 密排面(滑移面)和最密排方向的指数,堆 垛)。 ▪ 多晶体与单晶体、晶粒、晶界;

无机材料科学基础___第二章晶体结构

无机材料科学基础___第二章晶体结构

第 2 章结晶结构一、名词解释1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体2.空间点阵与晶胞:空间点阵是几何点在三维空间内周期性的重复排列晶胞:反应晶体周期性和对称性的最小单元3.配位数与配位多面体:化合物中中心原子周围的配位原子个数成配位关系的原子或离子连线所构成的几何多面体4.离子极化:在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶:同一物质在不同的热力学条件下具有不同的晶体结构化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构6.正尖晶石与反尖晶石:正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。

反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。

二、填空与选择1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。

2.空间点阵是由 C 在空间作有规律的重复排列。

( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。

4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 ,八面体空隙数为 12 ,四面体空隙数为 6 。

5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。

一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。

不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。

6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r +/r -)。

材料科学基础第2章

材料科学基础第2章

晶胞示意图
晶胞大小和形状表示方法
晶胞大小和形状表示方法为:
晶胞的棱边长度a、b、c(称为点阵常数、晶格常 数(lattice constants/parameters)); 棱边的夹角为α、β、γ(称为晶轴间夹角)。 选取晶胞的原则: 1、应反映出点阵的高度对称性 2、棱和角相等的数目最多 3、棱边夹角为直角时,直角数目最多 4、晶胞体积最小
晶面指数(hkil)其中i=-(h+k)
晶向指数 [uvtw] 其中t=-(u+v)
六方晶系按两种晶轴系所得的晶面指数和晶向 指数可相互转化:
六方晶系的晶向(面)指数示意图
六方晶系的一些晶向(面)指数
4.晶带
晶带——所有平行或相交于同一直线的晶面构成一个 晶带,此直线称为晶带轴。属此晶带的晶面称为共 带面。 晶带定理:同一晶带上晶带轴[uvw]和晶带面(hkl) 之间存在以下关系:hu+kv+lw=0 通过晶带定理可以求晶向指数或晶面指数。 a) 求两不平行的晶面(h1k1l1)和(h2k2l2)的晶 带轴。 b) 求两个不平行的晶向[u1v1w1]和[u2v2w2]所决定 的晶面。
面心立方八面体间隙面心立方Biblioteka 面体间隙面心立方四面体间隙
面心立方四面体间隙
面心立方原子堆垛顺序
面心立方晶体的 ABCABC 顺序密堆结构
2.体心立方晶格(特征)
原子排列:晶胞八个顶角和晶胞体心各有一个原子 点阵参数:a=b=c,α=β=γ=90º 晶胞中原子数:n=8×1/8+1=2个 3 原子半径: 4R 3a, R a
三种典型金属晶体结构刚球模型
三种典型金属晶体结构晶胞原子数
原子半径与晶格常数
三种典型金属晶格密排面的堆垛方式

上海交大-材料科学基础-第二章-1

上海交大-材料科学基础-第二章-1

晶面的位向
h : k : l cos : cos : cos
cos2 cos2 cos2 1 立方晶系
晶面间距
dhkl
a h
cos
b h
cos
c h
cos
d
2hkl [(
h a
)2
( h )2 b
( h )2 ] c
cos2
cos2
cos2
式中h、k、l为晶面指数(hkl),a、b、c为 点阵常数,α、β、γ为晶面法线方向与晶轴夹角。
每个原子周围的情况完全相同,则这种原子所组成的
网格称为简单晶格。
复式晶格:如果晶体由两种或两种以上原子组成,同 种原子各构成和格点相同的网格,网格的相对位移而 形成复式晶格。
cc
金刚石结构
2.1.2 晶向指数和晶面指数
晶列:布拉菲格子的格点可以看成是分布在一系列相 互平行的直线上,而无遗漏,这样直线称为晶列;
uvw 放入方括号内,写成[uvw],即为待标定晶向的晶 向指数。若为负值,则在指数上加一负号。(化整数, 列括号)
xa : yb : zc u :v : w abc
立方晶系中一些常用的晶向指数
例:如图在立方体中, a i , b j , c k
方法2
D是BC的中点,求BE,AD的晶列指数
第二章 固体结构
本章主要内容
❖ 2.1晶体学基础 ❖ 2.2金属的晶体结构 ❖ 2.3合金相结构 ❖ 2.4离子晶体结构 ❖ 2.5共价晶体结构
概述
❖ 物质按聚集状态分类: 气态、液态和固态; ❖ 按原子(或分子)排列特征分类:晶体和非晶体。
绝大部分陶瓷、少数高分子材料、金属及合金是晶体; 多数高分子材料、玻璃及结构复杂材料是非晶体。

材料科学基础第2章材料中的晶体结构

材料科学基础第2章材料中的晶体结构

材料科学基础第2章材料中的晶体结构晶体是由原子、离子或分子按照一定的规则排列而成的固体。

晶体结构是指晶体中原子,离子或分子的排列方式。

晶体结构的特点是重复性和周期性。

晶体结构可以通过晶体的晶胞来描述,晶胞是晶体中最小重复单元,是由若干个原子,离子或分子组成的。

晶体结构的分类可以根据晶体的对称性进行。

常见的晶体结构类型有立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系、六角晶系和三角晶系。

立方晶系是最常见的晶体结构类型,它具有最高的对称性。

立方晶系包括体心立方晶体、面心立方晶体和简单立方晶体。

体心立方晶体每个晶胞中有一个原子位于立方体的中心,面心立方晶体每个晶胞中有一个原子位于每个立方体的面心,简单立方晶体每个晶胞中只有一个原子。

四方晶系的晶体中,晶胞的底面为矩形,其中一个边与底面垂直。

正交晶系的晶胞基本上和四方晶系相似,但它的底面为正方形。

单斜晶系的晶胞有一个倾斜的边,它是在不同轴上分别有两面成直角。

三斜晶系的晶体是最复杂的结构类型,它的晶胞没有任何对称性。

六角晶系的晶体结构可以看作是体心立方晶体和单斜晶体的组合,晶胞为底面呈六角形的棱柱。

三角晶系的晶体结构最特殊,晶胞为三角形。

晶体结构的研究对于材料科学非常重要。

通过了解晶体结构,我们可以预测和解释材料的物理性质,如硬度、热膨胀系数和电导率等。

晶体结构还对材料的合成和制备起到了指导作用。

例如,通过改变晶体结构,可以改变材料的性质,如增加或减少导电性。

总之,材料中的晶体结构是材料科学基础中的重要内容。

了解晶体结构有助于我们理解材料的性质和行为,并为材料设计和合成提供基础。

晶体结构的研究对于材料科学的发展非常重要,并在材料的合成和制备中起到了指导作用。

材料科学基础第二章

材料科学基础第二章


y

[111]
x
[111]

例:画出晶向
[112 ]
2.立方晶系晶面指数
晶面指数的确定方法
(a)建立坐标系,结点为原点, 三棱为方向,点阵常数为单位 (原点在标定面以外,可以采 用平移法); (b)晶面在三个坐标上的截距a1 a2 a3 ; (c)计算其倒数 b1 b2 b3 ; (d)化成最小、整数比h:k:l ; 放在圆方括号(hkl),不加逗号, 负号记在上方 。
3.六方晶系晶面和晶向指数
三指数表示六方晶系晶面和晶向的缺点:晶体学上等价的 晶面和晶向不具有类似的指数。 例:
晶面指数

(11 0)
(100)
[010] [100]
从晶面指数上不能明确表示等同晶面,为了克服这一缺点, 采用a1、a2、a3及c四个晶轴, a1、a2、a3之间的夹角均 为120º ,晶面指数以(hkil)表示。 根据立体几何,在三维空间中独立的坐标轴不会超过三 个可证明 : i= - (h+k) 或 h+k+i=0
六方晶系
d hkl
h k l a b c
2 2 2
d hkl
a h2 k 2 l 2
1 l c
2
4 h 2 hk k 2 3 a2
注:以上公式是针对简单晶胞而言的,如为复杂晶胞, 例如体心、面心,在计算时应考虑晶面层数增加的影 响,如体心立方、面心立方、上下底(001)之间还有 一层同类型晶面,实际
[1 00 ]

[0 1 0]

[010]
[1 00]
y
[100]
x

[00 1]

材料科学基础,第2章,材料中的晶体结构

材料科学基础,第2章,材料中的晶体结构

晶面间距与晶面指数的关系: 晶面间距是现代测试中一个重要的
参数。在简单点阵中,通过晶面指数 (hkl)可以方便地计算出相互平行的一 组晶面之间的距离d。
晶系 晶面间距
立方
1 h2 k 2 l2
d2
a2
正方
1
h2 k2
l2
d2
a2
c2
六方
( ) 1
4 h2 hk k 2
l2
d2
3
a2
c2
1.晶面、晶向及其表征
1)晶面 (1)定义:晶体点阵在任何方向上可分
解为相互平行的结点平面,称为晶面。 (2)特征: 晶面上的结点在空间构成一个二维点阵。 同一取向上的晶面,不仅相互平行、间
距相等,而且结点的分布也相同。 不同取向的结点平面其特征各异。
(3)晶面指数:
结晶学中经常用(hkl)来表示一组平 行晶面,称为晶面指数。
不同方向的直线组,其质点分布不尽相同。
(3)晶向指数: 用[uvw]来表示。 其 中 u 、 v 、 w 三 个 数 字 是 晶 向 矢 量
在参考坐标系X、Y、Z轴上的矢量 分量经等比例化简而得出。
晶向指数求法:
①确定坐标系; ②过坐标原点,作直线与待求晶向
平行; ③在该直线上任取一点,并确定该
{110}晶面族
Z
(011)
(110) (011) (101)
(101)
Y (110)
X
2)晶向:
(1)定义:
点阵可在任何方向上分解为相互平行的直线组, 结点等距离地分布在直线上。位于一条直线上 的结点构成一个晶向。
(2)特征:
同一直线组中的各直线,其结点分布完全相同, 故其中任何一直线,可作为直线组的代表。

陆佩文材料科学基础 名词解释 -课后

陆佩文材料科学基础 名词解释 -课后

第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。

晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。

基元只有一个原子的晶格称为布拉菲格子。

范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。

2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。

2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。

第二章 晶体结构 - 2.4.2岛状结构硅酸盐晶体结构分析_06.15_CG

第二章 晶体结构 - 2.4.2岛状结构硅酸盐晶体结构分析_06.15_CG

材料科学基础第 2 章2.4.2岛状结构硅酸盐晶体结构分析镁橄榄石晶体结构(a)(100)面上的投影图(c)立体侧视图(b)(001)面上的投影图硅氧四面体彼此孤立,犹如大海中的孤岛一样, 因此把这种结构的硅酸盐晶体称为岛状结构1. 岛状结构名称由来岛状结构特点代表性矿物:镁橄榄石化学式:Mg 2SiO 4晶体结构:正交晶系,晶胞参数a 0=0.476nm ,b 0=1.021nm ,c 0=0.598nm ,晶胞分子数Z=4。

硅氧阴离子团[SiO 4]4-,Si :O=1:4氧离子一价与硅离子连接一价与其他金属阳离子连接硅氧四面体孤立存在由镁氧八面体连接 镁橄榄石晶体结构有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)镁橄榄石晶体结构投影图紧密堆积方式氧离子做六方紧密堆积配位数硅离子:CN=4镁离子: CN=6镁橄榄石结构中镁离子、硅离子填充配位多面体的比例是多少?在镁橄榄石结构中,一个晶胞中有4个Mg 2SiO 4分子,由Mg 2SiO 4的化学式可知,一个晶胞中氧离子个数为:4 ×4=16个镁离子个数为:2 ×4=8个硅离子个数为:1 ×4=4个填充二分之一八面体空隙 填充八分之一四面体空隙Si O Mg硅氧四面体孤立存在由镁氧八面体连接镁氧八面体共棱连接3. 镁橄榄石结构中配位多面体连接方式3. 镁橄榄石结构中配位多面体连接方式与硅氧四面体共顶连接4. 镁橄榄石结构中氧离子电价是否平衡?通过分析可见,电价平衡5. 性能与用途①性能②用途生产镁质耐火材料与镁质陶瓷的原料较高的硬度,熔点高达1890℃,在加热过程中无多晶转变,并有一定抗碱性渣侵蚀的能力;结构无明显解理,破碎呈粒状①橄榄石(FexMg1-x)SiO4固溶体:由镁橄榄石结构中的Mg2+可以被Fe2+以任意比例取代形成;②钙镁橄榄石CaMgSiO4:由图中25、75的Mg2+被Ca2+取代形成;③γ-Ca2SiO4:由结构中全部Mg2+被Ca2+取代形成。

大学材料科学基础第二章材料中的晶体结构

大学材料科学基础第二章材料中的晶体结构
反过来: U = u - t; V = v - t; W = w
4.晶面间距(Interplanar crystal spacing)
两相邻近平行晶面间的垂直距离—晶面间 距,用dhkl表示,面间距计算公式见(1-6)。 通常,低指数的面间 距较大,而高指数的 晶面间距则较小 晶面间距愈大,该晶 面上的原子排列愈密 集;晶面间距愈小, 该晶面上的原子排列 愈稀疏。
晶体结构 = 空间点阵 + 结构单元
如:Cu, NaCl, CaF2有不同的晶体结构, 但都属于面心立方点阵。 思考题:空间点阵与布拉菲点阵。
三、 晶向指数与晶面指数
(Miller Indices of Crystallographic Directions and Planes) 在晶体中,由一系列原子所组成的平面称 为晶面,原子在空间排列的方向称为晶向。 晶体的许多性能都与晶体中的特定晶面和晶 向有密切关系。为区分不同的晶面和晶向, 采用晶面和晶向指数来标定。
5.晶带 (Crystal zone) 所有平行或相交于同一直线的晶面构 成一个晶带,此直线称为晶带轴。
晶带轴[u v w]与该晶带的晶面(h k l) 之间存在以下关系: hu + kv + lw = 0 凡满足此关系的晶面都属于以[u v w]为 晶带轴的晶带,律应用举例
1 晶胞中原子数 (Number of Atoms in Unit Cell)
一个晶胞内所包含的原子数目。 体心立方晶胞:2个。 面心立方晶胞:4个。 密排六方晶胞:6个。
2 原子半径 r 与点阵常数 a 的关系
严格的说,原子半径并不是一个常数,它 随外界条件(温度)、原子结合键、配位数而 变,在理论上还不能精确地计算原子半径。 定义为晶胞中原子密排方向上相邻两原子 之间平衡距离的一半,用点阵常数表示。

武汉理工大学材料科学基础各章节例题及答案

武汉理工大学材料科学基础各章节例题及答案

第二章晶体结构【例2-1】计算MgO和GaAs晶体中离子键成分的多少。

【解】查元素电负性数据得,则,,,MgO离子键%=GaAs离子键%=由此可见,MgO晶体的化学键以离子键为主,而GaAs则是典型的共价键晶体。

【提示】除了以离子键、共价键结合为主的混合键晶体外,还有以共价键、分子间键结合为主的混合键晶体。

且两种类型的键独立地存在。

如,大多数气体分子以共价键结合,在低温下形成的晶体则依靠分子间键结合在一起。

石墨的层状单元内共价结合,层间则类似于分子间键。

正是由于结合键的性质不同,才形成了材料结构和性质等方面的差异。

从而也满足了工程方面的不同需要。

【例2-2】 NaCl和MgO晶体同属于NaCl型结构,但MgO的熔点为2800℃, NaC1仅为80l℃,请通过晶格能计算说明这种差别的原因。

【解】根据:晶格能(1)NaCl晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=1,e=1.6×10-19 库仑,,r0===0.110+0.172=0.282nm=2.82×10-10 m,m/F,计算,得:EL=752.48 kJ/mol (2)MgO晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=2,e=1.6×10-19库仑,r0==0.080+0.132=0.212 nm=2.12×10-10 m,m/F,计算,得:EL=3922.06 kJ/mol则:MgO晶体的晶格能远大于NaC1晶体的晶格能,即相应MgO的熔点也远高于NaC1的熔点。

【例2-3】根据最紧密堆积原理,空间利用率越高,结构越稳定,但是金刚石的空间利用率很低,只有34.01%,为什么它也很稳定?【解】最紧密堆积的原理只适用于离子晶体,而金刚石为原子晶体,由于C-C共价键很强,且晶体是在高温和极大的静压力下结晶形成,因而熔点高,硬度达,很稳定。

材料科学基础第2章

材料科学基础第2章

菱方 Rhombohedral a=b=c, α=β=γ≠90º
四方(正方)Tetragonal a=b≠c, α=β=γ=90º
立方 Cubic a=b=c, α=β=γ=90º
简单菱方
简单四方 体心四方
简单立方 体心立方 面心立方
简单三斜
简单单斜
底心单斜
简单正交
体心正交
底心正交
面心正交
简单六方
回转对称轴(n)1,2,3,4,6
宏观对称性 元素 对称面(m)
对称中心(i) 回转 — 反演轴 1,2,3,4,6
微观对称性
元素
滑动面 螺旋轴
a,b,c,n,d 21;31,32;41,43,42;61,65,62,64,63
点群(point group)—晶体中所有点对称元素的集合 根据晶体外形对称性,共有32种点群 空间群(space group)—晶体中原子组合所有可能方式 根据宏观、微观对称元素在三维空间的组合,可能存在 230种空间群(分属于32种点群)
原子半径(atomic radius) R
配位数(coordination number)
致密度(Efficiency of space filling)
N
K

nv

n 4 R3
3
VV
轴比(axial ratio) c/a
堆垛(Stacking) 密排结构(close-packed crystal structure) 最密排面(close-packed plane of atoms) fcc {1 1 1} ABCABCABC······ hcp{0 0 0 1} ABABABAB······
晶系
三斜Triclinic a≠b≠c ,α≠β≠γ

材料科学基础-第2章

材料科学基础-第2章

a b c,
90o
13
14种Bravais点阵
3. 正交Orthorhombic: 简单正交 (4) 底心正交 (5) 体心正交 (6) 面心正交 (7)
a b c,
90
o
14
14种Bravais点阵
4. 六方Hexagonal:
简单六方(8)

a x
O

b
y
点阵矢量
ruvw ua vb wc
11
7种晶系,14种布拉菲Bravais点阵
晶系 Crystal systems 点阵参数 Lattice parameters 布拉维点阵类型 Types of Bravais lattice 简单三斜(1) 简单单斜(2) 底心单斜(3) 简单正交(4) 底心正交(5) 体心正交(6) 面心正交(7) 简单六方(8) 实例 Instances K2CrO7 -S CaSO4•H2O Fe3C Ga -S Mg, Zn Cd, Ni, As As, Sb, Bi -Sn, TiO2 Fe, Cr, Cu, Ag, Ni,V
abc
90
abc
90%以上 的金属具 有立方晶 系和六方 晶系
12
90
14种Bravais点阵
1. 三斜Triclinic :简单三斜(1)
a b c,
90
o
2. 单斜Monoclinic : 简单单斜(2) 底心单斜(3)
(321)取倒数为 0.333,0.5 ,1
Z
(321)
Y
X
(200)、(333)等是否存在? 具有公因子的晶面不存在

2 《材料科学基础》第二章 晶体结构(下)

2 《材料科学基础》第二章 晶体结构(下)

思考题
Ca2+:000,½ ½ 0,½ 0 ½ ,0 ½ ½ F
-
:¼ ¼ ¼, ¾ ¾ ¼, ¾ ¼ ¾, ¼ ¾ ¾, ¾ ¾ ¾, ¼ ¼ ¾, ¼ ¾ ¼, ¾ ¼ ¼
思考题:
据晶体结构简要解释:
•为什么CaF2比NaCl容易形成弗仑克尔缺陷?
•为什么萤石结构中一般存在着负离子扩散机制?
了解
Al3+的分布原则符合鲍林规则:在同一层
和层与层之间, Al3+之间的距离应保持
最远。
空隙
α-Al2O3中的氧与铝的排列次序可写成: OAAlDOBAlEOAAlFOBAlDOAAlEOBAlFOAAlD……6层一个周期
Al3+的CN=6, Z=
O2-的CN= 4
2
属于刚玉型结构的晶体:
• 硅酸盐结构的特点:
2/3八面体间隙(A、B) 1/2八面体间隙(A) l/8四面体间隙(B) 全部立方体中心 1/2立方体中心
尖晶石
反尖晶石 纤锌矿 砷化镍 刚 玉 钛铁矿 橄榄石 氯化铯 萤 石 硅石型
二、硅酸盐晶体结构
1. 岛状结构
2. 组群状结构
3. 链状结构 4. 层状结构 5. 架状结构
•硅酸盐晶体的组成表征:
4:6:4AB2O4
4:6:4B(AB)O4 4:4MO 6:6MO 6:4M2O3 6:6:4ABO3 6:4:4A2BO4 8:8MO 8:4MO2 4:2MO2
1/8四面体间隙(A) 1/2八面体间隙(B) 1/8四面体间隙(B) 1/2八面体间隙(A、B) 1/2四面体间隙 全部八面体间隙 2/3八面体间隙
8
性质:硬度最高、极好的导热性、具半导体性能 与其结构相同的有硅、锗、灰锡、合成立方氮化硼等

材料科学基础-2

材料科学基础-2
[111 ]
[ 1 11]
[1 1 1]
[1 1 1]
[11 1 ]
[1 1 1]
[1 1 1]
[1 1 1]
例:在一个面心立方晶胞中画出[012]、[123] 晶向。
晶面:通过空间点阵中任一组阵点的平面代表晶 体中的原子平面,称为晶面 晶面指数:表示晶体中点阵平面的指数,由晶面 与三个坐标轴的截距值所决定。 晶面指数的标定步骤: 建坐标:所定晶面不应通过原点; 求截距:求出待定晶面在三个坐标轴上的截距, 如果该晶面与某坐标轴平行,则其截距为∞; 取倒数:取三个截距值的倒数; 化整并加圆括号:将三个截距的倒数化为最小 整数h、k、l,并加圆括号,即(hkl),如果截距 为负值,则在负号标注在相应指数的上方。
正交
三、晶向指数与晶面指数(Miller指数)
晶向:空间点阵中各阵点列的方向代表晶体中原子排列的 方向,称为晶向,即空间点阵中任意两阵点的连接矢量。 晶向指数:表示晶体中点阵方向的指数。 晶向指数的确定步骤:
z
[ 1 11]
[112] • 建立坐标系; • 确定坐标值:在待定晶向上确定 [1 1 1] [1 1 0] 距原点最近的一个阵点的三个坐标值; • 化整并加方括号:将三个坐标值化为最小 [001] [111] 整数u、v、w,并加方括号。如有负值,在 [010] o 该数值上方标负号。 [100] [110]
• 在立方晶系中,具有相同指数的晶面和晶向 必定相互垂直。不适合其它晶系。 如: [121] (121) 即:晶向 [121] 为晶面 (121)的法向量。 ★ 因此,晶面指数可作为向量进行运算。
例:在一个面心立方晶胞中画出(102)、 (223) 晶面。
六方晶系的晶向指数和晶面指数

材料科学基础课件第二章--晶体结构

材料科学基础课件第二章--晶体结构
16
小结
1. 晶体结构是指晶体中原子或分子的排列情况,由空间点阵 与结构基元构成,晶体结构的形式是无限多的。
2. 空间点阵是把晶体结构中原子或分子等结构基元抽象为周
围环境相同的阵点之后,描述晶体结构的周期性和对称性的
图像。
17
2.1.2 晶向指数和晶面指数
(1) 晶向指数 晶向(crystal directions)—通 过晶体中任意两个原子中心连 成直线来表示晶体结构的空间 的各个方向。
些晶向可归为一个晶向族,用〈uvw〉表示。如
〈111〉 晶 向 族 包 括 [111] 、 [T11] 、 [1T1] 、 [11T] 、 [TT1]、[1TT]、[T1T]、[TTT];〈100〉晶向族包括 [100]、[010]、[001]、[T00]、[0T0]、[00T] 。
(4)同一晶向族中晶向上原子排列因对称关系而等同。
范德华键的特点及典型的分子晶体的性质:
范德华键(分子键)是通过“分子力”而产生的键合。分子力 包括三种力:葛生力(Keesen force)──极性分子中的固有 偶极矩产生的力,德拜力(Debye force)──感应偶极矩产生 的力,即极性分子和非极性分子之间的作用力,伦敦力 (London force)──非极性分子中的瞬时偶极矩产生的力。 当分子力不是唯一的作用力时,它们可以忽略不计。
2 晶体结构
晶体:物质是由原子、分子或离子按一定的空间 结构排列所组成的固体,其质点在空间的分布具 有周期性和对称性,因而晶体具有规则的外形。
1
晶体的宏观特征
石英

2
钠长石 Na[AlSi3O8]
绿柱石 Be3Al2(SiO3)6
3
祖母绿Be3Al2[Si6O18]

《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社

《材料科学基础》第二版 (张联盟 著)课后习题答案  武汉理工大学出版社

2-26 硅酸盐晶体结构有何特点?怎样表征其化学式?
2-27 硅酸盐晶体的分类依据是什么?可分为那几类,每类的结构特点是什么? 2
2-28 下列硅酸盐矿物各属何种结构类 型:Mg2[SiO4],K[AlSi3O8],CaMg[Si2O6],Mg3[Si4O10](OH)2,Ca2Al [AlSiO7]。
2-9 计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
2-10 根据最密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只 有34.01%),为什么它也很稳定?
2-11 证明等径圆球六方最密堆积的空隙率为25.9%。
2-12 金属镁原子作六方密堆积,测得它的密度为 1.74g/cm3,求它的晶胞体积。
1
若CaS (a=0.567nm)、CaO(a=0.480nm)和MgO(a=0.420nm)为一般阳离子-阴离子接触,试求 这些晶体中各离子的半径。
2-16 氟化锂(LiF)为NaCl型结构,测得其密度为 2.6g/cm3,根据此数据计算晶胞参数,并将此值与你从 离子半径计算得到数值进行比较。
2-17 Li2O的结构是O2-作面心立方堆积,Li+占据所有四面体空隙位置,氧离子半径为0.132nm。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li+半径比较,说明此 时O2-能否互相接触;(2)根据离子半径数据求晶胞参数;(3)求Li2O的密度。
2-1 名词解释
第二章 晶体结构
晶系 晶胞 晶胞参数 空间点阵 晶面指数 晶格能 原子半径与离子半径 配位数 离子极化 同质多晶与类质同晶 正尖晶石与反正尖晶石 反萤石结构 铁电效应 压电效应 热释电效应 电光效应
2-2 (1)一晶面在x、y、z轴上的截距分别为 2a、3b、 6c,求该晶面的晶面指数;(2)一晶面 在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的晶面” 时,你有哪些技巧? (5) 在 “确定已知晶向的指数” 方面,你有
什么更好的方法?
四、晶面间距 1. 晶面间距 — 相邻两个平行晶面之间的
距离 2. 计算公式
晶面间距 dhkl 与晶面指数 (hkl) 和 点阵常数 (a, b, c) 之间有如下关系:
立方晶系:d hkl = a /[h 2 + k 2 + l 2 ]1/ 2
(2) 求截距.以晶格常数为单位,求待定晶面 在坐标轴上的截距值
(3) 取倒数.将截距值取倒数
(4) 化整数.将Байду номын сангаас距值的倒数化为一组最小 整数
(5) 加括号.(hkl)
3) 讨论
(1) (hkl) 代表相互平行、面法线方向相同的所
有晶面
(2) (hkl ) 代表与 (hkl ) 法线方向反向平行的晶面
(2) [uvw] 代表与 [uvw] 反向平行的晶向
(3) 晶向族 uvw 代表阵点排列情况完全相 同、但位向不同的所有晶向
例如,在立方晶系中:
< 111 >= [111] + [1 11] + [1 1 1] + [11 1] + [1 1 1] + [1 1 1] + [1 1 1] + [1 1 1]
基元 (a)
基元
基元
ρ a
ρ b
(b)
(c)
三种晶体的点阵
晶体结构=点阵+基元 点阵的基本矢量(基矢) — 描述点阵中
各阵rρ点uv空w 间=位u置aρ的+基v本bρ平+移矢w量cρ
ρ a
ρ b
3. 晶格 — 连接晶体点阵中阵点的几组相交 平行线构成的空间格架
4. 晶胞 — 构成晶格的最小单元
1) 表征晶胞形状的六个参量
垂直,如何用晶带定理判断.

六、晶体的极射赤面投影图 1. 投影原理(以立方晶系为例)
[001]
[0 1 0]
[100]
[1 00]
O
10
100001 1 00
010
0 01 100 010
010
[010]
[00 1]
1 00
投影面
010
001
010
100
010
1 00
010
100
1 00
[001]
投射点(光
010
001
源) 010
[0 1 0]
[1 00]
O
[010]
[100]
100
[00 1]
1 00
投影面
010
001
010
100
010
1 00
010
100
1 00
[001]
投射点(光
010
001
源) 010
[0 1 0]
[1 00]
O
[010]
[100]
100
[00 1]
2. 标准投影图 — 只标出某些低指数晶面和 晶向投影的投影图
密排六方结构 CPH (close-packed hexagonal)
Zn, Mg … 原子密排面和密排方向 一个晶胞中的原子数 原子的配位数
点阵常数 致密度 间隙
原子堆垛方式
1. 原子最密排面和最密排方向
结构类型
bcc fcc cph
最密排面
{110} {111}
(0001)
最密排方向
< 111 >
(h1k1l1 ) + (h2k2l2 ) = (h3k3l3 )
课堂练习
1. 写出立方晶系 [001] 晶带中任意6个晶带 面
2. 判断下列6个晶面是否属于同一个晶带. 若是,写出晶带轴.
(1 1 1) (1 1 1) (111) (1 11) (110) (123)
否 3. 立方晶系 {111} 晶面族中的面是否相互
(3) 晶面族 {hkl} 代表阵点排列情况完全相
同、 例但如位,向立不方同晶的系所中有:晶面
{100} = (100) + (010) + (001) + (1 00) + (0 1 0) + (00 1)
(4) 立方晶系中,相同指数的晶面与晶向必定 相互垂直 例如, (100) ⊥ [100] (101) ⊥ [101] (111) ⊥ [111]
< 110 >
< 1120 >
2. 一个晶胞中的原子数
bcc fcc cph
四向轴四坐个标 坐中 标, 轴从 作待 垂定 直晶 投向 影上 ,的 给某cϖ个轴阵的点投
影值乘以 3/2 ,再将四个投影值化为一 组最小整数,即为 [uvtw]
详见:范群成.正射投影修正系数法标注六方 晶系晶向指数[J].理化检验-物 理分册,1992,28 (6):20
课堂练习 写出图示六方晶胞中ABCDA面及其与晶胞 表面交线的指数
(5) 加括号.(hkil).可以证明,i=-(h+k)
课堂练习
写出图中六方晶胞六个侧面的 MillerBravais 指数,及其晶面族的指数.
过 AB 的面:(1 1 00) 过 BC 的面:(10 1 0) 过 CD 的面:(01 1 0) 过 DE 的面:(1 100) 过 EF 的面:(1 010) 过 FA 的面:(0 1 10)
{???}
F
E
A
O
a2
D
a1 B
C
{???}
<???>
1) 确定已知晶面的指数
(1)为(建aϖh3坐kil标、)cϖ.四、轴坐标,坐标轴
aϖ1 aϖ2
、 ,坐标原点不能位于待定晶面内
(2) 求截距.以晶格常数为单位,求待定晶面
在坐标轴上的截距值
(3) 取倒数.将截距值取倒数
(4) 化整数.将截距值的倒数化为一组最小整 数
2. 布拉菲点阵(Bravais lattice) — 根据晶胞 形状及阵点的分布特征所划分的晶体点 阵系列,共有 14 种
3. 课外思考题: 1) 密排六方结构是哪种布拉菲点阵? 2) 为什么布拉菲点阵中没有密排六方点阵? 3) 为什么布拉菲点阵中没有面心四方点阵?
三、晶向指数和晶面指数
1. 晶向指数及其确定方法 1) 晶向指数 — 晶体点阵中阵点列的方向指
第二章 材料中的晶体结构
CRYSTAL STRUCTURE IN MATERIALS
晶体学基础 纯金属的晶体结构 离子晶体的结构 共价晶体的结构
THE END
第一节 晶体学基础
FUNDAMENTALS OF CRYSTALLOGRAPHY
空间点阵和晶胞 晶系和布拉菲点阵 晶向指数和晶面指数 晶面间距 晶带及晶带定理 晶体的极射赤面投影图
2) 对于非简单点阵,其某些面的面间距与简
单点阵的相同,某些却是简单点阵的分数
倍.如,对于简单立方,d100 = a
对于面心立方,d 100
=
1a 2
3) 较为稳妥的方法是利用下式计算:
面间距=面密度/体密度
2
如,对于面心立方
d110 =
2a2 = 4
2a 4
a3
五、晶带及晶带定理
[uvw]
1. 晶带 — 平行于
THE END
2) 选取晶胞的一般原则 (1) 尽可能高的对称性 (2) 尽可能多的直角 (3) 尽可能小的体积
A
B
简单晶胞和复杂晶胞
3) 简单晶胞(初级晶胞) — 只含有一个阵 点的晶胞
4) 复杂晶胞(非初级晶胞) — 含有多个阵 点的晶胞
THE END
THE END
二、晶系和布拉菲点阵
1. 晶系(Crystal system) — 根据晶胞形状特 征所划分的晶体点阵系列,共有7种
(2) 第2种方法 — 公式换算法:先在三轴 坐标中,确定待定晶向的 Miller 指数 [UVW], 再用下述公式换算成 [uvtw] u = 1 (2U − V ) 3 v = 1 (2V − U ) 3 t = − 1 (U + V ) = −(u + v) 3
w=W
(3) 第3种方法-正射投影修正系数法:在
四方晶系:d hkl = 1/[(h 2 + k 2 ) / a 2 + (l / c)2 ]1/ 2
正交晶系:d hkl = 1/[(h / a)2 + (k / b)2 + (l / c)2 ]1/ 2
六方晶系:d hkl = 1/[4 / 3(h 2 + hk + k 2 ) / a 2 + (l / c)2 ]1/ 2
1) 两个不平行的晶面 (h1k1l1 ) 和 (h2k2l2 ) 必定属于同一个晶带,其晶带轴[uvw] 可由下式求得:
[uvw] = h1k1l1 × h2k2l2
2) 已知一个晶带中的任意两个晶带面 (h1k1l1 ) 和 (h2k2l2 ) ,则符合下式的晶面 (h3k3l3 ) 也 属于该带:
数. 2) 确定已知晶向的指数 (Miller指数) (1) 建坐标.一般为右手坐标,坐标原点位于
待定晶向上某一阵点,坐标轴为晶胞棱边
(2) 求投影.以晶格常数为单位,求待定晶向 上任一阵点的投影值
(3) 化整数.将投影值化为一组最小整数
(4) 加括号.[uvw]
3) 课堂练习
4) 讨论
(1) [uvw] 代表相互平行、方向相同的所有晶向
5) 课外思考题: (1) 如何画出已知指数的晶面? (2) 在 “确定已知晶面的指数和画出已知指数
的晶面” 时,你有哪些技巧?
课堂练习 写出图示立方晶胞中晶向及晶面的指数
相关文档
最新文档