反激变压器设计实例(二)
反激变压器计算实例
技术要求:输入电压Vin:90-253Vac输出电压Vo:27.6V输出电流Io:6A输出功率Po:166W效率η:0.85输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到:Vpk=90*1.414=127VVmin=Vdc-(Vpk-Vdc)=103V将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。
Idc*T3=C*△V其中:△V=Vpk-Vmin=127-103=24V关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS,T3=t1+t2=8mS。
C=1.7*8/24=0.57mF=570uF二、变压器的设计过程变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。
对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。
磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥0.32T1)DCM变压器设计过程:开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V匝比 n=Vor/(Vo+Vf)=3.32 Vf 为整流二极管压降计算初级匝数计算副边匝数 Ns=Np/n=6.32,选择7匝,则原边匝数调整为 Np=3.32*7=23匝计算辅助绕组匝数,输出电压变化范围按照20-27.6V 设计,要求在20V 输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。
反激变压器设计实例
AC输入:85-265V输出功率:10瓦 n=0.85查磁芯规格F=60KHZ时宽电压10W选EE19合适, 查得Ae=0.22平方厘米 Bm=0.22T例1:设Dmax=0.5 f=60kDCinmin=85v*1.414-20v=100vIpk=(2*Po)/DCinmin*Dmax=(2*10)/100*0.5=0.4ALP =(DCinmin*Dmax*Ts)/Ipk=[100*0.5*(1/60000)]/0.4=0.00208H=2.08mHNP =(LP*Ipk)/(Ae*Bm)=0.00208*0.4/0.22*0.22=172T例2:Pin=Po/n =10/0.85=11.76WTs=1/60000=16.7uston=Dmax*Ts=0.5*16.7=8.33Np=(DCinmin*ton)/Ae*Bm=100*8.33/0.22*0.22=172TIs=Pin/DCinmin=11.76/100=0.12AIave=(Is*Ts)/ton=0.12*16.7/8.33=0.24AImin=Iave/2=0.24/2=0.12AIpk=3*Imin=0.12*3=0.36ALP=(DCinmin*ton)/Ipk=100*0.00000833/0.36=0.0023H=2.3mH例3:Vf反射电压VmosMOS管耐压设600V留150V裕量DCinmax=ACinmax*1.414-20=265*1.414-20=355VVf=Vmos-DCinmax-150v=600-355-150=95VDCinmin*Dmax=Vf*(1-Dmax)100*Dmax=95*(1-Dmax)Dmax=0.491/2*(Imin+Ipk)*Dmax*DCinmin=(Po/n)Ipk=3*Imin1/2*(Ipk/3+Ipk)*0.49*100=10/0.85Ipk=0.36ALp=(Dmax*DCinmin)/(f*Ipk)=(0.49*100)/(600000*0.36)=0.0023H=2.2mHNP=(LP*Ipk*10000)/(Bm*Ae)=(0.0023mH*0.36A*10000)/0.22*0.22=171T完成! 回复1帖2帖 xcj-wj 营长4262005-06-12 21:48 路过,支持一下! 回复2帖3帖 philips 旅长22192005-06-13 08:37欢迎指正! 回复3帖4帖 philips 旅长 22192005-06-13 08:39第三例的f 输错了!应该是60000.但结果没错!AC 输入:85-265V输出功率:110瓦 n=0.83F=60KHZ例1:设Dmax=0.5 f=60kDCinmin=85v*1.414-20v=100vIpk=(2*Po)/DCinmin*Dmax=(2*110)/100*0.5=4.4A例2:Pin=Po/n =110/0.83=133WTs=1/60000=16.7uston=Dmax*Ts=0.5*16.7=8.33Is=Pin/DCinmin=133/100=1.33AIave=(Is*Ts)/ton=1.33*16.7/8.33=2.66AImin=Iave/2=2.66/2=1.33AIpk=3*Imin=1.33*3=3.99A为什么我算的出来的峰值电流差别那么大,是不是功率越大,误差越大?我看你的10W 误差是0.04A 啊,我的110W 误差是0.4A 啊?这在可接受的范围内吗?回复15帖162帖 hmwdjcat 工兵 4六2009-08-22 12:45因为在 反激电源拓扑中应该取n=0.75而不是0.85,所以你们的误差比较大, 回复162帖16帖 peterchen0721旅长21012005-08-21 09:02如果反激式照你的評估方式去做那還有幾個考量點請再查一下資料.1.把171T與2.2mH結合去查鐵心資料看AL值為多少(gap問題).2.利用找到的AL值去對照NIpk值(安匝)是否在曲線內.完成以上兩個工作才能說初步完成變壓器設計.否則你的電特性與磁特性無法確定是否配合的上.以上提供參考.回复16帖17帖philips旅长22192005-08-21 14:03说的也是!变压器是不可完全套公式去设计的!我大多也是靠经验来完成!不过套公式!变压器是绝对可工作的!只是某些细节要求可能达不到!。
反激变压器设计实例
反激变压器设计实例设计一个反激变压器是一个非常复杂的工程,需要考虑许多因素,包括输入电压、输出电压、功率需求、电流负载、转换效率等。
在这里,我将给出一个反激变压器的设计实例,以帮助你更好地理解。
假设我们需要设计一个输入电压为220V,输出电压为12V的反激变压器,功率需求为60W。
首先,我们需要确定变压器的转换比。
转换比可以通过输出电压和输入电压的比值来确定。
在本例中,转换比为12V/220V,即0.0545接下来,我们需要确定主电压边(Primary Side)的匝数。
主电压边上的匝数决定了变压器的转化比。
然后,我们需要确定次电压边(Secondary Side)的匝数。
次电压边的匝数通过主电压边的匝数和转换比来计算。
在本例中,次电压边的匝数为1000*0.0545,约为54.5、为了简化设计,可以选择将次电压边的匝数设定为55接下来,我们需要根据功率需求来确定变压器的尺寸。
功率可以通过输入电压和电流来计算。
在本例中,输入电压为220V,功率为60W,那么电流为60W/220V,约为0.27A。
然后,我们可以根据电流负载来确定导线截面积。
在本例中,电流为0.27A,我们可以选择导线截面积为0.5mm²。
接下来,我们需要计算主电压边的绕线长度。
主电压边的绕线长度可以通过主电压边的匝数和导线的长度来计算。
在本例中,主电压边的匝数为1000,并且我们选择导线长度为2m,那么主电压边的绕线长度为1000*2m,约为2000m。
然后,我们需要计算次电压边的绕线长度。
次电压边的绕线长度可以通过次电压边的匝数和导线的长度来计算。
在本例中,次电压边的匝数为55,并且我们选择导线长度为2m,那么次电压边的绕线长度为55*2m,约为110m。
接下来,我们需要计算变压器的转换效率。
转换效率可以通过输出功率和输入功率来计算。
在本例中,输出功率为60W,输入功率可以通过输入电压和电流来计算,即220V*0.27A,约为59.4W。
反激变压器设计实例
I2 SRMS
− IO2
= 1.3( A)
副边交流电损耗: Pac2 = I ac22 * Rac2 = 0.073(W )
副边绕组线圈总损耗: P2 = Pdc2 + Pac2 = 0.113(W )
总的线圈损耗: Pw = P1 + P2 = 0.153(W ) 2)磁芯损耗:
峰值磁通密度摆幅: ∆B = BMAX K RP = 0.1(T ) 2
原边交流电流分量有效值: Iac1 =
I2 RMS
− I AVG 2
= 0.107( A)
原边交流电损耗: Pac1 = I ac12 * Rac1 = 0.0229(W )
原边绕组线圈总损耗: P1 = Pdc1 + Pac1 = 0.04(W )
副边直流电阻: Rdc2 = ρ * l = 0.04(Ω) A
7
5
原边导线厚度与集肤深度的比值: Q = 0.83d d / s = 0.5678 ∆
d为原边漆包线直径0.23mm,s为导线中心距0.27mm, ∆ 为集肤深度0.31mm。 原边交流电阻与直流电阻比:由于原边采用包绕法,故原边绕组层数可按两层考虑,根据上
式所求的Q值,查得 Fr = Rac1/ Rdc1 ≈ 1 。 原边交流电阻: Rac1 = Rdc1× Fr = 1.993(Ω)
选择磁芯材料为铁氧体,PC40。
4、选择磁芯的形状和尺寸:
在这里用面积乘积公式粗选变压器的磁芯形状和尺寸。具体公式如下:
反激变压器工作在第一象限,最高磁密应留有余度,故选取BMAX=0.3T,反激变压器的系数 K1=0.0085(K1是反激变压器在自然冷却的情况下,电流密度取420A/cm2时的经验值。)
反激变压器设计实例
⎡ 0.4 × π × N P 2 × AE LE ⎤ 气隙长度: Lg = ⎢ − ⎥ × 10 = 0.1(mm) LP × 100 µr ⎦ ⎣
6、选择绕组导线线径: 变压器有效的骨架宽度: BWE = LX × [BW − (2 × M )] = 31.6(mm)
LX为原边绕组层数,在这里采用4层。
Fr = Rac1 / Rdc1 ≈ 1.1 。
副边交流电阻: Rac 2 = Rdc 2 × Fr = 0.0434(Ω) 副边交流电流分量有效值: Iac 2 = I SRMS − I O = 1.3( A)
2 2
副边交流电损耗: Pac 2 = I ac 2 * Rac 2 = 0.073(W )
4
M为线圈每端需要的爬电距离,在这里取2mm。 计算原边绕组导线允许的最大直径(漆包线) OD = :
BW E = 0.29(mm) NP
根据上述计算数据可采用裸线径DIA=0.23mm的漆包线绕置,其带漆皮外径为0.27mm, 刚好4层可以绕下。 根据所选线径计算原边绕组的电流密度: J =
4 × I RMS = 3.44( A ) π × DIA 2 BW E − 2 × M = 0.79( mm) NS
2
副边绕组线圈总损耗: P 2 = Pdc 2 + Pac2 = 0.113(W ) 总的线圈损耗: Pw = P1 + P 2 = 0.153(W ) 2)磁芯损耗: 峰值磁通密度摆幅: ∆B =
BMAX K RP = 0.1(T ) 2
磁芯损耗: Pc = Pcv × Ve = 0.003(W )
2
5
原边导线厚度与集肤深度的比值: Q =
0.83d d / s = 0.5678 ∆
反激式变压器的设计
校企联合开发的实训教材 反激式变压器的设计广东明丰电源实业有限公司中山火炬职业技术学院2018年6月20日反激式变压器的设计反激式变压器设计思考(一)对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。
另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。
励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。
在整个抽水过程中,水泵中保持的水量又是不变的。
这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。
正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。
而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。
反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来;第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。
可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。
初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。
磁芯饱和时,很短的时间内极易使开关管损坏。
因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。
反激变压器计算实例.docx
技术要求:输入电压Vin : 90-253Vac 输出电压Vo:27.6V 输出电流Io: 6A输出功率Po: 166W 效率η: 0.85输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压VdC 为115V,则从上图可以得到:Vpk=90*1.414=127VVmi n=Vdc-(Vpk-Vdc)=103V将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(VPk-Vmin)V Oldc*T3=C* △ V其中:△ V=VPk-Vmi n=127-103=24V关键部分在T3的计算,T3=t1+t2 , t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为VX=VPkSin θX,根据已知条件,Vx=103V , Vpk=127V ,可以得到θx=54度,所以t2=54*10ms∕180=3mS , T3=t1+t2=8mS。
C=1.7*8∕24=0.57mF=570uF二、变压器的设计过程变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。
对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。
磁芯的参数如下:AE=190mm2,AL=4300nH, Bmax≥0.32T1) DCM变压器设计过程:开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压VdC下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),IrmS = IPk L* n*^Dma^ ≡12.3AV 3根据电流有效值, 求,即可得到合适的变压器。
反激变压器计算实例
技术要求:输入电压Vin:90-253Vac输出电压Vo:27、6V输出电流Io:6A输出功率Po:166W效率η:0、85输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到得电压Vdc为115V,则从上图可以得到:Vpk=90*1.414=127VVmin=Vdc—(Vpk—Vdc)=103V将电源模块等效为一个电阻负载得话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk—Vmin)V。
Idc*T3=C*△V其中:△V=Vpk—Vmin=127-103=24V关键部分在T3得计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz得交流来说,t 1=5mS,然后就就是计算t2,其实t2也很好计算,我们知道交流输入电压得公式为Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS, T3=t1+t2=8mS。
C=1.7*8/24=0、57mF=570uF二、变压器得设计过程变压器得设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也就是DCM得一种,不同得地方在于QR得工作频率就是随着输入电压输出功率得变化而变化得。
对于变压器磁芯得选择,比较常用得方法就就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级得反激,选择PQ3535得磁芯即可、磁芯得参数如下:AE=190mm2,AL=4300nH,Bmax≥0。
32T1)DCM变压器设计过程:开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V匝比n=Vor/(Vo+Vf)=3、32 Vf为整流二极管压降计算初级匝数计算副边匝数Ns=Np/n=6。
反激式变压器的设计实例
反激式变压器的设计实例尽管在buck变换器的设计中没有用到反激式变压器,但由于反激式变压器介于电感与变压器之间,为了帮助大家进一步搞清楚这个特殊的磁性元件,在此我们给出反激式变压器的设计,并作为设计范例。
介绍的内容要比直流电感简单一些,但是很多方面是一致的。
说明一下,这里设计的反激式变压器是有隔离的,而非隔离反激式电感的设计除了没有副边以外,其他的几乎相同。
我们的设计要求为:直流输入电压为48V(为了简便起见,假设没有线电压波动),功率输出为10W,开关频率是250kHz,允许功率损耗0.2W(根据总的损耗,可以知道变换器的效率要求),因此变换器效率为98%(0.2W/10W=2%)。
效率的大小与磁芯的尺寸有关,变压器体积越小,效率越低。
(隔离、断续模式的)反激式变压器原边设计时只需要用到四个参数:输出功率、开关频率、功耗、输入电压(设计非隔离反激式电感也只需这四个参数)。
这里,我们还没有提到电感量,电感量由很多参数决定,在下面的内容中我们将会介绍它们之间的关系。
我们用UC3845芯片(8脚、中等价格)提供PWM信号,其最大占空比为45%,占空比的大小是根据变换器是工作在连续状态还是断续状态来确定的,稍后的章节中将介绍如何计算占空比,在这个例子中,我们选用断续模式。
我们再增加一项设计要求:就是变压器体积要尽量小,有一定的高度限制。
我们将会看到,变压器的设计与电感的设计不完全相同,变压器通常可以选用多种不同的磁芯来实现相同的电气特性。
在这个例子中,还要根据其他一些要求来选择磁芯,包括尺寸、成本等因素。
1 反激式变压器的主要方程首先,我们做一些基本的准备工作。
正如这一章一开始介绍的理论内容中所说的那样,当反激式变换器原边开关器件导通时,变压器原边绕组的作用相当于一个电感。
电压加在原边电感上,开关导通期间,电流持续上升:这里,DC是占空比,f是开关频率,T=1/f是开关周期,这个方程适用于电流断续模式反激式变压器,原边电流波形如图案5-17所示。
反激变压器设计实例
反激变压器设计实例首先,需要确定输出功率。
假设需要输出功率为50W,根据功率平衡关系可知,输入功率和输出功率之间满足关系:输入功率=输出功率/效率。
假设效率为80%,则输入功率为62.5W。
接下来,需要确定工作频率。
工作频率是根据具体应用场景和电子元器件选择而定。
在一般应用中,常用的工作频率为20kHz-200kHz。
本文选择工作频率为50kHz。
根据输入功率和工作频率,可以确定变压器的整流磁链。
整流磁链的计算公式为:Bac = (2*P)/(f*Ae),其中Bac为整流磁链,P为输入功率,f为工作频率,Ae为有效磁路面积。
根据公式计算,整流磁链为0.25T。
接下来,需要确定变压器的变比。
变比是根据输入和输出电压之间的关系来确定的。
根据输入电压和输出电压的比值,可以确定变压器的变比。
本文选择输入电压为220V,输出电压为12V,变比为18.33然后,需要确定变压器的初始工作条件。
变压器在初始工作条件下需要满足一些性能指标,包括工作电流、磁通密度、差动感应电势等。
根据这些指标可以确定变压器的铁芯截面积和匝数。
在本文的实例中,输入电压为220V,输出电压为12V,变比为18.33,因此输入电流为0.28A,输出电流为4.34A。
根据输出电流和工作频率可以确定匝数。
根据变压器的铁芯材料和工作磁通密度,可以确定变压器的铁芯截面积。
最后,需要进行变压器的检验和调试。
对于反激变压器的设计,主要检验电路是否稳定、变压器的各项指标是否达标。
可以通过调试和测量来验证设计的正确性。
常见的检验和调试项目包括输出电压稳定性、效率、输入电流波形、输出电流波形等。
以上是一个反激变压器的设计实例。
设计反激变压器需要考虑各种因素,包括输入功率、输出功率、输入和输出电压、工作频率等。
通过合理的设计和调试,可以保证反激变压器的性能指标和稳定性,满足具体的应用要求。
反激式开关电源变压器设计(2)
技术部培训教材
反激式开关电源变压器设计(2)
表二 变压器窗口利用因数 窗口 1.1 1.2 1.3 1.4 1.1 1.2 1.1
变压器情况 反激式变压器 一个二次绕组 两个或多个二次绕组 相互隔离的二次绕组 满足UL CSA标准 UL或 满足UL或CSA标准 满足IEC IEC标准 满足IEC标准 法拉第屏屏蔽
技术部培训教材
反激式开关电源变压器设计(2)
2.2 估算输入功率,输入电压,输入电流和峰值电流 估算输入功率,输入电压, 输出功率: 1)输出功率:Po=5V*1A+2*12V*1A+24V*1.5A=65W 输入功率: 2) 输入功率:Pin=Po/η=65W/0.8=81.25W 最低输入电压: 3) 最低输入电压:Vin(min)=AC90V*1.414=DC127V 最高输入电压: 4) 最高输入电压:Vin(max)=AC240V*1.414=DC340V 最大平均输入电流: 5) 最大平均输入电流: Iin(max)=Pin/Vin(min)=81.25WDC127V=DC0.64A 最小平均输入电流: 6) 最小平均输入电流: Iin(min)=Pin/Vin(max)=81.25WDC340V=DC0.24A 峰值电流: 7) 峰值电流:Ipk=5.5Po/Vin(min)=5.5*65W/127V=2.81A 2.3 确定磁芯型号尺寸 按照表1 65W可选用每边约35mm的EE35/35/10材料为PC30磁芯 可选用每边约35mm 材料为PC30 按照表1,65W可选用每边约35mm的EE35/35/10材料为PC30磁芯 磁芯Ae=100mm 磁芯Ae=100mm2, Acw=188mm2, W=40.6g 计算一次电感最小值Lpri 2.4 计算一次电感最小值Lpri Vin(min).Dmax 127*0.5 Lpri= = = 452*10-6H=452uH Ipk.f 2.81*50*103 此处选Dmax=0.5 此处选Dmax=0.5
反激式开关电源变压器的设计案例
鍙嶆縺寮忓紑鍏崇數婧愬彉鍘嬪櫒鐨勮璁℃渚?鍙嶆縺寮忓彉鍘嬪櫒鏄弽婵€寮€鍏崇數婧愮殑鏍稿績锛屽畠鍐冲畾浜嗗弽婵€鍙樻崲鍣ㄤ竴绯诲垪鐨勯噸瑕佸弬鏁帮紝濡傚崰绌烘瘮D锛屾渶澶у嘲鍊肩數娴侊紝璁捐鍙嶆縺寮忓彉鍘嬪櫒锛屽氨鏄璁╁弽婵€寮忓紑鍏崇數婧愬伐浣滃湪涓€涓悎鐞嗙殑宸ヤ綔鐐逛笂銆傝繖鏍峰彲浠ヨ鍏剁殑鍙戠儹灏介噺灏忥紝瀵瑰櫒浠剁殑纾ㄦ崯涔熷敖閲忓皬銆傚悓鏍风殑鑺墖锛屽悓鏍风殑纾佽姱锛岃嫢鏄彉鍘嬪櫒璁捐涓嶅悎鐞嗭紝鍒欐暣涓紑鍏崇數婧愮殑鎬ц兘浼氭湁寰堝ぇ涓嬮檷锛屽鎹熻€椾細鍔犲ぇ锛屾渶澶ц緭鍑哄姛鐜囦篃浼氭湁涓嬮檷锛屼笅闈㈡垜绯荤粺鐨勮涓€涓嬫垜绠楀彉鍘嬪櫒鐨勬柟娉曘€?绠楀彉鍘嬪櫒锛屽氨鏄鍏堥€夊畾涓€涓伐浣滅偣锛屽湪杩欎釜宸ヤ綔鐐逛笂绠楋紝杩欎釜鏄渶鑻涘埢鐨勪竴涓偣锛岃繖涓偣灏辨槸鏈€浣庣殑浜ゆ祦杈撳叆鐢靛帇锛屽搴斾簬鏈€澶х殑杈撳嚭鍔熺巼銆備笅闈㈡垜灏辨潵绠椾簡涓€涓緭鍏?5V鍒?65V锛岃緭鍑?V锛?A 鐨勭數婧愶紝寮€鍏抽鐜囨槸100KHZ銆?绗竴姝ュ氨鏄€夊畾鍘熻竟鎰熷簲鐢靛帇VOR锛岃繖涓€兼槸鐢辫嚜宸辨潵璁惧畾鐨勶紝杩欎釜鍊煎氨鍐冲畾浜嗙數婧愮殑鍗犵┖姣斻€傚彲鑳芥湅鍙嬩滑涓嶇悊瑙d粈涔堟槸鍘熻竟鎰熷簲鐢靛帇锛屾槸杩欐牱鐨勶紝杩欒浠庝笅闈㈢湅璧凤紝鎱㈡參鐨勬潵锛?杩欐槸涓€涓吀鍨嬬殑鍗曠鍙嶆縺寮忓紑鍏崇數婧愶紝澶у鍐嶇啛鎮変笉杩囦簡锛屾潵鍒嗘瀽涓€涓嬩竴涓伐浣滃懆鏈燂紝褰撳紑鍏崇寮€閫氱殑鏃跺€欙紝鍘熻竟鐩稿綋浜庝竴涓數鎰燂紝鐢垫劅涓ょ鍔犱笂鐢靛帇锛屽叾鐢垫祦鍊间笉浼氱獊鍙橈紝鑰岀嚎鎬х殑涓婂崌锛屾湁鍏紡涓婂崌浜嗙殑I=Vs*ton/L,杩欎笁椤瑰垎鍒槸鍘熻竟杈撳叆鐢靛帇锛屽紑鍏冲紑閫氭椂闂达紝鍜屽師杈圭數鎰熼噺锛庡湪寮€鍏崇鍏虫柇鐨勬椂鍊欙紝鍘熻竟鐢垫劅鏀剧數锛岀數鎰熺數娴佸張浼氫笅闄嶏紝鍚屾牱瑕佸皧瀹堜笂闈㈢殑鍏紡瀹氬緥锛屾鏃舵湁涓嬮檷浜?锛?VOR*toff/L,杩欎笁椤瑰垎鍒槸鍘熻竟鎰熷簲鐢靛帇锛屽嵆鏀剧數鐢靛帇锛屽紑鍏崇鍏虫柇鏃堕棿锛屽拰鐢垫劅閲忥紟鍦ㄧ粡杩囦竴涓懆鏈熷悗锛屽師杈圭數鎰熺數娴佺殑鍊间細鍥炲埌鍘熸潵锛屼笉鍙兘浼氬彉锛屾墍浠ワ紝鏈塚S*TON/L=VOR*TOFF/L,锛屼笂鍗囦簡鐨勶紝绛変簬涓嬮檷浜嗙殑锛屾噦鍚楋紝濂芥噦鍚э紝涓婂紡涓彲浠ョ敤锛ゆ潵浠f浛锛达集锛紝鐢紤锛嶏激鏉ヤ唬鏇匡即OOF锛岀Щ椤瑰彲寰楋紝D=VOR/锛圴OR+VS锛夈€傛鍗虫槸鏈€澶у崰绌烘瘮浜嗐€傛瘮濡傝鎴戣璁$殑杩欎釜锛屾垜閫夊畾鎰熷簲鐢靛帇涓?0V锛孷S涓?0V 锛屽垯D=80/锛?80+90锛?0.47鍙嶆縺寮忓彉鍘嬪櫒鏄弽婵€寮€鍏崇數婧愮殑鏍稿績锛屽畠鍐冲畾浜嗗弽婵€鍙樻崲鍣ㄤ竴绯诲垪鐨勯噸瑕佸弬鏁帮紝濡傚崰绌烘瘮D锛屾渶澶у嘲鍊肩數娴侊紝璁捐鍙嶆縺寮忓彉鍘嬪櫒锛屽氨鏄璁╁弽婵€寮忓紑鍏崇數婧愬伐浣滃湪涓€涓悎鐞嗙殑宸ヤ綔鐐逛笂銆傝繖鏍峰彲浠ヨ鍏剁殑鍙戠儹灏介噺灏忥紝瀵瑰櫒浠剁殑纾ㄦ崯涔熷敖閲忓皬銆傚悓鏍风殑鑺墖锛屽悓鏍风殑纾佽姱锛岃嫢鏄彉鍘嬪櫒璁捐涓嶅悎鐞嗭紝鍒欐暣涓紑鍏崇數婧愮殑鎬ц兘浼氭湁寰堝ぇ涓嬮檷锛屽鎹熻€椾細鍔犲ぇ锛屾渶澶ц緭鍑哄姛鐜囦篃浼氭湁涓嬮檷锛屼笅闈㈡垜绯荤粺鐨勮涓€涓嬫垜绠楀彉鍘嬪櫒鐨勬柟娉曘€?绠楀彉鍘嬪櫒锛屽氨鏄鍏堥€夊畾涓€涓伐浣滅偣锛屽湪杩欎釜宸ヤ綔鐐逛笂绠楋紝杩欎釜鏄渶鑻涘埢鐨勪竴涓偣锛岃繖涓偣灏辨槸鏈€浣庣殑浜ゆ祦杈撳叆鐢靛帇锛屽搴斾簬鏈€澶х殑杈撳嚭鍔熺巼銆備笅闈㈡垜灏辨潵绠椾簡涓€涓緭鍏?5V鍒?65V锛岃緭鍑?V锛?A 鐨勭數婧愶紝寮€鍏抽鐜囨槸100KHZ銆?绗竴姝ュ氨鏄€夊畾鍘熻竟鎰熷簲鐢靛帇VOR锛岃繖涓€兼槸鐢辫嚜宸辨潵璁惧畾鐨勶紝杩欎釜鍊煎氨鍐冲畾浜嗙數婧愮殑鍗犵┖姣斻€傚彲鑳芥湅鍙嬩滑涓嶇悊瑙d粈涔堟槸鍘熻竟鎰熷簲鐢靛帇锛屾槸杩欐牱鐨勶紝杩欒浠庝笅闈㈢湅璧凤紝鎱㈡參鐨勬潵锛?杩欐槸涓€涓吀鍨嬬殑鍗曠鍙嶆縺寮忓紑鍏崇數婧愶紝澶у鍐嶇啛鎮変笉杩囦簡锛屾潵鍒嗘瀽涓€涓嬩竴涓伐浣滃懆鏈燂紝褰撳紑鍏崇寮€閫氱殑鏃跺€欙紝鍘熻竟鐩稿綋浜庝竴涓數鎰燂紝鐢垫劅涓ょ鍔犱笂鐢靛帇锛屽叾鐢垫祦鍊间笉浼氱獊鍙橈紝鑰岀嚎鎬х殑涓婂崌锛屾湁鍏紡涓婂崌浜嗙殑I=Vs*ton/L,杩欎笁椤瑰垎鍒槸鍘熻竟杈撳叆鐢靛帇锛屽紑鍏冲紑閫氭椂闂达紝鍜屽師杈圭數鎰熼噺锛庡湪寮€鍏崇鍏虫柇鐨勬椂鍊欙紝鍘熻竟鐢垫劅鏀剧數锛岀數鎰熺數娴佸張浼氫笅闄嶏紝鍚屾牱瑕佸皧瀹堜笂闈㈢殑鍏紡瀹氬緥锛屾鏃舵湁涓嬮檷浜?锛?VOR*toff/L,杩欎笁椤瑰垎鍒槸鍘熻竟鎰熷簲鐢靛帇锛屽嵆鏀剧數鐢靛帇锛屽紑鍏崇鍏虫柇鏃堕棿锛屽拰鐢垫劅閲忥紟鍦ㄧ粡杩囦竴涓懆鏈熷悗锛屽師杈圭數鎰熺數娴佺殑鍊间細鍥炲埌鍘熸潵锛屼笉鍙兘浼氬彉锛屾墍浠ワ紝鏈塚S*TON/L=VOR*TOFF/L,锛屼笂鍗囦簡鐨勶紝绛変簬涓嬮檷浜嗙殑锛屾噦鍚楋紝濂芥噦鍚э紝涓婂紡涓彲浠ョ敤锛ゆ潵浠f浛锛达集锛紝鐢紤锛嶏激鏉ヤ唬鏇匡即OOF锛岀Щ椤瑰彲寰楋紝D=VOR/锛圴OR+VS锛夈€傛鍗虫槸鏈€澶у崰绌烘瘮浜嗐€傛瘮濡傝鎴戣璁$殑杩欎釜锛屾垜閫夊畾鎰熷簲鐢靛帇涓?0V锛孷S涓?0V 锛屽垯D=80/锛?80+90锛?0.47绗簩姝?纭疄鍘熻竟鐢垫祦娉㈠舰鐨勫弬鏁?鍘熻竟鐢垫祦娉㈠舰鏈変笁涓弬鏁?骞冲潎鐢垫祦,鏈夋晥鍊肩數娴?宄板€肩數娴?,棣栧厛瑕佺煡閬撳師杈圭數娴佺殑娉㈠舰,鍘熻竟鐢垫祦鐨勬尝褰㈠涓嬪浘鎵€绀?鐢荤殑涓嶅ソ,浣嗕笉瑕佺瑧鍟?杩欐槸涓€涓褰㈡尝妯悜琛ㄧず鏃堕棿,绾靛悜琛ㄧず鐢垫祦澶у皬,杩欎釜娉㈠舰鏈変笁涓€?涓€鏄钩鍧囧€?浜屾槸鏈夋晥鍊?涓夋槸鍏跺嘲鍊?骞冲潎鍊煎氨鏄妸杩欎釜娉㈠舰鐨勯潰绉啀闄や互鍏舵椂闂?濡備笅闈㈤偅涓€鏉℃í绾挎墍绀?棣栧厛瑕佺‘瀹氳繖涓€硷紝杩欎釜鍊兼槸杩欐牱绠楃殑锛岀數娴佸钩鍧囧€?杈撳嚭鍔熺巼/鏁堢巼*VS锛屽洜涓鸿緭鍑哄姛鐜囦箻浠ユ晥鐜囧氨鏄緭鍏ュ姛鐜囷紝鐒跺悗杈撳叆鍔熺巼鍐嶉櫎浠ヨ緭鍏ョ數鍘嬪氨鏄緭鍏ョ數娴侊紝杩欎釜灏辨槸骞冲潎鍊肩數娴併€傜幇鍦ㄤ笅涓€姝ュ氨鏄眰閭d釜鐢垫祦宄板€硷紝灏栧嘲鍊兼槸澶氬皯鍛紝杩欎釜鎴戜滑鑷繁杩樿璁惧畾涓€涓弬鏁帮紝杩欎釜鍙傛暟灏辨槸KRP锛屾墍璋揔RP锛屽氨鏄寚鏈€澶ц剦鍔ㄧ數娴佸拰宄板€肩數娴佺殑姣斿€艰繖涓瘮鍊间笅鍥惧垎鍒槸鏈€澶ц剦鍔ㄧ數娴佸拰宄板€肩數娴併€傛槸鍦?鍜?涔嬮棿鐨勩€傝繖涓€煎緢閲嶈銆傚凡鐭ヤ簡KRP锛岀幇鍦ㄨ瑙f柟绋嬩簡锛岄兘浼氳В鏂圭▼鍚э紝杩欐槸鍒濅竴鐨勫簲鐢ㄩ鍟婏紝鎴戞潵瑙d竴涓嬶紝宸茬煡杩欎釜娉㈠舰涓€涓懆鏈熺殑闈㈢Н绛変簬鐢垫祦骞冲潎鍊?1锛岃繖涓尝褰㈢殑闈㈢Н绛変簬锛屽嘲鍊肩數娴?KRP*D+宄板€肩數娴?锛?-KRP锛?D锛屾墍浠ユ湁鐢垫祦骞冲潎鍊肩瓑浜庝笂寮忥紝瑙e嚭鏉ュ嘲鍊肩數娴?鐢垫祦骞冲潎鍊?锛?-0.5KRP锛?D銆傛瘮濡傝鎴戣繖涓緭鍑烘槸10W锛岃瀹氭晥鐜囨槸0.8.鍒欒緭鍏ョ殑骞冲潎鐢垫祦灏辨槸10/0.8*90=0.138A,鎴戣瀹欿RP鐨勫€兼槸0.6鑰屾渶澶у€?0.138/(1-0.5KRP).D=0.138/(1-0.5*0.6)*0.47=0.419A.绗笁涓數娴佸弬鏁?灏辨槸杩欎釜鐢垫祦鐨勬湁鏁堝€?鐢垫祦鏈夋晥鍊煎拰骞冲潎鍊兼槸涓嶄竴鏍风殑,鏈夋晥鍊肩殑瀹氫箟杩樿寰楀悧,灏辨槸璇存妸杩欎釜鐢垫祦鍔犲湪涓€涓數闃讳笂,鑻ユ槸鍏跺彂鐑拰鍙﹀涓€涓洿娴佺數娴佸姞鍦ㄨ繖涓數闃讳笂鍙戠儹鏁堟灉涓€鏍风殑璇?閭d箞杩欎釜鐢垫祦鐨勬湁鏁堝€煎氨绛変簬杩欎釜鐩存祦鐨勭數娴佸€?鎵€浠ヨ繖涓數娴佺殑鏈夋晥鍊间笉绛変簬鍏跺钩鍧囧€?涓€鑸瘮鍏跺钩鍧囧€艰澶?鑰屼笖鍚屾牱鐨勫钩鍧囧€?鍙互瀵瑰簲寰堝涓湁鏁堝€?鑻ユ槸鎶奒RP 鐨勫€奸€夊緱瓒婂ぇ,鏈夋晥鍊煎氨浼氳秺澶?鏈夋晥鍊艰繕鍜屽崰绌烘瘮D涔熸湁鍏崇郴,鎬讳箣.瀹冭繖涓數娴佹尝褰㈢殑褰㈢姸鏄伅鎭浉鍏崇殑.鎴戝氨鐩存帴缁欏嚭鏈夋晥鍊肩殑鐢垫祦鍏紡,杩欎釜鍏紡瑕佺敤绉垎鎵嶈兘鎺ㄥ緱鍑烘潵,鎴戝氨涓嶆帹浜?鍙澶у鍖哄垎寮€鏉ユ湁鏁堝€煎拰骞冲潎鍊煎氨鍙互浜?鐢垫祦鏈夋晥鍊?鐢垫祦宄板€?鏍瑰彿涓嬬殑D*(KRP鐨勫钩鏂?3-KRP+1)濡傛垜鐜板湪杩欎釜,鐢垫祦鏈夋晥鍊?0.419*鏍瑰彿涓?.47*(0.36/3-0.6+1)=0.20A.鎵€浠ュ搴斾簬鐩稿悓鐨勫姛鐜?涔熷氨鏄湁鐩稿悓鐨勮緭鍏ョ數娴佹椂,鍏舵湁鏁堝€煎拰杩欎簺鍙傛暟鏄湁鍏崇殑,閫傚綋鐨勮皟鏁村弬鏁?浣挎湁鏁堝€兼渶灏?鍙戠儹涔熷氨鏈€灏?鎹熻€楀皬.杩欎究浼樺寲浜嗚璁?绗笁姝?寮€濮嬭璁″彉鍘嬪櫒鍑嗗宸ヤ綔.宸茬煡浜嗗紑鍏抽鐜囨槸100KHZ鍒欏紑鍏冲懆鏈熷氨鏄?0寰浜?鍗犵┖姣旀槸0.47.閭d箞TON灏辨槸4.7寰浜?璁板ソ杩欎袱涓暟,瀵逛笅闈㈡湁鐢?绗洓姝?閫夊畾鍙樺帇鍣ㄧ鑺?杩欎釜灏辨槸鍑粡楠屼簡,濡傛灉浣犱笉浼氶€?灏变及涓€涓?璁$畻灏辫浜?鑻ユ槸涓嶈,鍙互鍐嶆崲涓€涓ぇ涓€鐐圭殑鎴栨槸灏忎竴鐐圭殑,涓嶈繃鏈夌殑璧勬枡涓婃湁濡備綍鏍规嵁鍔熺巼鍘婚€夌鑺殑鍏紡鎴栨槸鍖虹嚎鍥?澶у涓嶅Θ涔熷彲浠ュ弬鑰冧竴涓?鎴戜竴鑸槸鍑粡楠屾潵鐨?绗簲姝?璁$畻鍙樺帇鍣ㄧ殑鍘熻竟鍖濇暟鍘熻竟浣跨敤鐨勭粡寰?璁$畻鍘熻竟鍖濇暟鐨勬椂鍊?瑕侀€夊畾涓€涓鑺殑鎸箙B,鍗宠繖涓鑺殑纾佹劅搴斿己搴︾殑鍙樺寲鍖洪棿,鍥犱负鍔犱笂鏂规尝鐢靛帇鍚?杩欎釜纾佹劅搴斿己搴︽槸鍙樺寲鐨?姝f槸鍥犱负鍙樺寲,鎵€浠ュ叾鎵嶆湁浜嗗彉鍘嬬殑浣滅敤,NP=VS*TON/SJ*B,杩欏嚑涓弬鏁板垎鍒槸鍘熻竟鍖濇暟,,鏈€灏忚緭鍏ョ數鍘?瀵奸€氭椂闂?纾佽姱鐨勬í鑺傞潰绉拰纾佽姱鎸箙,涓€鑸彇B鐨勫€兼槸0.1鍒?.2涔嬮棿,鍙栧緱瓒婂皬,鍙樺帇鍣ㄧ殑閾佹崯灏辫秺灏?浣嗙浉搴斿彉鍘嬪櫒鐨勪綋绉細澶т簺.杩欎釜鍏紡鏉ユ簮浜庢硶鎷夊紵鐢电鎰熷簲瀹氬緥,杩欎釜瀹氬緥鏄,鍦ㄤ竴涓搧蹇冧腑,褰撶閫氬彉鍖栫殑鏃跺€?鍏朵細浜х敓涓€涓劅搴旂數鍘?杩欎釜鎰熷簲鐢靛帇=纾侀€氱殑鍙樺寲閲?鏃堕棿T鍐嶄箻浠ュ対鏁版瘮,鎶婄閫氬彉鍖栭噺鎹㈡垚纾佹劅搴斿己搴︾殑鍙樺寲閲忎箻浠ュ叾闈㈢Н灏卞彲浠ユ帹鍑轰笂寮忔潵,绠€鍗曞惂.鎴戠殑杩欎釜NP=90*4.7寰/32骞虫柟姣背*0.15,寰楀埌88鍖?.15鏄垜閫夊彇鐨勪簡鍊?绠椾簡鍖濇暟,鍐嶇‘瀹氱嚎寰?涓€鑸潵璇寸數娴佽秺澶?绾胯秺鐑?鎵€浠ラ渶瑕佺殑瀵肩嚎灏辫秺绮?,闇€瑕佺殑绾垮緞鐢辨湁鏁堝€兼潵纭畾,鑰屼笉鏄钩鍧囧€?涓婇潰宸茬粡绠楀緱浜嗘湁鏁堝€?鎵€浠ュ氨鏉ラ€夌嚎,鎴戠敤0.25鐨勭嚎灏卞彲浠ヤ簡,鐢?.25鐨勭嚎,鍏堕潰绉槸0.049骞虫柟姣背,鐢垫祦鏄?.2瀹?鎵€浠ュ叾鐢垫祦瀵嗗害鏄?.08,鍙互,涓€鑸€夊畾鐢垫祦瀵嗗害鏄?鍒?0瀹夌骞虫柟姣背.璁颁綇杩欎竴鐐?杩欏緢閲嶈.鑻ユ槸鐢垫祦寰堝ぇ,鏈€濂介噰鐢ㄤ袱鑲℃垨鏄袱鑲′互涓婄殑绾垮苟缁?鍥犱负楂橀鐢垫祦鏈夎秼鏁堝簲,杩欐牱鍙互姣旇緝濂?绗叚姝?纭畾娆$骇缁曠粍鐨勫弬鏁?鍦堟暟鍜岀嚎寰?璁板緱鍘熻竟鎰熷簲鐢靛帇鍚?杩欏氨鏄竴涓斁鐢电數鍘?鍘熻竟灏辨槸浠ヨ繖涓數鍘嬫斁鐢电粰鍓竟鐨?鐪嬩笂杈圭殑鍥?鍥犱负鍓竟杈撳嚭鐢靛お涓?V,鍔犱笂鑲栫壒鍩虹鐨勫帇闄?灏辨湁5.6V,鍘熻竟浠?0V鐨勭數鍘嬫斁鐢?鍓竟浠?.6V鐨勭數鍘嬫斁鐢?閭d箞鍖濇暟鏄灏戝憿,褰撶劧鍏堕伒瀹堝彉鍘嬪櫒閭d釜鍖濇暟鍜岀數鍘嬫垚姝f瘮鐨勮寰嬪暒.鎵€浠ュ壇杈圭數鍘?NS*(UO+UF)/VOR,鍏朵腑UF涓鸿倴鐗瑰熀绠″帇闄?濡傛垜杩欎釜鍓竟鍖濇暟绛変簬88*5.6/80,寰?.16,鏁村彇6鍖?鍐嶇畻鍓竟鐨勭嚎寰?褰撶劧涔熷氨瑕佺畻鍑哄壇杈圭殑鏈夋晥鍊肩數娴佸暒,鍓竟鐢垫祦鐨勬尝褰細鐢诲悧,鎴戠敾缁欏ぇ瀹剁湅涓€涓嬪惂鐢荤殑涓嶅お瀵圭О,娌″叧绯?鍙鐭ラ亾杩欎釜鎰忔€?灏卞彲浠ヤ簡.鏈夌獊璧风殑鏃堕棿鏄?-D,娌℃湁绐佽捣鐨勬槸D,鍒氬ソ鍜屽師杈圭浉鍙?浣嗗叾KRP 鐨勫€煎拰鍘熻竟鐩稿悓鐨勮繖涓嬬煡閬撲簡杩欎釜娉㈠舰鐨勬湁鏁堝€兼槸鎬庝箞绠楃殑浜嗗惂,鍝?鍐嶆彁閱掍竴鍙?杩欎釜宄板€肩數娴佸氨鏄師杈瑰嘲鍊肩數娴佷箻浠ュ叾鍖濇暟姣?瑕佹瘮鍘熻竟宄板€肩數娴佸ぇ鏁板€嶃€?绗竷姝ョ‘瀹氬弽棣堢粫缁勭殑鍙傛暟鍙嶉鏄弽婵€鐨勭數鍘?鍏剁數鍘嬫槸鍙栬嚜杈撳嚭绾х殑,鎵€浠ュ弽棣堢數鍘嬫槸绋冲畾鐨?TOP 鐨勭數婧愮數鍘嬫槸5.7鍒?V,缁曚笂7鍖?閭d箞鍏剁數鍘嬪ぇ姒傛槸6V澶?杩欏氨鍙互浜?璁板緱,鍙嶉鐢靛帇鏄弽婵€鐨?鍏跺対鏁版瘮瑕佸拰骞呰竟瀵瑰簲,鎳備粈涔堟剰鎬濆悧,鑷充簬绾?鍥犱负娴佽繃鍏剁殑鐢垫祦寰堝皬,鎵€浠ュ氨鐢ㄧ粫鍘熻竟鐨勭嚎缁曞氨鍙互浜?鏃犱弗鏍肩殑瑕佹眰.绗叓姝?纭畾鐢垫劅閲?璁板緱鍘熻竟鐨勭數娴佷笂鍗囧叕寮忓悧I=VS*TON/L.鍥犱负浣犲凡缁忎粠涓婇潰鐢诲嚭浜嗗師杈圭數娴佺殑娉㈠舰,杩欎釜I灏辨槸:宄板€肩數娴?KRP,鎵€浠=VS.TON/宄板€肩數娴?KRP,鐭ラ亾浜嗗悧,浠庢灏辩‘瀹氫簡鍘熻竟鐢垫劅鐨勫€?绗節姝?楠岃瘉璁捐鍗抽獙璇佷竴涓嬫渶澶х鎰熷簲寮哄害鏄笉鏄秴杩囦簡纾佽姱鐨勫厑璁稿€?鏈塀MAX=L*IP/SJ*NP.杩欎釜浜斾釜鍙傛暟鍒嗗埆琛ㄧず纾侀€氭渶澶у€?鍘熻竟鐢垫劅閲?宄板€肩數娴?鍘熻竟鍖濇暟,杩欎釜鍏紡鏄粠鐢垫劅閲廘鐨勬蹇靛叕寮忔帹杩囨潵鐨?鍥犱负L=纾侀摼/娴佽繃鐢垫劅绾垮湀鐨勭數娴?纾侀摼绛変簬纾侀€氫箻浠ュ叾鍖濇暟,鑰岀閫氬氨鏄鎰熷簲寮哄害涔樹互鍏舵埅闈㈢Н,鍒嗗埆浠e叆鍒颁笂闈?鍗冲綋鍘熻竟绾垮湀娴佽繃宄板€肩數娴佹椂,姝ゆ椂纾佽姱杈惧埌鏈€澶х鎰熷簲寮哄害,杩欎釜纾佹劅搴斿己搴﹀氨鐢ㄤ互涓婂叕寮忚绠?BMAX鐨勫€间竴鑸竴瑕佽秴杩?.3T ,鑻ユ槸濂界殑纾佽姱,鍙互澶т竴浜?鑻ユ槸瓒呰繃浜嗚繖涓€?灏卞彲浠ュ鍔犲師杈瑰対鏁?鎴栨槸鎹㈠ぇ鐨勭鑺潵璋?鎬荤粨涓€涓?璁捐楂橀鍙樺帇鍣?鏈夊嚑涓弬鏁拌鑷繁璁惧畾,杩欏嚑涓弬鏁板氨鍐冲畾浜嗗紑鍏崇數婧愮殑宸ヤ綔鏂瑰紡,绗竴鏄璁惧畾鏈€澶у崰绌烘瘮D,杩欎釜鍗犵┖姣旀槸鐢变綘鑷繁璁惧畾鐨勬劅搴旂數鍘媀OR鏉ョ‘瀹氱殑,鍐嶅氨鏄瀹氬師杈圭數娴佺殑娉㈠舰,纭畾KRP鐨勫€?璁捐鍙樺帇鍣ㄦ椂,杩樿璁惧畾鍏剁鑺尟骞匓,杩欏張鏄竴涓瀹?鎵€鏈夎繖浜涜瀹?灏辫杩欎釜寮€鍏崇數婧愬伐浣滃湪浣犺瀹氱殑鏂瑰紡涔嬩笅浜?瑕佷笉鏂殑璋冩暣,宸ヤ綔鍦ㄤ竴涓浣犳潵璇存渶濂界殑鐘舵€佷箣涓?杩欏氨鏄珮棰戝彉鍘嬪櫒鐨勮璁′换鍔?鎬荤粨涓€涓?。
反激变压器设计实例
反激变压器设计实例(一)目录1.导论 (2)2.磁芯参数和气隙的影响 (2)2.1 AC极化 (4)2.2 AC条件中的气隙影响 (5)2.3 DC条件中的气隙影响 (5)3. 110W反激变压器设计例子 (6)3.1 步骤1,选择磁芯尺寸 (7)3.2 步骤2,选择导通时间 (9)3.3 步骤3,变换器最小DC输入电压的计算 (9)3.4 步骤4,选择工作便宜磁通密度 (10)3.5 步骤5,计算最小原边匝数 (11)3.6 步骤6,计算副边匝数 (11)3.7 步骤7,计算附加匝数 (12)3.8 步骤8,确定磁芯气隙尺寸 (13)3.9 步骤9,磁芯气隙尺寸(实用方法) (14)3.10 步骤10,计算气隙 (15)3.11 步骤11,检验磁芯磁通密度和饱和裕度 (16)4 反激变压器饱和及暂态影响 (18)1.导论由于反激变换器变压器综合了许多功能(储存能量、电隔离、限流电感),并且还常常支持相当大的直流电流成分,故比直接传递能量的正激推挽变压器的设计困难得多、以下变压器设计例子中没选择过程使用反复迭代方法,无论设计从哪里开始没开始时须有大量近似的计算。
没有经验工程师的问题是要得到对控制因数的掌握。
特别的,磁芯大小、原边电感的选择、气隙的作用、原边匝数的选择以及磁芯内交流和直流电流(磁通)成分的相互作用常常给反激变压器设计带来挑战。
为使设计者对控制因数有好的感觉,下面的设计由检查磁芯材料的特性和气隙的影响开始,然后检查交流和直流磁芯极化条件,最后给出100W变压器的完整设计。
2.磁芯参数和气隙的影响图1表示一个铁氧体变压器在带有和不带气隙时典型的B/H(磁滞回归线)环。
注意到虽然B/H环的磁导率(斜率)随气隙的长度变化,但磁芯和气隙结合后的饱和磁通密度保持不变。
进一步,在有气隙的情况下,磁场强度H越大,剩磁通密度B r越低。
这些变化对反激变压器非常有用。
图1.不同情况下磁芯的磁滞回归曲线图2只表示了反激变压器使用的磁滞回环的前四分之一,也表示了磁芯中引入气隙所产生的影响。
反激式变压器的计算实例
技术要求:输入电压Vin:90-253Vac输出电压Vo:27.6V00输出电流Io:6A00输出功率Po:166W00效率η:0.8500输入功率Pin:195W00一、输入滤波电容计算过程:0上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到: 00Vpk=90*1.414=127V0Vmin=Vdc-(Vpk-Vdc)=103V00将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。
00Idc*T3=C*△V00其中:0△V=Vpk-Vmin=127-103=24V00关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为00Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS,T3=t1+t2=8mS。
0C=1.7*8/24=0.57mF=570uF00二、变压器的设计过程0变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。
00对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。
磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥0.32T001)DCM变压器设计过程:00开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM 状态,根据伏秒平衡,可以得到以下公式,00Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V 0匝比 n=Vor/(Vo+Vf)=3.32 Vf 为整流二极管压降00计算初级匝数 0计算副边匝数 Ns=Np/n=6.32,选择7匝,00则原边匝数调整为 Np=3.32*7=23匝0计算辅助绕组匝数,输出电压变化范围按照20-27.6V 设计,要求在20V 输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。
反激变压器设计实例(二)
反激变压器设计实例(二)反激变压器设计实例(二)目录反激变压器设计实例(二) (2)导论 (2)一.自跟踪电压抑制. 错误!未定义书签。
2. 反激变换器“缓冲”电路 (8)3. 选择反击变换器功率元件 (10)3.1 输入整流器和电容器 (11)3.2 原边开关晶体管 (11)3.3 副边整流二极管 (12)3.4 输出电容 (13)4. 电路搭接和输出结果 (14)总结 (15)导论前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。
首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。
初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A 的输出,通过调节负载和占空比可以达到。
由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。
图1.反激电路主拓扑电压反激到该值,此时二极管导通并保持电压为常数(与得到的能量相比较大)。
在钳位作用结束时,上的电压比开始值稍高。
在周期的维持阶段,由于向放电,上的电压回到他原来的值。
因此多余的反激能量消耗在上。
如果所有的条件保持恒定,减小的值或漏感,钳位电压就会减小。
图3.用于反激变换器原边降低应力的自跟踪集电极电压箝位图4.集电极电压波形,表示电压箝位作用由于反激超调具有有用的功能,因此不希望使钳位电压太低。
在反激作用期间,它提供附加的电压以驱动电流进入副边漏感。
这使变压器副边反激电流更加快速增加,改善了变压器效率并减小了上的损耗。
这对低电压、大电流的输出尤为重要,因为此时漏感相对较大。
反激变压器计算实例
输出电压Vo:输出电流Io:6A输出功率Po:166W效率η:输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到:Vpk=90*=127VVmin=Vdc-(Vpk-Vdc)=103V将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。
Idc*T3=C*△V其中:△V=Vpk-Vmin=127-103=24V关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS, T3=t1+t2=8mS。
C=*8/24==570uF二、变压器的设计过程变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。
对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。
磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥1)DCM变压器设计过程:开关频率选择80K,最大占空比选择,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V匝比 n=Vor/(Vo+Vf)= Vf为整流二极管压降计算初级匝数计算副边匝数 Ns=Np/n=,选择7匝,则原边匝数调整为 Np=*7=23匝计算辅助绕组匝数,输出电压变化范围按照设计,要求在20V输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。
反激电源变压器设计技术
反激电源变压器设计模块摘要在功率转换装置中,变压器一般都作为体积、重量最大的组件出现。
同样,对于电力电子系统的整体性能、效率乃至成本而言,变压器也起着至关重要的作用。
在变压器设计的过程中,由于变压器各参数之间的相互依存和影响,全局的考虑和方方面面权衡折中是实现设计优化的关键。
在DC/DC模块中,反激电路作为输出隔离的电源产品常用主电路拓扑,其变压器是实现隔离、功率传递的核心之一。
在下文中,将以这种电路的变压器设计为主要内容,阐述设计要点和一般步骤。
关键词变压器反激电感气隙匝比磁芯材料本模块起草人:赵瑞杰专业术语主要参数:1.来源反激变换器XJ104E-1335的主功率变压器为例2.适用范围反激变压器的一般设计。
3.满足技术指标4.详细电路图反激变换器的电路原理图5.变压器工作原理简述反激电路的工作原理以及变压器的工作特性。
反激电路工作原理以及变压器的工作特性如下:当主开关管Q1导通时,变压器初级电压近似为电源电压,其极性为上正下负,与之对应的变压器次级电压为上负下正,此时整流二极管D1反向截止,负载的能量由输出电容提供。
与此同时,流过变压器初级电感和Q1的电流逐渐上升,此时变压器相当于一个储能电感,在开关管导通期间储存能量。
当主开关管Q1截止时,D1正向导通,变压器将储存的能量通过整流二极管提供给负载和输出电容。
此时流过D1的电流逐渐下降,假设变压器工作在能量完全传递工作模式(DCM模式),则流过整流二极管的电流会一直下降到零。
即每个工作周期变压器初级电感储存的能量被完全传递到变压器的次级侧。
对于能量不完全传递工作模式(CCM模式),电压和电流的波形会有所差别,其工作原理和能量完全传递工作模式类似。
6.变压器设计6.0变压器概述在对任何变压器的设计过程中,都会遇到以下的种种限制。
首先是功率传输(工作电压乘以最大电流)方面,变压器次级绕组必须在限定的调整率(一般定义为空载输出电压与额定负载输出电压的差的绝对值除以额定负载输出电压所得到的百分比)下有足够的能力将能量传至负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激变压器设计实例(二)目录反激变压器设计实例(二) (1)导论 (1)一.自跟踪电压抑制 (2)2. 反激变换器“缓冲”电路 (4)3. 选择反击变换器功率元件 (5)3.1 输入整流器和电容器 (5)3.2 原边开关晶体管 (5)3.3 副边整流二极管 (5)3.4 输出电容 (6)4. 电路搭接和输出结果 (6)总结 (7)导论前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。
首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。
初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。
由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。
图1.反激电路主拓扑图2.开关管电压、输出电压、输出电流首先由输出情况可以看出,变压器的设计还是满足要求的。
查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。
在反激变换器中,有两个主要原因会引起高开关应力。
这两个原因都与晶体管自带感性负载关断特性有关。
最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。
其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。
一.自跟踪电压抑制当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。
在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。
可是由于漏感的存在,在反激期间开始时,除非采用一定形式的电压抑制,集电极电压会有增加的趋势。
在图3中,变压器漏感、输出电容电感和副边电路的回路电感集中为L TL,并折算到变压器原边与原边主电感L p相串联。
考虑在关断后紧接着导通这个动作,在此期间T1原边绕组中已建立电流。
当晶体管Q关断时,由于反激作用所有的变压器电压会反向。
不考虑输出整流二极管压降,副边电压V s不会超过输出电压V c。
由于漏感L TL,Q的集电极部分地脱离该钳位作用,而储存在L TL中的能量将使集电极电压更加正。
如果没提供钳位电路D2、C2,由于储存在L TL中的能量会重新进入Q集电极的漏电容中,则反激电压将高到具有破坏性的程度。
可是在图3中,稳态条件下要求的钳位作用由元件D2、C2和R2提供。
C2的电压充到比反馈回来的副边反激电压稍高一些。
当Q关断,集电极电压反激到该值,此时二极管D2导通并保持电压为常数(C2与得到的能量相比较大)。
在钳位作用结束时,C2上的电压比开始值稍高。
在周期的维持阶段,由于向R2放电,C2上的电压回到他原来的值。
因此多余的反激能量消耗在R2上。
如果所有的条件保持恒定,减小R2的值或漏感L TL,钳位电压就会减小。
图3.用于反激变换器原边降低应力的自跟踪集电极电压箝位图4.集电极电压波形,表示电压箝位作用由于反激超调具有有用的功能,因此不希望使钳位电压太低。
在反激作用期间,它提供附加的电压以驱动电流进入副边漏感。
这使变压器副边反激电流更加快速增加,改善了变压器效率并减小了R2上的损耗。
这对低电压、大电流的输出尤为重要,因为此时漏感相对较大。
所以选择较低的R2值,导致钳位电压太低是错误的。
最大允许的原边电压超调量由晶体管V CEX额定值控制,应不低于反馈的副边电压的30%。
如需要,应使用较少的副边匝数。
如果储存在L TL中的能量较大,要避免R2上有过多的损耗,则要用能量恢复绕组和二极管来替代该电网络,就像在正激变换器中使用的一样。
这可将多余的反激能量送回电源。
很明显,为了高效率并使Q上的应力最小,漏感L TL应尽可能小。
这可由变压器原副边良好的绝缘来得到。
同时也需要选择具有最小电感的输出电容,并且最重要的是副边电路的回路电感应最小。
后者可通过使导线与变压器尽可能近耦合,且合理绕制而得到。
音质电路板的走线应成对平行紧密耦合,距离要小。
主意这些细节会提供高效率、好的调节性以及在反激电源中有好的交叉调节性。
2. 反激变换器“缓冲”电路副边的击穿应力问题常由“缓冲电路”来解决。
图5表示一典型电路。
缓冲网络的设计在后续的文章中会详细进行介绍。
在离线反激变换器中为了减少副边击穿应力,需要在开关晶体管两端跨接缓冲网络。
同时常常需要缓冲整流二极管来减少击穿应力以及RF辐射问题。
在图5中,典型反激变换器的缓冲元件D s、R s、和C s跨接在Q两端,其作用是在Q关断时为原边感应驱动电流提供旁路和减少Q集电极的电压变化率。
工作原理如下:当Q开始关断时,其集电极上的电压将会升高,原边电流将经过二极管D s转移到电容C s。
晶体管Q关断非常快,其集电极上的dv/dt将由关断时集电极原有的电流和C s的值来决定。
集电极的电压会突然升高,直到限定值(2V cc)。
很短时间后,由于漏感,输出副边绕组上的电压将达到V sec(等于输出电压加二极管压降),反击电流将由原边交换到副边,经D1建立的电流速率由副边漏感决定。
实际上,Q不会立即关断,如果要避免副边击穿电压,缓冲元件用这样选择,使得Q集电极上的电压在电流降到零之前不超过V ceo,如图6所示。
图5.用于离线反激变换器集电极的耗能缓冲电路图6.集电极电压和电流波形3. 选择反击变换器功率元件通常情况,在相同功率下,反激变换器要求的元件等级高于相同功率的正激变换器。
特别地,对输出二极管、输出电容、变压器及开关晶体管的纹波电流要求较大。
可是其电路简化,不需要输出电感,而且每个输出电源仅有一个整流二极管,这些可以抵消较大元件带来的成本增加。
所以总的来讲,很多小型、小功率电源通常采用反激设计。
3.1 输入整流器和电容器在反激变换器中没有对输入整流器和储能电容器的特殊要求。
因此与用于其他形式变换器中的一样,按满足其额定功率和维持工作的需求来选择。
3.2 原边开关晶体管反激电源中的开关晶体管承受相当高的应力。
额定电流取决于最大负载、效率、输入电压、工作模式和变换器设计。
首先计算在最小输入电压和最大负载下的集电极峰值电流。
该例中,集电极峰值电流围是平均电流的3~6倍,这取决于工作模式。
集电极最大电压也非常高。
它取决于最大输入电压(空载)、反激系数、变压器设计、感应的超调量和缓冲方式。
例如,当馈电于额定电压为110V的交流电源时,最大的输入电压值为137V rms。
对此输入,最大的空载直流整流电压V cc(使用倍压输入电路)是V cc=2√2V in在此,V in=最大交流输入电压,单位是rms。
该例中,V cc=137×1.42×2=389V典型的反激电压至少是V cc的两倍,该例中为778V。
因此允许25%的感应超调裕量,则集电极峰值电压为972V,应选择V cex额定值为1000V的晶体管。
除了满足这些重要条件,反激晶体管必须提供良好的开关特性、低饱和电压在峰值工作电流时具有有效的增益裕量。
由于晶体管的选择也要满足增益,因此它确定了对驱动电路的要求,所以合适的功率晶体管的选择可能是决定反激变换器的效率和长期可靠性的最重要参数。
3.3 副边整流二极管反激变换器中的输出整流二极管要经受大的峰值和rms电流应力。
实际值取决于负载、导通角、漏感、工作模式和输出电容ESR。
典型的rms电流是I DC,而峰值电流可能高达6I DC。
由于准确条件往往是不可知的,且二极管电流的计算困难,建议使用经验方法。
对于原来的标准电路板,应世道地选择二极管的平均和峰值额定值。
快速二极管的反向恢复时间不要超过75ns。
整流二极管的最终优化选择应在对样机副边整流器电流测量后进行。
由于对漏感、输出回路电感、PCB走线、导线电阻以及输出电容的ESR和ESL等的各种影响难以估计,计算出来的二极管rms和峰值电流通常不十分准确。
这些参数对整流器的rms和峰值电流要求具有非常大的影响,特别是在低输出电压、高频和大电流的情况下。
3.4 输出电容在反激变换器中输出电容也是高应力的。
通常输出电容的选择有三个主要参数:绝对电容值、电容ESR和ESL以及电容纹波电流额定值。
ESR和ESL只有通过选择低ESR和低SEL 属性的电容器件,并且在安装中要保持最短焊接路径。
当ESR和ESL较低时,在开关频率下电容值可以控制峰峰纹波电压。
由于纹波电压通常比平均输出电压小,可假设在关断期间输出电容两端的电压有线性衰减。
在这期间,电容必须递送所有的输出电流,电容两端的电压大约衰减1V/us/A(对1uF的电容)。
因此,如果已知最大关断、负载电流和要求的纹波电压峰峰值,那么最小输出电容可通过下式计算:C=t off I DC V p−p在此,C=输出电容,单位是uF;t off=关断时间,单位是us;I DC=负载电流,单位是A;V p−p=纹波电压峰峰值该例中,对于一个12V、3A输出电源和100mV的纹波C=16×10−6×3=480uF4. 电路搭接和输出结果将计算结果带入saber电路图中,选择TR分析,启动求解器,得到结果如图7所示,可以看到,即使Q的两端加了RC吸收电路,将很大一部分突变电流分流后其启动电流还是很高,改善方式可以通过降低漏感,加强吸收效果来进一步降低。
图7.saber软件中的电路拓扑和结果图示从图8中可以看出,输出电压13.71V,电流3.4A,跟前面计算结果吻合。
图8.仿真结果图图9为输出电压放大后的截图,可以看到电压纹波在119mV,与初始设计值相吻合。
总结:本文主要部分完全参考开关电源手册(第三版)中的反激电源计算实例,仿真验证部分采用saber仿真软件。
由于反激开关电源存在非常大的EMI噪声,传统的加磁环、滤波器甚至屏蔽结构的做法无法达到需要的目的,高的电源噪声将会产生一系列的EMC问题,甚至电源的正常工作都将无法保证。
尤其是磁材料的饱和特性如果不加考虑,电源都无常工作。
充分理解噪声源的产生原因,有助于处理电源中的EMI噪声,并且保证不影响开关电源效率。
满足高效率、低温升、低EMI特性的严格要求。
为了简单处理,这里使用的是开环,实际电路大多使用闭环,通过闭环补偿实现不同负载下的输出功率要求。
反激只是开关电源的一种拓扑,类似的还有正激、buck、boost、buck-boost等,其噪声特性各不相同,处理的方式也有差异。