聚类分析(Q型,R型聚类)算法(DOC)

合集下载

聚类分析基础知识总结

聚类分析基础知识总结

聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。

聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。

但是这个问题又是不可回避的。

下面我们介绍几种方法。

1、给定阈值——通过观测聚类图,给出一个合适的阈值T。

要求类与类之间的距离不要超过T值。

例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。

聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。

样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。

变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。

而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。

定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。

距离:用于对样品的聚类。

常用欧氏距离,在求距离前,需把指标进行标准化。

相似系数:常用于对变量的聚类。

一般采用相关系数。

相似性度量:距离和相似系数。

距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。

样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。

距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。

相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。

聚类分析(Q型,R型聚类)算法

聚类分析(Q型,R型聚类)算法
第3类的有128 268
************
划分成4类的结果如下:
第1类的有19 25 41 101 111 121 171 173 260 283
第2类的有1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 102 103 104 105 106 107 108 109 110 112 113 114 115 116 117 118 119 120 122 123 124 126 127 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167168 169 170 172 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 261 262 263 264 265 266 267 269 270 271 272 273 275 276 277 278 279 280 281 282 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

聚类分析实用

聚类分析实用

或变量时,两类间的相似系数即是两样品或
变量间的相d似ij 系ri数j 或
,按第一节的定
义计算。
第13页/共46页
当类内含有两个或两个以上样品或变量时,计算类 间相似系数有多种方法可供选择,下面列出5种计算 方法。用 G p,Gq 分别表示两类,各自含有np, nq个样品或变量。
37
13
第14页/共46页
第16页/共46页
3176
5.离差平方和法 又称Ward法,仅用于样 品聚类。 此法效仿方差分析的基本思想, 即合理的分类使得类内离差平方和较小,而 类间离差平方和较大。
第17页/共46页
317
例19-1 测量了3454名成年女子身高(X1)、下肢长 (X2)、腰围(X3)和胸围(X4),计算得相关矩阵:
绝对值越大表明两变量间相似程度越高。
(19-1)
同样也可考虑用Spearman秩相关系数定义非正
态变量之间的相似系数。当变量均为定性变量时,最好
用列联系数定义类间的相似系数。
第7页/共46页
样品聚类(Q型聚类)的聚类统计量(相似 系数):2个样品间距离,越短越接近, 短则同类,长则异类。 样品聚类的基本原则:把距离短的样品归在 相同类,距离长的样品归在不同类。
以上定义的4种距离适用于定量变量,对于定性变量和 有序变量必须在数量化后方能应用。
第10页/共46页
说明:当样品各指标的单位不同时,或各指标单 位
虽相同(包括各指标都无单位),但数量级相差








xi'

xi xi
标准si化




聚类分析

聚类分析

1聚类分析内涵1.1聚类分析定义聚类分析(Cluster Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术. 也叫分类分析(classification analysis)或数值分类(numerical taxonomy),它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。

聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。

1.2聚类分析分类聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:(1)系统聚类法:开始每个对象自成一类,然后每次将最相似的两类合并,合并后重新计算新类与其他类的距离或相近性测度.这一过程一直继续直到所有对象归为一类为止.并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法):首先对n个对象初步分类,然后根据分类的损失函数尽可能小的原则对其进行调整,直到分类合理为止.(3)最优分割法(有序样品聚类法):开始将所有样品看成一类,然后根据某种最优准则将它们分割为二类、三类,一直分割到所需的K类为止.这种方法适用于有序样品的分类问题,也称为有序样品的聚类法.(4)模糊聚类法:利用模糊集理论来处理分类问题,它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法:利用图论中最小支撑树的概念来处理分类问题,创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题,在多元统计分析中,可用来作预报的方法很多,如回归分析和判别分析.但对一些异常数据,如气象中的灾害性天气的预报,使用回归分析或判别分析处理的效果都不好,而聚类预报弥补了这一不足,这是一个值得重视的方法。

聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q 型是对样品进行分类。

第7章 聚类分析

第7章 聚类分析

多元统计分析及R语言建模
聚类分析的目的和意义
聚类分析中所使用的几种尺度的定义
主 要
初步掌握选用聚类方法与相应距离的原则

六种系统聚类方法的定义及其基本性质

R语言程序中有关聚类分析的算法基础
掌握R语言中kmeans聚类的方法和用法
7 聚类分析及R使用
基本概念
聚类分析法(Cluster Analysis)是研究“物以类聚”的
7 聚类分析及R使用
系统聚类分析的特点 综合性 形象性 客观性
关于kmeans算法 kmeans算法只有在类的均值被定义的情况下才能使用
对于“噪声”和孤立点是敏感的,这种数据对均值影响极大
7 聚类分析及R使用
关于变量变换
平移变换 极差变换 标准差变换 主成分变换 对数变换
7 聚类分析及R使用
k个类,使类内具有较高的相似度,类间的相
似度较低。
7 聚类分析及R使用
相似度计算是根据类中对象的均值mean来进行
概 念 和 原 理
7 聚类分析及R使用
【例7.3】kmeans算法的R语言实现及模拟分析:模拟正态随机变量
7 聚类分析及R使用
7 聚类分析及R使用
模拟10个变量2000个样品的正态随机矩阵
(4)绘制 系统聚类图
(3)合并距离 最近两类为新类
(4)计算新类与各 类距离,若类个数为 1,转到第5步,否则
回到第3步
例7-1数据的系统聚类 最短距离法(采用欧氏距离)
例7-1数据的系统聚类
最长距离法(采用欧氏距离)
例7-1数据的系统聚类
7 聚类分析及R使用
系 一、计算距离阵: dist 统 聚 二、进行系统聚类: hclust 类 R 三、绘制聚类图: plot 语 言 四、画分类框: rect.hclust 步 骤 五、确认续例3.1,研究全国31个省、市、自治区2007年城镇居民生活消费 的分布规律,根据调查资料做区域消费类型划分。

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
x1:食品
x5:交通和通讯
x2:衣着
x6:娱乐教育文化服务
x3:家庭设备用品及服务 x7:居住
x4:医疗保健
x8:杂项商品和服务
分别用最短距离法、重心法和Ward方法对各地区作聚类分析。为同等
地对待每一变量,在作聚类前,先对各变量作标准化变换。
18
地区 北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东
类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
xi*

xi
xi sii

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析

类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
xi*

xi
xi sii
,
i 1, 2,, p
其中 xi 和sii分别为xi的样本均值和样本方差。
4
绝对值距离
v
p
d x, y xi yi
i 1
v 常被形象地称作“城市街区”距离,
当我们对某城市(需考虑彼此之间
路程)的位置点进行聚类时,使用
绝对值距离一般是合适的。
5
马氏距离
3
《多元统计分析》
4.2 距离Байду номын сангаас相似系数

聚类分析的思路和方法

聚类分析的思路和方法
2
一种叫相似系数,性质越接近的变量或样本,它们的相似系数越接近于1或一l,而彼此无关的变量或样本它们的相似系数则越接近于0,相似的为一类,不相似的为不同类。
3
另一种叫距离,它是将每一个样本看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
设有n个样本单位,每个样本测得p项指标(变量),原始资料矩阵为:
聚类分析终止的条件
*
迭代次数:当目前的迭代次数等于指定的迭代次数(SPSS默认为10)时终止迭代。
类中心点偏移程度:新确定的类中心点距上个类中心点的最大偏移量小于等于指定的量(SPSS默认为0)时终止聚类。


例子1:31个省区小康和现代化指数的聚类分析
利用2001年全国31个省市自治区各类小康和现代化指数的数据,对地区进行聚类分析。
夹角余弦
相关系数
计数变量(Count)(离散变量)的聚类统计量
对于计数变量或离散变量,可用于度量样本(或变量)之间的相似性或不相似性程度的统计量主要有卡方测度(Chi-square measure)和Phi方测度(Phi-square measure)。
二值(Binary)变量的聚类统计量
*
组间平均连接法(Between-group linkage)
03
组内平均连接法(Within-group linkage)
04
重心法(Centroid clustering)
05
中位数法(Median clustering)
06
离差平方和法(Ward’s method)
07
最短距离法(Nearest Neighbor) 以两类中距离最近的两个个体之间的距离作为类间距离。

聚类-lmx

聚类-lmx

data=read.table("C:\\Documents and Settings\\LMX\\桌面\\新建 文本文 档.txt",head=T)
d=dist(scale(data));中心化和标准化;计算欧式距离; >d 1 2 3 4 5 6 2 3.6271606 3 3.7603122 3.1404512 4 1.9959311 1.9557660 2.6138169 5 1.2438688 2.9969325 2.7813907 1.1845817 6 2.4356592 5.8262559 5.1468476 4.1122021 3.2546759 7 0.4587203 3.6271606 3.8020500 2.0987114 1.4398855 2.4139642
• 如在标准化变换之下,夹角余弦实际上就是相关系 数; • 如在进行聚类分析之前已经对变量的相关性作了处 理,则通常就可采用欧氏距离。
• 样品间或变量间亲疏测度指标的选择是一 个比较复杂且带主规性的问题.应根据研究 对象的特点作具体分折,选择出合适的亲 疏测度指标。
• 一般在开始进行聚类分析时,不妨试探性 地多选择几个亲疏测度指标,分别进行聚 类,然后对聚类分析的 结果进行对比分析, 以确定出合适的亲疏测度指标。
三 聚类分类及思想
• 1 层次聚类 层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距 离较近的归为一类,较远的则属于不同的类。可用于定义“距离”的 统计量包括了欧氏距离(euclidean)、马氏距离(manhattan)、 两项距离(binary)、明氏距离(minkowski)。还包括相关系数和夹角 余弦。 层次聚类首先将每个样本单独作为一类,然后将不同类之间距离 最近的进行合并,合并后重新计算类间距离。这个过程一直持续到将 所有样本归为一类为止。在计算类间距离时则有六种不同的方法,分 别是最短距离法、最长距离法、类平均法、重心法、中间距离法、离 差平方和法。Fra bibliotek数据标准化

聚类分析简介原理与应用

聚类分析简介原理与应用

19.8.9
多元统计分析:聚类分析
16
系统聚类
凝聚的:从点作为个体簇开始,每一步合并两个最接 近的簇。这需要定义簇的临近性(类间距离)的概念。 分裂的:从包含所有点的某个簇开始,每一步分裂一 个簇,直到剩下单点簇。在这种情况下,我们需要确定 我每一步分裂那个簇,以及如何分裂。
19.8.9
多元统计分析:聚类分析
聚类和分类有什么区别?
无监督学习 与分类判别不同,进行聚类前并不知道将要划分成几个组和什么 样的组,也不知道根据哪些空间区分规则来定义组
19.8.9
多元统计分析:聚类分析
3
聚类分析——主要应用
商业 聚类分析被用来发现不同的客户群,并且通过购买模式刻
画不同的客户群的特征。聚类分析是细分市场的有效工具, 同时也可用于研究消费者行为,寻找新的潜在市场、选择 实验的市场,并作为多元分析的预处理。
x21
x22

x2
p


Q
型 聚

xn1
xn 2

xnp


R型聚类
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。 样品之间的聚类即Q型聚类分析,常用距离来测度样品之间的亲疏程度。
19.8.9
多元统计分析:聚类分析
6
Q型聚类统计量——距离
明氏距离测度 明考夫斯基(Minkowski)距离
19.8.9
多元统计分析:聚类分析
36
系统聚类——CCC统计量
立方聚类准则
1 E(R2) CCC ln( 1 R2 ) v
其中
R2 1 PG ,v是方差稳定化变换,一般取值为 T

聚类分析

聚类分析

聚类算法聚类分析根据分类对象不同分为Q型聚类分析和R型聚类分析。

Q型聚类是指对样品进行聚类;R型聚类是指对变量进行聚类。

根据处理方法的不同又分为:系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法等。

算法原理:对于样品(变量)进行分类,就需要研究样品之间的关系。

性质越接近的样品(变量),它们的相似系数绝对值越接近1,而彼此无关的样品(变量),它们相似系数的绝对值接近于0.比较相似的样品(变量)归为一类,不怎么相似的样品归为不同的类。

一、数据类型在实际问题中,遇到的变量有的是定量的(如长度、重量等),有的是定性的(如性别、职业等),因此将变量的类型分为以下三种尺度:间隔尺度:变量是用实数来表示的,如长度、重量、压力和速度等等。

有序尺度:变量度量时没有明确的数量表示,而是划分一些等级,等级之间有次序关系,如产品分为上、中、下三等,此三等有次序关系,但没有数量关系。

名义尺度:变量度量时既没有数量表示,也没有次序关系,而用不同状态来表示,如性别变量有男、女两种状态;某物体有红、黄、白三种颜色等。

二、对于数据具有不同的量纲以及不同的数量级单位,为了使不同量纲及不同数量级的数据能放在一起比较,一般在具体运用多元统计各种方法之前,先对数据进行变换处理。

(一)间隔尺度变量变换方法1、中心化处理变换:变换后数值=变换前数值-该变量的均值称为中心化变换,即平移变换,该变换可以使新坐标的原点与样品点集合的重心重合,而不会改变样本间的相互位置,也不会改变变量的相关性。

2、标准化变换变换:变换后数值=(变换前数值-该变量的均值)/该变量标准差称为标准化变换,变换后的数据,每个变量的样本均值为0,标准差为1,而且标准化变换后的数据与量纲无关。

3、极差正规化变换(规格化变换)变换:变换后数值=(变换前数值-该变量最小值)/极差称为极差正规化变换,变换后的数据在0到1之间;也是与量纲无关。

4、对数变换变换:变换后数值=log(变换前数值)称为对数变换,要求该变量所有值均大于0,它可以将具有指数特征的数据结构变换为线性数据结构。

聚类分析

聚类分析

事先要确定分多少类:k-均值聚类
聚类可以走着瞧,不一定事先确定有多少类;k-均值聚类(k-means cluster),也叫快速聚类,(quick cluster)却要求你先说好要分多少 类。 假定你说分3类,这个方法还进一步要求你事先确定3个点为“聚类种子 ”(SPSS软件自动为你选种子);也就是说,把这3个点作为三类中每一 类的基石。 然后,根据和这三个点的距离远近,把所有点分成三类。再把这三类的中 心(均值)作为新的基石或种子(原来的“种子”就没用了),重新按照 距离分类。 如此迭代下去,直到达到停止迭代的要求(比如,各类最后变化不大了, 或者迭代次数太多了)。显然,前面的聚类种子的选择并不必太认真,它 们很可能最后还会分到同一类中。
如何度量远近?
如果想要对100个学生进行分类,如果仅仅 知道他们的数学成绩,则只好按照数学成绩 来分类;这些成绩在直线上形成100个点。 这样就可以把接近的点放到一类。 如果还知道他们的物理成绩,这样数学和物 理成绩就形成二维平面上的100个点,也可 以按照距离远近来分类。 三维或者更高维的情况也是类似。
数据处理与SPSS应用
聚类分析
聚类分析
人类认识世界往往首先将被认识的对象进行分类,因此分类学变成了人类 认识世界的基础科学。 聚类分析是根据事物本身的特性研究个体分类的多元统计分析方法。 聚类分析是建立一种分类方法,将一批样本或者变量,按照它们在性质上 的亲疏程度进行分类,使同一类别中的事物有较大的相似性,不同类别之 间的事物很不相似。 聚类分析是一种探索性的分析,在分类过程中,不必事先给出一个分类的 标准,聚类分析能够从样本数据出发,自动进行分类。 聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同 一组数据进行聚类分析,所得到的聚类数未必一致。 聚类分析是对数据的概括、归纳,而不是要找出自然或真实的类。 对于一组数据,既可以对变量(指标)进行分类(相当于对数据中的列分 类),也可以对观测值(事件,样本)来分类(相当于对数据中的行分类 )。

聚类分析

聚类分析

第三节 系统聚类分析方法
系统聚类分析的涵义及步骤 系统聚类方法 系统聚类分析方法的统一公式 剩余信息的剔除 谱系分类的确定 系统聚类分析方法的性质

系统聚类分析的涵义及步骤

涵义:是在样品距离的基础上,定义类与 类之间的距离,首先将几个样品自成一类, 然后每次将具有最小距离的两类合并,合 并后重新计算类与类之间的距离,这个过 程一直继续到所有样品归为一类为止。把 这个过程作成一个聚类谱系图。这种方法 即系统聚类。
实际意义原则 数据性质原则
实际意义原则

即所选择的距离或者相似系数应该具有明 确的实际意义。比如经济指标之间的相关 应该是具有现实的经济联系的。
数据性质原则
根据原始数据的各自特点,选择不同的数据变换,再根据不同的数据 变换选择不同的距离或者相似系数。 1、若数据进行了标准化,则相关系数与夹角余弦是一致。 2、若聚类分析前已经对变量的相关性作了处理,则通常采用欧 氏距离,而不必选用斜交空间距离。 3、所选距离应与所选聚类分析方法一致 (1)若聚类方法为离差平方和法时,距离只能选用欧氏距离; (2)工作量大小原则。斜交空间距离的计算量一般很大。 总之,在一般情况下,有以下的经验可以借鉴。相关系数的稳定 性要强于相似系数,而分辨力却弱于相似系数;使用距离和使用 相似系数进行聚类的结果对比,相似系数的计算数值由大到小单 调地减少,所以聚类谱系图能够比较明显地反映分群的情况,而 使用距离的数据有时呈现非单调性增加,聚类谱系图反映的分群 情况就不够明显。
系统聚类分析的涵义及步骤

具体步骤:
数据变换处理;
计算各样品之间的距离,并将距离最近的两个
样品并成一类; 选择并计算类与类之间的距离,并将距离最近 的两类合并,如果类的个数大于1,则继续并 类直到所有样品归为一类; 绘制系统聚类谱系图,按不同的分类标准或不 同的分类原则得出不同的分类结果。

聚类分析报告(Q型,R型聚类)算法

聚类分析报告(Q型,R型聚类)算法
MATLAB 7.0。
Windows 7操作系统。
3.实验内容
由于数据集比较大,数据TXT文件不引入报告中。命名为julei.txt。
相关两个源文件代码文件如下:
1、Untitled.m
clc,clear
load julei.txt %把原始数据保存在纯文本文件julei.txt中
r=corrcoef(julei); %计算相关系数矩阵
信息与计算科学专业实验报告
课程名称
数据挖掘原理与算法
总实验学时:
第次
共次
实验项目名称
聚类分析
本次实验学时数:
实验类型
日期
2016年5月25日星期三
年级
本13信计01班
学生姓名
黄顺团
学号
20134390131
课任教师
唐志刚
1.实验目的:
用数据挖掘聚类算法(Q型聚类、R型聚类)求分类微博数据。
2.实验环境:
end
if k==8
break
end
fprintf('************\n');
End
输出结果为:
1、
图一(R型聚类)
>> T =
4
2
3
1
2
第1类的有4
第2类的有2 5
第3类的有3
第4类的有1
>> r =
1.0000 -0.1824 0.0439 -0.0298 -0.0871
-0.1824 1.0000 0.2844 0.4158 0.9003
julei(:,5)=[]; %删除数据矩阵的第5列,即使用变量1,2,3,4
julei=zscore(julei); %数据标准化

聚类分析基础知识总结

聚类分析基础知识总结

聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。

聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。

但是这个问题又是不可回避的。

下面我们介绍几种方法。

1、给定阈值——通过观测聚类图,给出一个合适的阈值T。

要求类与类之间的距离不要超过T值。

例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。

聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。

样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。

变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。

而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。

定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。

距离:用于对样品的聚类。

常用欧氏距离,在求距离前,需把指标进行标准化。

相似系数:常用于对变量的聚类。

一般采用相关系数。

相似性度量:距离和相似系数。

距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。

样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。

距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。

相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。

第5章 聚类分析

第5章 聚类分析

X i Gk , X j G p
min
xi Gk , x j Gq
min{Dkp , Dkq }
最短距离法进行聚类分析的步骤如下:
(1)定义样品之间距离,计算样品的两两距离,得一距离 阵记为D(0) ,开始每个样品自成一类,显然这时Dij = dij。 (2)找出距离最小元素,设为Dpq,则将Gp和Gq合并成一个 新类,记为Gr,即Gr = {Gp,Gq}。 (3)按(5.12)计算新类与其它类的距离。 (4)重复(2)、(3)两步,直到所有元素。并成一类为 止。如果某一步距离最小的元素不止一个,则对应这些 最小元素的类可以同时合并。
cos ij
显然,∣cos ij∣ 1。
X
k 1 p k 1
p
ik
X jk
p
(5.7)
2 ( X ik )( X 2 ) jk k 1
2.相关系数 相关系数经常用来度量变量间的相似性。变量Xi与Xj的相关 系数定义为
rij
(X
k 1 p k 1
p
ik
X i )( X jk X j )
dij (q) ( X ik X jk )
k 1
p
q 1/ q
(5.1)
明考夫斯基距离简称明氏距离,按的取值不同又可分成:
(1)绝对距离( q 1 )
dij (1) X ik X jk
k 1 p
(5.2)
(2)欧氏距离( q 2 )
dij (2) ( X ik X jk )
p
( X ik X i )2 ( X jk X j )2
k 1
(5.8)
显然也有,∣rij∣ 1。

聚类分析

聚类分析

聚类分析(Cluster Analysis)1、概念聚类分析是研究分类的一种多元统计方法,聚类分析也称群分析或点群分析。

主要是指将数据分类到不同的组或者簇这样的一个过程,同一个组(簇)中的对象有很大的相似性,而不同组(簇)间的对象有很大的相异性,如图1所示。

图1 聚类分析特点:聚类分析前所有个体或样本所属的类别是未知的,类别个数一般也是未知的,分析的依据就是原始数据,没有任何事先的有关类别的信息可参考。

所以,严格说来聚类分析并不是纯粹的统计技术,它不像其它多元分析法那样,需要从样本去推断总体。

聚类分析一般都涉及不到有关统计量的分布,也不需要进行显著性检验。

聚类分析更像是一种建立假设的方法,而对假设的检验还需要借助其它统计方法。

2、聚类的分类根据对样品聚类还是对变量聚类,聚类主要分为Q型和R型两种。

Q型是对样本(即观测值)进行聚类处理,其作用在于:(1)能利用多个变量对样本进行分类(2)分类结果直观,聚类谱系图能明确、清楚地表达其数值分类结果(3)所得结果比传统的定性分类方法更细致、全面、合理。

R型是对变量进行聚类处理,其作用在于:(1)可以了解变量间及变量组合间的亲疏关系(2)可以根据变量的聚类结果及它们之间的关系,选择主要变量进行回归分析或Q型聚类析。

通俗讲,R型聚类是对数据中的列分类,Q型聚类是对数据中的行分类。

3、聚类分析的过程(1)数据预处理(标准化)(2)构造关系矩阵(亲疏关系的描述)(3)聚类(根据不同方法进行分类)(4)确定最佳分类(类别数)3.1标准化指标变量的量纲不同或数量级相差很大时,为了使这些数据能放到一起加以比较,常需做标准化变换。

下面介绍几种常用的数据标准化方法,见表1。

首先给出相关说明:假设有N 个样本1,2,…n ,每个样本有m 项指标x1,x2,…,xm,用xij 表示第i 个样品第j 个指标的值,则可得到样品数据矩阵1111.....m n nm x x X x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 均值表示为: 11nj ij i x x n ==∑(1) 标准差表示为: 11nj ij i x x n ==∑(2) 极差表示为:max()min()j ij ij R x x =-(3)公式公式度量)两步聚类法是一种探索性的聚类方法,主要用于解决海量数据或者具有复杂类别结构的聚类分析问题。

聚类分析算法

聚类分析算法
tm=find(T==i); %求第i 类的对象
tm=reshape(tm,1,length(tm)); %变成行向量
fprintf('第%d类的有%s \n',i,int2str(tm)); %显示分类结果
end
r %显示相关系数矩阵
2、
clc,clear
load %把原始数据保存在纯文本文件中
julei(:,5)=[]; %删除数据矩阵的第5列,即使用变量1,2,3,4
聚类分析(Q型,R型聚类)算法(总10页)
信息与计算科学专业实验报告
课程名称
数据挖掘原理与算法
总实验学时:
第次
共次
实验项目名称
聚类分析
本次实验学时数:
实验类型
日期
2016年5月25日星期三
年级
本13信计01班
学生姓名
黄顺团
学号
131
课任教师
唐志刚
1.实验目的:
用数据挖掘聚类算法(Q型聚类、R型聚类)求分类微博数据。
End
输出结果为:
1、
图一(R型聚类)
>> T =
4
2
3
1
2
第1类的有4
第2类的有2 5
第3类的有3
第4类的有1
>> r =
2、
图2 (各对象聚类树形图)
划分成2类的结果如下:
第1类的有128 268
第2类的有1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
************
划分成3类的结果如下:
第1类的有125 274
第2类的有1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 126 127 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 269 270 271 272 273 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
for k=2:8
fprintf('划分成%d类的结果如下:\n',k)
T=cluster(z,'maxclust',k); %把样本点划分成k类
for i=1:k
tm=find(T==i); %求第i类的对象
tm=reshape(tm,1,length(tm)); %变成行向量
fprintf('第%d类的有%s \n',i,int2str(tm)); %显示分类结果
for i=1:4
tm=find(T==i); %求第i类的对象
tm=reshape(tm,1,length(tm)); %变成行向量
fprintf('第%d类的有%s \n',i,int2str(tm)); %显示分类结果
end
r %显示相关系数矩阵
2、Untitled2.m
clc,clear
load julei.txt %把原始数据保存在纯文本文件julei.txt中
信息与计算科学专业实验报告
课程名称
数据挖掘原理与算法
总实验学时:
第次
共次
实验项目名称
聚类分析
本次实验学时数:
实验类型
日期
2016年5月25日星期三
年级
本13信计01班
学生姓名
黄顺团
学号
20134390131
课任教师
唐志刚
1.实验目的:
用数据挖掘聚类算法(Q型聚类、R型聚类)求分类微博数据。
2.实验环境:
MATLAB 7.0。
Windows 7操作系统。
3.实验内容
由于数据集比较大,数据TXT文件不引入报告中。命名为julei.txt。
相关两个源文件代码文件如下:
1、Untitled.m
clc,clear
load julei.txt %把原始数据保存在纯文本文件julei.txt中
r=corrcoef(julei); %计算相关系数矩阵
d=1-r; %进行数据变换,把相关系数转化为距离
d=tril(d); %取出矩阵d的下三角元素
d=nonzeros(d); %取出非零元素
d=d'; %化成行向量
z=linkage(d,'average'); %按类平均法聚类
dendrogram(z); %画聚类图
T=cluster(z,'maxclust',4) %把变量划分成4类
end
if k==8
break
end
fprintf('************\n');
End
输出结果为:
1、
图一(R型聚类)
>> T =
4
2
3
1
2
第1类的有4
第2类的有2 5
第3类的有3
第4类的有1
>> r =
1.0000 -0.1824 0.0439 -0.0298 -0.0871
-0.1824 1.0000 0.2844 0.4158 0.9003
0.0439 0.2844 1.0000 0.1883 0.3327
-0.0298 0.4158 0.1883 1.0000 0.4965
-0.0871 0.9003 0.3327 0.4965 1.0000
2、
图2(各对象聚类树形图)
268
第2类的有1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
julei(:,5)=[]; %删除数据矩阵的第5列,即使用变量1,2,3,4
julei=zscore(julei); %数据标准化
y=pdist(julei); %求对象间的欧氏距离,每行是一个对象
z=linkage(y,'average'); %按类平均法聚类
dendrogram(z); %画聚类图
相关文档
最新文档