必修4三角函数三角恒等变换综合练习

合集下载

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

测试题:高中数学必修4三角恒等变换测试题

测试题:高中数学必修4三角恒等变换测试题

一.选择题(共12小题,每小题5分,共60分)1.已知)2,23(,1312cos ππαα∈=,则=+)4(cos πα ( )A.1325 B. 1327 C. 26217 D. 2627 2.若均βα,为锐角,==+=ββααcos ,53)(sin ,552sin 则( ) A.552 B. 2552 C. 2552552或 D. 552-3.=+-)12sin 12(cos )12sin 12(cos ππππ A. 23- B. 21- C. 21 D. 234.=-+0tan50tan703tan50tan70 A.3 B.33 C. 33- D. 3- 5.=⋅+ααααcos2cos cos212sin22( ) A. αtan B. αtan2 C. 1 D. 216.已知x 为第三象限角,化简=-x 2cos 1( )|A.x sin 2 B. x sin 2- C. x cos 2 D. x cos 2-7. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) A .1010 B .1010- C .10103 D .10103- 8. 若).(),sin(32cos 3sin 3ππϕϕ-∈-=-x x x ,则=ϕ( )A. 6π-B.6π C. 65π D. 65π-9. 已知1sin cos 3αα+=,则sin 2α=A .89- B .21- C . 21 D .8910. 已知cos 23θ=,则44cos sin θθ-的值为A .3- B .3 C .49D .1 11. 求=115cos 114cos 113cos 112cos11cosπππππ( )A. 521 B. 421 C. 1 D.12.函数sin22x xy =的图像的一条对称轴方程是 ( ) A .x =113π B .x =53π C .53x π=- D .3x π=- (二.填空题(共4小题,每小题4分,共16分) 13.已知βα,为锐角,的值为则βαβα+==,51cos ,101cos .14.在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = .15.若542cos ,532sin -==αα,则角α的终边在 象限.16.代数式sin15cos75cos15sin105o o o o += . 三.解答题(共6个小题,共74分)17.(12分)△ABC 中,已知的值求sinC ,135B c ,53cosA ==os .18.(12分)已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.19.(12分)已知α为第二象限角,且 sinα=,415求12cos 2sin )4sin(+++ααπα的值. ]20. (12分)已知71tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且,求)2tan(βα-的值及角βα-2.21.(12分)已知函数2()cos cos 1f x x x x =++,x R ∈. (1)求证)(x f 的小正周期和最值; (2)求这个函数的单调递增区间.<22. (14分) 已知A 、B 、C 是ABC ∆三内角,向量(m =-(cos ,sin ),n A A =且=1(1)求角A; (2)若221sin 23,cos sin BB B+=--求tanC .《数学必修4》三角恒等变换测试题答案二、填空题13、43π 14、 23- 15、第四 16、 3三、解答题(共6个小题,满分74分)6563135********sin cos cos sin )sin(sin ,1312cos ,180B A ,120,1312cos 6023sin ,1312sin 1cos ,135sin 54sin ,53cos ,:.170002=⨯+⨯=+=+=∴=>+>∴-=>∴>±=-±===∴=∆B A B A B A C B B B A A B B B A A ABC 故不合题意舍去这时若可得又由中在解 6556135)54(131253)sin()cos()cos()sin()]()sin[(2sin 54)cos(,135)sin(23,40432:.19-=⨯-+⨯-=-++-+=-++=∴-=+=-∴<+<<-<∴<<<βαβαβαβαβαβααβαβαπβαππβαπβαπ解右边左边证明=-+=-+⨯+=-+=++-=+=+=xx x xx x x x x xx x x x x x x 4cos 1)4cos 3(24cos 1)24cos 122(224cos 12cos 222sin 41)22cos 1()22cos 1(cos sin cos sin sin cos cos sin :.202222224422224321713417134tan )22tan(1tan )22tan(])22tan[()2tan(0240271tan :.20πβαββαββαββαβαβαππαπβπβ-=-∴=⨯+-=--+-=+-=-∴<-<-∴<<<<∴-= 解21.解:(1)2cos cos 1y x x x =++(cos 212122x x +=++11cos 221222x x =+++3sincos 2cossin 2662x x ππ=++3sin(2)62x π=++(2)因为函数sin y x =的单调递增区间为2,2()22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,由(1)知3sin(2)62y x π=++,故 222()262k x k k Z πππππ-+≤+≤+∈ ()36k x k k Z ππππ∴-+≤≤+∈故函数3sin(2)62y x π=++的单调递增区间为[,]()36k k k Z ππππ-++∈ 三角恒等变换测试题一.选择题(共12小题,每小题5分,共60分)1.下列表达式中,正确的是( )AA.()sin cos sin sin cos αβαβαβ+=+…B. sin()cos sin sin cos αβαβαβ-=-C.s()cos cos sin sin co αβαβαβ+=+D.cos()cos cos sin cos αβαβαβ-=- 设计意图:主要考查学生对公式结构的掌握情况。

高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。

新华教育高中部数学同步人教A版必修四第三章三角恒等变换测试题.

新华教育高中部数学同步人教A版必修四第三章三角恒等变换测试题.

三角恒等变换测试题一、选择题1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<答案:C解析: 00000sin 30cos 6cos30sin 6sin 24,sin 26,sin 25,a b c =-=== 2.函数221tan 21tan 2x y x-=+的最小正周期是( ) A .4π B .2π C .π D .2π 答案:B 解析: 221tan 22cos 4,1tan 242x y x T x ππ-====+ 3.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .2 答案 : B解析: 0sin17(sin 43)(sin 73)(sin 47)cos17cos 43sin17sin 43cos 60-+--=-=4.已知3sin(),45x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .725答案:D解析: 27sin 2cos(2)cos 2()12sin ()24425x x x x πππ=-=-=--= 5.若(0,)απ∈,且1cos sin 3αα+=-,则cos2α=( )A .917B .C .D .317 答案:A解析:214(cos sin ),sin cos sin 0,cos 099αααααα+==-><,而cos sin3αα-==-221cos2cos sin(cos sin)(cos sin)(33ααααααα=-=+-=-⨯-6.函数xxy24cossin+=的最小正周期为()A.4πB.2πC.πD.2π答案:B解析:2222222213(sin)cos(sin)sin1(sin)24y x x x x x=+=-+=-+21313cos2(1cos4)4484x x=+=++二、填空题1.已知在ABC∆中,3sin4cos6,4sin3cos1,A B B A+=+=则角C的大小为.答案:6π解析:22(3sin4cos)(4sin3cos)37,2524sin()37A B B A A B+++=++=11sin(),sin22A B C+==,事实上A为钝角,6Cπ∴=2.计算:oooooo80cos15cos25sin10sin15sin65sin-+的值为_______.答案:2+00000000000000sin(8015)sin15sin10sin80cos15cos152sin(1510)cos15cos80sin15cos10sin15-+===+-3.函数22sin cos()336x xyπ=++的图象中相邻两对称轴的距离是.答案:32π解析:22222sin cos cos sin sin cos cos sin sin336363636x x x x xyππππ=+-=+22cos(),32363xTπππ=-==,相邻两对称轴的距离是周期的一半4.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 答案:34解析:2max 113()cos cos ,cos ,()224f x x x x f x =-++==当时 5.已知)sin()(ϕω+=x A x f 在同一个周期内,当3π=x 时,)(x f 取得最大值为2,当 0=x 时,)(x f 取得最小值为2-,则函数)(x f 的一个表达式为______________. 答案:()2sin(3)2f x x π=- 解析:222,,,3,sin 1,2332T A T ππππωϕϕω======-=-可取 三、解答题1. 求值:(1)000078sin 66sin 42sin 6sin ; (2)00020250cos 20sin 50cos 20sin ++。

高中数学 三角恒等变换综合课后练习一 新人教A版必修4

高中数学 三角恒等变换综合课后练习一 新人教A版必修4

综合课后练习一新人教A版必修4题1:函数y=2cos x(sin x+cos x)的最大值和最小正周期分别是( ) A.2,π B.2+1,πC.2,2π D.2+1,2π题2:若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12题3:已知△ABC的内角A,B,C所对的边分别为a,b,c,a=80,b=100,A=30°,则此三角形( )A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是直角三角形,也可能是锐角三角形题4:△ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( )A.1 B.-1 C.3 D.4题5:若α+β=3π4,则(1-tan α)(1-tan β)的值是________.题6:当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.题7:已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α;(2)求f (x )的解析式.题8:若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( )A .1+ 5B .1- 5C .1± 5D .-1- 5 课后练习详解题1:答案:B.详解: y =2cos x sin x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1, 所以当2x +π4=2k π+π2(k ∈Z), 即x =k π+π8(k ∈Z)时取得最大值2+1,最小正周期T =2π2=π. 题2:答案:D.详解:∵tan θ+1tan θ=4,∴sin θcos θ+cos θsin θ=4, ∴sin 2θ+cos 2θcos θsin θ=4,即2sin 2θ=4, ∴sin 2θ=12. 题3:答案:C.详解: 依题意得a sin A =b sin B ,sin B =b sin A a =100sin 30°80=58,12<58<32, 因此30°<B <60°,或120°<B <150°.若30°<B <60°,则C =180°-(B +30°)>90°,此时△ABC 是钝角三角形;若120°<B <150°,此时△ABC 仍是钝角三角形.因此,此三角形一定是钝角三角形,选C.题4:答案:B.详解:因为△ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin(90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1,故选B. 题5:答案:2.详解: -1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β, ∴tan αtan β-1=tan α+tan β.∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2.题6:答案:56π. 详解:利用正弦函数的性质求解.∵y =sin x -3cos x (0≤x <2π),∴y =2sin ⎝ ⎛⎭⎪⎫x -π3(0≤x <2π). 由0≤x <2π知,-π3≤x -π3<5π3, ∴当y 取得最大值时,x -π3=π2,即x =56π. 题7:答案:(1)见详解. (2) f (x )=x1+2x 2详解:(1)证明:由sin(2α+β)=3sin β,得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β) sin α.∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y 1-xy=2x , ∴y =x 1+2x 2,即f (x )=x 1+2x 2. 题8:答案:B.详解:由题意知:sin θ+cos θ=-m 2,sin θcos θ=m 4, 又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2, 解得:m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.。

人教A版高中数学必修四3.2简单的三角恒等变换练习.doc

人教A版高中数学必修四3.2简单的三角恒等变换练习.doc

一.选择题1. 函数sin 322x x y =+的图像的一条对称轴方程是 ( ) A.113x π= B.53x π= C.53x π=- D .3x π=- 2.函数)cos (sin sin 2x x x y +=的最大值为( ) A.21+ B.12- C.2 D.23.函数x x y cos sin 21++=的最大值是( ) A .122- B .122+ C .221- D .1+2 4.已知α,β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是( )1tan tan .A <⋅βα2sin sin .B <+βα 1cos cos .C >+βα2tan )tan(21.D βαβα+<+ 5.在△ABC 中,已知tan A +tan B =3tan A ·tan B -3,且sin B cos B =43,则△ABC 是( )A.正三角形B.直角三角形C.正三角形或直角三角形D.直角三角形或等腰三角形 6.函数22()sin ()sin ()44f x x x ππ=+--是( ) A.周期为π的偶函数 B.周期为π的奇函数C.周期为2π的偶函数D.周期为2π的奇函数7. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) 1010.A 1010.B - 10103.C 10103.D - 8.当04x π<<时,函数22cos ()cos sin sin x f x x x x=-的最小值是 ( ) A.4 B.12 C.2 D.14二.填空题9.已知a 是第二象限的角,4tan(2)3a π+=-,则tan a = .10. ABC ∆的三个内角为A 、B 、C ,当A =_______时,cos 2cos2B C A ++取得最大值,且这个最大值为____________.11.函数xx y sin 12tan -=的最小正周期是___________________。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

高中数学必修4三角恒等变换测试题7含答案

高中数学必修4三角恒等变换测试题7含答案

2.已知△ ABC的内角 B 满足 2cos 2B 8cos B 5 0, ,若 BC a , CA b 且
a,b 满足: a b 9 , a 3, b 5 , 为 a, b 的夹角 . 求 sin( B ) 。
3.已知 0 x ,sin( x) 5 , 求 cos 2x 的值。
44
13
cos( x)
4
4.已知函数 f ( x) a sin x cos x
3a cos2 x
3 a b (a 0)
2
(1> 写出函数的单调递减区间;
(2> 设 x [0, ] , f (x) 的最小值是 2 ,最大值是 3 ,求实数 a, b 的
2
值.
参考答案 一、选择题
-2-/5
个人收集整理资料,
仅供交流学习,
勿作商业用途
2
3 cos x
3 的图象的一个对称中心是 <

A. ( 2 ,
3 )
B.
5 (,
3) C. (
2
,
3 )
D. ( ,
3)
32
62
32
3
4.△ ABC中, C 900 ,则函数 y sin 2 A 2sin B 的值的情况 < )
A.有最大值,无最小值
B .无最大值,有最小值
C.有最大值且有最小值
D .无最大值且无最小值
cos cos
对于③, y sin 2x y sin 2(x ) sin(2x )
4
2
2.
1 cosx 1
cosx
1
y
sin x sin x sin x tan x
3. 59 (sin cos )2 (sin cos )2 13 , 2sin(

最新人教A版高中数学必修四第3章三角恒等变换测试题(含详解)

最新人教A版高中数学必修四第3章三角恒等变换测试题(含详解)

θ等于 (
)
6 A.- 5
4 B.- 5
4
6
C. 5
D.5
cos2θ+sin θcosθ 1+ tan θ 6
解析
原式=
cos
2
θ+
sin
2
θ
=1+
tan
2= θ
5.
答案 D
6.在△ ABC中,已知 sin Acos A=sin BcosB,则
△ ABC是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
第三章测试
( 时间: 120 分钟,满分: 150 分)
一、选择题 ( 本大题共 12 小题,每题 5 分,共
60 分.在每小题给出地四个选项中,只有一项是符
合题目要求地 )
1.sin105 °cos105°地值为 ( )
1
1
A. 4
B .- 4
3 C. 4
3 D.- 4
1
1
1
解析 原式= 2sin210 °=- 2sin30 °=- 4.
时, y
有最小值
1- 2
2 .
∴值域为
1- 2
2 1+ ,2
2 .
答案 C
24 11.已知 θ为第二象限角, sin( π-θ) =25,则
cos θ2地值为 (
)
3
4
A. 35
B. 5
3 C. ±5
4 D.±5
24
24
解析 由 sin( π-θ) =25,得 sin θ=25.
7 ∵θ为第二象限地角,∴ cosθ=- 25.
A. 2
2 B. 2
3
C. 2

(完整版)高一必修4三角恒等变换测试题及答案

(完整版)高一必修4三角恒等变换测试题及答案

17. 已知 0
, tan
2
2
1 tan
2
5 ,试求 sin
2
的值.( 12 分)
3
3 tan120 3
18. 求 sin120 (4 cos2 120
的值.( 12 分)
2)
3
19. 已知α为第二象限角,且
sinα = 15 ,求
sin(
) 4
的值 .(12分)
4 sin 2 cos2 1
20.已知函数 y sin2 x sin 2x 3cos 2 x ,求 ( 1)函数的最小值及此时的 x 的集合。
65
56
C、
65
16
D、
65
3. tan 20 tan 40 3 tan 20 tan 40 的值为(

)( )
A1
3
B
3
C -3
D3
4. 已知 tan
3,tan
5 ,则 tan 2 的值为(

4
A
7
4
B
7
1
C
8
1
D
8
5. , 都是锐角,且 sin
5 , cos
13
4
,则 sin 的值是(

5
33
A、
3 cos x 的图像的一条对称轴方程是 2
()
A 、 x 11 3
B 、x 5
C 、x
5
D 、x
3
3
3
1 cos x sin x
11. 已知
1 cos x sin x
2 ,则 tan x 的值为
()
A、 4 3
B

高中数学必修四三角恒等变换题型归纳及训练题

高中数学必修四三角恒等变换题型归纳及训练题

三角恒等变换一、知识概括:1.两角和与差的三角函数公式2.二倍角公式: sin 2α=2sin αcos α; tan 2α=2tan α1-tan 2α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;3.公式的变形与应用(1)两角和与差的正切公式的变形tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β).(2)降幂公式:sin 2α=1-cos 2α2;cos 2α=1+cos 2α2.二、方法归纳总结:1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.三、典例剖析:题型一、【公式顺用、逆用、变用】例1、sin 75= ; cos15= ; 2、sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.123.设sin 2sin ,(,)2παααπ=-∈,则tan 2α的值是________.4、若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625专题二:【凑角应用】例3、已知0<β<π4<α<34π,135)43sin(,53)4cos(=+=-βπαπ,求)sin(βα+的值.注:常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α);α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)];π4+α=π2-()4πα-变式1、若0<α<π2,π2<β<3π2,14cos(),cos(),43425ππβα+=-=则cos()2βα+=________.变式2、已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.题型三、【三角恒等变换的综合运用】1.已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间[,]34ππ-上的最大值和最小值.2.已知函数()sin(),4f x A x x R π=+∈,且53()122f π=. ①求A 的值; ②若f (θ)+f (-θ)=32,(0,)2πθ∈,求3()4f πθ-3.已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.三角恒等变形课后训练题1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A. 0B. 12C.D. 12-2. =+-)12sin 12(cos )12sin12(cosππππ( )A. 23-B. 21-C. 21D.23 3.设1tan 2,1tan xx +=-则sin 2x 的值是 ( )A. 35B. 34-C. 34D. 1-4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A. 47-B. 47C. 18D. 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A. 3365B.1665C. 5665D. 63656.)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A. 725-B. 2425-C. 2425D. 7257.cos 23x x a +=-中,a 的取值域范围是 ( )A. 2521≤≤aB. 21≤aC. 25>aD. 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A.1010 B. 1010- C. 10103 D. 10103-9. 函数sin22x xy =的图像的一条对称轴方程是 ( ) A. x =113π B. x =53π C. 53x π=- D. 3x π=-10.在ABC ∆中,tan tan tan A B A B +=,则C 等于 ( )A.3π B. 23π C. 6π D. 4π11.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于 . 12. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = . 13. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为 .14. 关于函数()cos2cos f x x x x =-,下列命题:①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 .(注:把你认为正确的序号都填上)三、解答题:15.在ABC ∆中,已知的值求sinC ,135B c ,53cosA ==os .16.已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.17. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18已知tan α=2,tan β=-13,其中0<α<π2,π2<β<π.(1)求tan(α-β)的值;(2)求α+β的值.19.已知函数)0)(6sin(2)(>-=ωπωx x f 的最小正周期为π6(1)求)0(f (2)设56)23(,1310)23(0,2,2,0=+=+⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈πβπαπβπαf f ,求)cos(βα+的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

高一数学必修四三角函数与三角恒等变换期末练习

高一数学必修四三角函数与三角恒等变换期末练习

高一数学必修四三角函数与三角恒等变换期末练习一、选择题(每小题5分, 共50分.在每小题给出的四个选项中, 仅有一个选项是正确的)1.角α的终边上有一点P (a, a ), a ∈R 且a ≠0, 则sin α值为 ( )A. B. C. 1 D. 或2. 函数 是( )A. 最小正周期为2π的偶函数B. 最小正周期为2π的奇函数C. 最小正周期为π的偶函数D. 最小正周期为π的奇函数3. 的值为( )(A )426+ (B )462- (C )426+- (D )426- 4. 可化为( )(A ))6cos(απ+ (B ))3cos(απ+ (C ))3sin(απ- (D ))3sin(απ+5. =( ) A. B. C. 1 D. 6.sin αcos α= , 且 <α< , 则cos α-sin α的值为 ( )A. B. C. D.7.函数 的部分图象如图所示, 则函数表达式为( )A.B .)48sin(4π-π=x yC. D .)48sin(4π+π=x y 8. 若 , 则 的值为( )(A )1 (B )1- (C )21 (D )21-9. 已知 , 则 等于( )(A )m 2- (B )m 2 (C )m - (D )m10. 如果 则( )(A )c b a >> (B )c a b >> (C )a b c >> (D )a c b >>二、填空题(每小题4分, 共28分。

把正确答案填写在题中的横线上, 或按题目要求作答。

)11.︒︒-︒︒14cos 74sin 14sin 74cos =__________12. 的单调递增区间是_____________.13. = .14. 函数 的最大值是 .15.若sin( -2x)= , 则tan2x =________.[][]1212116/sin ,0,2,/cos 0,2,22171)02()4cos(2);6(3)()06N f x y f x y x y f x θθθπθθθπππππ⎧⎫⎪⎪⎧⎫≥∈=≤-∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭⋂∈=-==-=-、设M=则MN=__________。

必修4三角函数三角恒等变换综合练习

必修4三角函数三角恒等变换综合练习

优胜教育内部资料张敬敬必修 4 三角函数三角恒等变换综合练习一、选择题 ( 本大题共 10小题, 每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是最符合题目要求的 .) 1. P(3, 4) 为 终边上一点,则 sin a = ( )A 、3 5B 、4 5C 、3 4D 、4 32. 下列函数中,以为周期且在区间 (0, ) 2上为增函数的函数是().xA. y sinB.y sin x C. y tan x D. y cos 2x23. 已知cos 22 3,则 44sincos 的值为()A. 13B. 1811C. 187D. 194. 函数y sin 2x cos2x 的值域是()A 、1 2 ,1 2B 、[- 2,2]C、[- 1, 1]D 、1 4 ,1 4 5. 为了得到函数 y 3sin(2 x ) 的图象,只需要把函数 y3 s in 2x 的图象上所有的点 ( )3A.向右平移B. 向右平移C. 向左平移D. 向左平移36366. 函数2y sin x cosx 3cos x3 的图象的一个对称中心是 ()A. 2 3 ( ,) 32B. 5 3 ( ,) 62C. 23 ( , )32D . ( ,3)37. 在△ABC 中,若 3 a = 2b sin A ,则∠B 为( )A. πB. 3πC. 6π或 65D. π 6π或 32π3y8. 已知函数 y A s in( x ) B (0, 0,| |A) 的周期为 T ,22在一个周期内的图象如图所示,则正确的结论是( ).23O43xA. A 3,T 2B. B 1, 2-4C. T4 ,D.A 3,661优胜教育内部资料张敬敬9. y=3sin 2x 的单调递增区间是()。

3A、2k ,2k ,k ZB、2 232k ,2k ,k Z2 2C、5 11k ,k ,k Z D、12 125k , k ,k Z12 1210.. 定义运算acbdefaecebfdf,如123451415,已知,2,则sin cos cossincossin().A. 0B.1C.1D.11二、填空题( 本大题共7小题,每小题 3 分,共21 分. 把答案填在题中的横线上.)11.半径为3cm 的圆中,有一条弧,长度为cm,则此弧所对的圆心角为_____________________________212.函数f ( x) ax b sin x 1,若f (5) 7,则f ( 5)_____________________________13.函数y=2sin 2x + 2cosx -3 的最大值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4三角函数三角恒等变换综合练习
时间:2小时
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一
项是最符合题目要求的.) 1.
)4,3(-P 为α终边上一点,则sin a =( )
A 、53
B 、54-
C 、43
D 、3
4-
2. 下列函数中,以π为周期且在区间(0,)2π
上为增函数的函数是( ).
A.sin 2
x
y = B.sin y x = C.tan y
x =- D.cos 2y x =-
3. 已知cos 2θ=则44sin cos θθ+的值为( ) A.
1813 B.1811 C.9
7
D.1- 4. 函数
x x y 2cos 2sin =的值域是( )
A 、⎥⎦

⎢⎣⎡-21,21 B 、
[]2,2- C 、[]1,1- D 、⎥⎦


⎣⎡-41,41 5. 为了得到函数3sin(23y x π
=-的图象,只需要把函数x y 2sin 3=的图象上所有的点( )
A.向右平移3π
B.向右平移6
π C.向左平移3
π D.向左平移6
π
6. 函数2sin cos y x x x =的图象的一个对称中心是( ) A.
2(
,)32π- B.5
(,62
π C.
2(32π- D.(,3π
7. 在△ABC 中,若3a = 2b sin A ,则∠B 为( ) A.
3π B.6
π
C.
6π或6
π
5
D.
3π或3
π
2 8. 已知函数sin()y A x B ωφ=++(0,0,||2
A ωφπ
>><
)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π
B.2,1=-=ωB
C.4,6T φπ=π=-
D.3,6
A φπ
==
9. y=3sin 23x π⎛⎫
- ⎪⎝⎭
的单调递增区间是( )。

A 、2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦
B 、32,2,22k k k Z ππππ⎡
⎤++∈⎢⎥⎣⎦
C 、511,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦
D 、5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣
⎦ 10. .定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,2αβπ
-=,则=⎥⎦

⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ). A.00⎡⎤⎢⎥⎣⎦ B.01⎡⎤⎢⎥⎣⎦ C.10⎡⎤⎢⎥⎣⎦
D.11⎡⎤⎢⎥⎣⎦
二、填空题(本大题共7小题,每小题3分,共21分. 把答案填在题中的横线上.) 11. 半径为3cm 的圆中,有一条弧,长度为
2
π
cm ,则此弧所对的圆心角为_____________________________ 12.函数=-=++=)5(,7)5(,1sin )(f f x b ax x f 则若_____________________________ 13. 函数y=2sin 2x + 2cosx -3的最大值是 。

14.若3
π
=
x 是方程1)cos(2=+αx 的解,其中)2,0(πα∈,则α=_____________________________
15.求)120tan 3(10cos 70tan -︒︒︒
16.在△ABC 中,若60A =
,a =sin sin sin a b c
A B C +-+-等于 17.在下列四个命题中:
①函数tan()4y x π=+的定义域是{,}4
x x k k π
≠+π∈Z ;
②已知1sin 2
α=
,且[0,2]α∈π,则α的取值集合是{}6π

③函数x a x x f 2cos 2sin )(+=的图象关于直线8
x π
=-对称,则a 的值等于1-; ④函数2cos sin y x x =+的最小值为1-.
把你认为正确的命题的序号都填在横线上____________________.
三、解答题(本大题共5小题,共49分,解答应写出必要的文字说明、证明过程及演算步骤.) 18.(本小题满分8分)
已知(0,)2απ
∈,且5
42cos =α.
(1)求ααcos sin +的值;
(2)若(,)2
βπ
∈π,且ββαsin )2sin(5=+,求角β的大小.
19. (本小题满分9分)
如图△ABC 中,点D 在边 BC 上,且BD = 2,DC = 1,∠B = 60°,∠ADC = 150°,求AC 的长及△ABC 的面积.
20. (本小题满分10分)
已知函数()2cos (sin cos )1
f x x x x x =-+∈R ,. (1)求函数()f x 的单调递增取区间; (2)将函数()y f x =的图象向左平移
4
π
个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的最大值及取得最大值时的x 的集合.
21.(本小题满分10分)
已知函数()sin()(0,0)f x x ωϕωϕ=+>≤≤π为偶函数,图象上相邻的两个最高点之间的距离为2π.
(1)求()f x 的解析式;
(2)若(,)32αππ∈-且1()33f απ+=,求5sin(2)3
απ
+的值.
22. (本小题满分12分)
设函数2622
cos 2sin 4cos )(22+-+⋅--=t t x
x t x x f (x ∈R ),其中t ∈R ,将()f x 的最小值
记为()g t .
(1)求()g t 的表达式;
(2)当11≤≤-t 时,要使关于t 的方程kt t g =)(有且仅有一个实根,求实数k 的取值范围.
参考答案:
BDBAB BDCCA 11.6π 12.-5 13.21- 14.π3
4
15.-1 16.2 17.③④
18.(1)
1052 (2)π4
3 19.(1)7 (2)
34
3
20.
21.(1)x x f cos )(= (2)9
2
4- 22.(2)4-≥k 或8-≤k。

相关文档
最新文档