高考数学 6年高考母题精解精析 专题08 立体几何04 文
高考数学试题(8)立体几何
1.(安徽理科第6题、文科第8题)(A ) 48 (B)32+817 (C) 48+817 (D) 80解析:由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+.故选C.2.(安徽理科第17题,文科第19题,本小题满分13分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1OA =,2OD =,ODE ODF OAC OAB ∆∆∆∆,,,都是正三角形。
(Ⅰ)证明直线BC EF ∥; (Ⅱ)求棱锥F OBED -的体积.(1)证明:分别去OA ,OD 的中点M ,N ,连接CM ,BMEN,FN,设EB和DA相交于G,由于OA=1,OD=2,则EN BM //,且EN BM 21=,则M 为GN 的中点,所以GA=1同理可得:G 为FC 和DA 的交点。
则有C 为FG 的中点,B 为EG 的中点。
所以 BC 是EFG ∆的中位线。
故BC EF ∥。
(2)四边形OBED 是梯形,其中OB=1,DE=2,底边上的高为323260sin =⋅=︒OE2333)21(2131331=⋅⋅+⋅=⋅=∴-OBED OBED F S V 3.(北京理科第7题)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) 62 (C)10 (D) 82解:根据三视图可知,该四面体满足:⊥SA 平面ABC ,ABC ∆中︒=∠90ABC ,3,4===BC AB SA ,四个三角形都是直角三角形6,26,8,10,5,24======∆∆∆∆ABC SBC SAB SAC S S S S AC SB4.(北京理科第16题)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=.(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.解:(1)因为ABCD 是菱形,则对角线互相垂直,BD AC ⊥∴,又⊥PA 平面ABC所以BD ⊥平面PAC ,(2)设O BD AC = ,3,1,2,60=====︒=∠CO AO BO AB PA BAD 以O 为坐标原点以OC OB ,所在的直线分别为y x ,轴建立空间直角坐标系xyz O -则)0,3,0(),0,1,1(,0,3,0(),2,3,0(C B A P )--,)2,3,1(-=∴PB ,)0,32,0(=AC 设AC PB ,的夹角为θ,则4632226||||cos =⨯==AC PB AC PB θ (3)由(2)知),0,3,1(-=BC 设)0)(,3,0(>t t P 设平面PBC 的法向量为),,(z y x m =,则0,0=⋅=⋅m BP m BC所以⎪⎩⎪⎨⎧=+--=+-0303tz y x y x ,令3=y ,则t z x 6,3==,)6,3,3(t m =∴同理,平面PDC 的法向量为)6,3,3(tn -=,因为平面PBC ⊥平面PDC所以0=⋅n m ,即03662=+-t,解得6=t ,6=∴PA5.(北京文科第5题)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32(B)16+162 (C)48 (D)16322+6.(北京文科17)如图,在四面体PABC 中,,,PC AB PA BC ⊥⊥点,,,D E F G分别是棱,,,AP AC BC PB 的中点。
备战高考理科数学6高考母题精解精析 专题8 立体几何05 Word版含答案
二、填空题:1.(2011年高考辽宁卷理科15)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.2. (2011年高考全国新课标卷理科15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 。
答案: 38解析:如图,连接矩形对角线的交点1O 和球心O ,则,3221,341===AC A O AC ,四棱锥的高为2)32(4221=-=O O , 所以,体积为38232631=⨯⨯⨯=V 点评:本题考查多面体和旋转体的有关概念和性质以及体积的计算。
关键是确定棱锥高的大小,正确运用公式求解。
3.(2011年高考天津卷理科10)一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________ 3mA4. (2011年高考四川卷理科15)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,求球的表面积与该圆柱的侧面积之差是 .5.(2011年高考全国卷理科16)己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于.的平面角.设AB=2EF=2a ,因为∠ ACB=90︒,AC=BC,CO=a ,AE =,连结FO,容易证得FO ∥EA 且FO =,所以BF =,所以,所以在Rt COH ∆中,tan ∠ CHO=CO OH =,故∠ CHO=60,所以二面角A-BF-C的大小为60.2.(2011年高考浙江卷理科20)(本题满分15分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-β为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
高考数学 6年高考母题精解精析 专题08 立体几何06 文
32.(2011年高考江苏卷16)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥33. (2011年高考江苏卷22)(本小题满分10分)如图,在正四棱柱1111ABCD A B C D -中,12,1AA AB ==,点N 是BC 的中点,点M 在1CC 上,设二面角1A DN M --的大小为θ。
(1)当090θ=时,求AM 的长;(2)当6cos θ=时,求CM 的长。
解析:考察空间向量基本概念、线面所成角、距离、数量积、空间想象能力、运算34.(2011年高考辽宁卷文科18)(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=12 PD。
[(I)证明:PQ⊥平面DCQ;(II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值。
35.(2011年高考安徽卷文科19)(本小题满分13分)如图,ABCDEFG为多面体,平面ABED与平面AGFD垂直,点O在线段AD上,1,2,==OAB,△OAC,△ODE,△ODF都是正三角形。
OA OD(Ⅰ)证明直线BC∥EF;(II)求棱锥F-OBED的体积。
【证法二】:设G 是线段DA 与EB 延长线的交点,AOB ODE 0∠=∠=6036.(2011年高考全国卷文科20) (本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD SAB ⊥平面; zy(Ⅱ)求AB 与平面SBC 所成角的大小.【解析】(Ⅰ):连结BD 过D 作,DE AB E BEDC ⊥于则为正方形37.(2011年高考重庆卷文科20)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分) 如题(20)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,,2,1AB BC AC AD BC CD ⊥====(Ⅰ)求四面体ABCD 的体积;(Ⅱ)求二面角C-AB-D 的平面角的正切值。
文科数学高考解答题分类解析(立体)
18.解: (1)取 BC 中点 F ,连接 DF 交 CE 于点 O , AB AC , AF BC , 又 面 ABC 面 BCDE , AF 面 BCDE , AF CE .
tan CED tan FDC 2 , OED ODE 90 , DOE 90 , 即 C 2
A
B D
E
C E D F, CE 面 ADF , CE AD . (2)在面 ACD 内过 C 点做 AD 的垂线,垂足为 G . CG AD , CE AD , AD 面 CEG , EG AD ,
则 CGE 即为所求二面角. CG
6 30 AC CD 2 3 , DG , EG DE 2 DG 2 , 3 3 AD 3
EF CF 2 CE 2 3 ,
CG
3 CE CF 2 , EG CE 2 CG 2 . 3 EF 3
EG 1 1 EF FD 2 , GH . EF 3 3 DE 15
又 A1C AA12 AC 2 2 6 , AG AC 1 1 CG
tan A1 HG A1G 5 5. HG
5 6 . 3
所以二面角 A1 DE B 的大小为 arctan 5 5 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 分 07 全国 1——19 (19) (本小题满分 12 分) 四棱锥 S ABCD 中,底面 ABCD 为平行四边形,侧面 SBC 底面 ABCD,已知 ABC 45 ,
E C1 A1 D
新疆 源头学子小屋
高考数学真题解析分项版08立体几何 文
2011年高考试题解析数学(文科)分项版08 立体几何一、选择题:1.(2011年高考安徽卷文科8)一个空间几何体得三视图如图所示,则该几何体的表面积为(A ) 48 (D) 80 【答案】C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为(44224++=+,所以几何体的表面积为48+故选C.【解题指导】:三视图还原很关键,每一个数据都要标注准确。
2.(2011年高考广东卷文科9)如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( )A. B . C . D . 2【答案】C【解析】由题得该几何体是如图所示的四棱锥P-ABCD ,,棱锥的高,3232322131331233231222=⨯⨯⨯⨯⨯=∴=-=-==∴=-=V PO h AO 所以选择C.3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为A .942π+ B.3618π+ C.9122π+ D.9182π+ 答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
4.(2011年高考湖北卷文科7)设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是A. V 1比V 2大约多一半B. V 1比V 2大约多两倍半C. V 1比V 2大约多一倍D. V 1比V 2大约多一倍半答案:D正视图侧视图俯视图图1解析:设球半径为R ,其内接正方体棱长为a2R =,即,a =由333124,3v R v a π==,比较可得应选D.5.(2011年高考山东卷文科11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.6.(2011年高考海南卷文科第8题)在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )解析:D. 由主视图和府视图可知,原几何体是由后面是半个圆锥,前面是三棱锥的组合体,所以,左视图是D 。
备战高考数学解答题高分宝典专题04立体几何(核心考点)文(2021年整理)
专题04立体几何核心考点一平行关系的证明平行关系包括直线与直线平行、直线与平面平行及平面与平面平行,平行关系的证明一般作为解答题的第一问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.答题模板证明BE∥平面DMF的步骤第一步,在平面DMF内找出一条直线MO与BE平行;第二步,指出 BE平面DMF,MO平面DMF;第三步,由线面平行的判断定理得BE∥平面DMF。
【满分答案】证明(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE平面DMF,MO平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,⊄⊂⊄⊂所以DE ∥GN 。
因为DE 平面MNG ,GN 平面MNG ,所以DE ∥平面MNG 。
因为M 为AB 的中点, 所以MN 为△ABD 的中位线, 所以BD ∥MN . 因为BD 平面MNG ,MN 平面MNG ,所以BD ∥平面MNG .因为DE 与BD 为平面BDE 内的两条相交直线, 所以平面BDE ∥平面MNG 。
【解题技巧】1.判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α, b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β). 2. 证明面面平行的方法 (1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化. 3。
文科高考数学热点08 立体几何(解析版)
热点08 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2020·全国高三专题练习(文))下列关于棱柱的说法正确的个数是()①四棱柱是平行六面体;②有两个面平行,其余各面都是平行四边形的几何体是棱柱;③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体是棱柱;④底面是正多边形的棱柱是正棱柱.1234 A.B.C.D.【答案】A【分析】四棱柱的底面可以是任意四边形,而平行六面体的底面必须是平行四边形,故①不正确;有两个面平行,其余各面都是平行四边形的几何体可能侧棱不平行,故②不正确;由棱柱的定义可得③正确;底面是正多边形的直棱柱是正棱柱,故④不正确.故选:A.2.(2020·湖北高三月考)已知是两条不同的直线,是三个不同的平面,则下,a b ,,αβγ列命题中正确的是( )A .若,,,则a αβ⋂=b βγ= //a b //αγB .若,,,则//a b a α⊥αβ⊥b β//C .若,,,则αβ⊥a αβ⋂=a b ⊥r rb α⊥D .若,则,,a b αβαβ⊥⊥⊥a b⊥r r 【答案】D【分析】:对于A :若,,,则或与相交,故A 错a αβ⋂=b βγ= //a b //αγαγ误;对于B :若,,,则与平行或,故B 错误;//a b a α⊥αβ⊥b βb β⊂对于C :若,,,则或与相交或平行,故C 错误;αβ⊥a αβ⋂=a b ⊥r rb α⊂b α对于D :若,如图,,a b αβαβ⊥⊥⊥设,过作,因为,,所以,所b B β= B BC l ⊥()l αβ= αβ⊥BC β⊂BC α⊥以,因为,所以,故D 正确;//BC a b BC ⊥b a ⊥故选:D3.(2020·全国高三专题练习(文))如图所示,正方体的棱长为,ABCD A B C D ''''-1、分别是棱、的中点,过直线、的平面分别与棱、交于、E F AA 'CC 'E F BB 'DD 'M N,设,,则下列命题中错误的是( )BM x =]1[0x ∈,A .平面平面MENF ⊥BDD B ''B .当且仅当时,四边形的面积最小12x =MENF C .四边形周长是单调函数MENF ()L f x =D .四棱锥的体积为常函数C MENF '-()V h x =【答案】C【分析】A 选项,∵,,,∴,∴//EF AC AC BD ⊥'⊥AC BB AC BDD B ⊥''EF ⊥平面,BDD B ''又∵平面,∴平面平面,A 对,EF ⊂MENF MENF ⊥BDD B ''B 选项,由面面,又面平面,面平//ABB A ''CDD C ''ABB A ''⋂ENFM EM =CDD C ''⋂面,ENFM FN =所以,同理,所以四边形为平行四边形.//EM FN //EN FM MENF由平面,平面,所以EF ⊥BDD B ''MN ⊂BDD B ''EF MN⊥所以四边形为菱形,∴,MENF 12MENF S EF MN =⋅又的面积最小,只需最小,EF =MENF MN 则当且仅当时,四边形的面积最小,B 对,12x =MENF C 选项,∵,,MF =()f x =∴在上不是单调函数,C 错,()f x [0]1,D 选项,,C MENF F MC E F C NE V V V -''-'-=+,点到平面的距离为,,11124C ME S C E '∆'=⋅=F C ME '11113412F C ME V -'=⋅=又,点到平面的距离为,,11124C NE S C E '∆'=⋅=F C NE '11113412F C NE V -'=⋅=∴为常函数,D 对,1()6h x =故选:C .4.(2020·云南高三其他模拟(文))某几何体的三视图如图所示(单位:),则该几cm 何体的表面积(单位:)是( )2cmA .8B .16C .32D .44【答案】C 【分析】:由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,底面.底面.所以PA ⊥ABC ,AB AC ⊂ABC,,所以,PA AB ⊥PA AC ⊥5PC ==PB ==因为,即22245+=222BC PC PB +=所以.BC PC ⊥该几何体的表面积.∴1(34543445)322S =⨯+⨯+⨯+⨯=故选:.C5.(2020·全国高三专题练习(文))已知四面体是球的内接四面体,且是ABCD O AB 球的一条直径,,,则下面结论错误的是()O 2AD =3BD =A .球的表面积为B .上存在一点,使得O 13πAC M //AD BMC .若为的中点,则D .四面体N CD ON CD⊥ABCD 【答案】B 【分析】∵是球的一条直径,∴,,AB OAC BC ⊥ADBD ⊥∴AB ===球的半径为,球的表面积为,A 正确,O12AB =O 2413ππ⨯=∵与平面相交,上找不到一点,使得,B 错误,AD ABC AC M //AD BM 连接、,∵,为的中点,∴,C 正确,OC OD OC OD =N CD ON CD ⊥易知点到平面的距离的最大值为球的半径,C ABD R ∴四面体体积的最大值为:D 正ABCD max 11123332ABD V S R =⋅⋅=⨯⨯⨯=A 确,故选:B .6.(2020·河南高三月考(文))已知点、、、在同一个球面上(球的半径为定A B C D 值),是等腰直角三角形,且体积的最大值ABC A AB BC ==ABCD 为,则该球的表面积为( )163A .B .C .D .25π254π1256π9π【答案】A 【分析】如图,因为是等腰直角三角形,且ABC AAB BC ==所以由勾股定理,得.4AC ==设球的半径为,球心到平面的距离为,O R O ABC d设当四面体体积取得最大值时,点到平面距离为,ABCD 163D ABC h 则,解得.1116323h ⨯⨯=4h =设的外接圆圆心为点,当四面体的体积取最大值时,ABC A 1O ABCD 点、、三点共线,且点在线段上,D O 1O O 1DO 所以,,即,解得.2222d R h AC d R +=⎧⎪⎨⎛⎫+= ⎪⎪⎝⎭⎩222442d R d R +=⎧⎪⎨⎛⎫+= ⎪⎪⎝⎭⎩5232R d ⎧=⎪⎪⎨⎪=⎪⎩故球的表面积为.22544252S R πππ⎛⎫==⋅= ⎪⎝⎭故选:A.7.(2020·河南开封市·高三一模(文))如图,将正四棱锥置于水平反射镜面P ABCD -上,得一“倒影四棱锥”.下列关于该“倒影四棱锥”的说法中,所有正确结论P ABCD Q --的编号是( )①平面;//PA BCQ ②平面;PQ ⊥ABCD ③若在同一球面上,则也在该球面上;,,,,P A B C D Q ④若该“倒影四棱锥”存在外接球,则AB PA=A .①③B .②④C .①②③D .①②④【答案】D 【分析】由题意四棱锥与四棱锥是两个相同的正四棱锥P ABCD -Q ABCD -连接相交于点,连接,AC BD O ,OP OQ 由四棱锥为正四棱锥,则平面.P ABCD -PO ⊥ABCD 根据题意四棱锥为正四棱锥,所以平面.Q ABCD -QO ⊥ABCD 均垂直于平面,所以三点共线.,PO OQ ABCD P O Q ,,所以平面,故②正确.PQ ⊥ABCD 由,根据题意AC PQ O ⋂=,,AP QC AO OC PO OQ ===所以与全等,所以APO △CQO A PAO OCQ ∠=∠所以,平面,平面,//AP QC AP ⊄QCB QC ⊂QCB 所以平面,故①正确.//PA BCQ 当在同一球面上,若正方形的外接圆不是球的大圆时,,,,,P A B C D ABCD根据对称性,则点不在此球面上,故③不正确.Q 若该“倒影四棱锥”存在外接球,根据对称性则正方形的外接圆是该球的大圆.ABCD 所以此时球的球心为正方形的对角线的交点,即点,设ABCD O 2AB a =则,OA =OA OP R ==所以,所以④正确.2AP a AB ===故选:D8.(2020·全国高三月考(文))已知,是空间中两条不同的直线,,是空间中m n αβ两个不同的平面,则下列命题正确的是().A .若,,则αβ⊥m α⊥m β⊥B .若,,则//αβ//m α//m βC .若,,,则m α⊥n β⊥//m n //αβD .若,,,,则m α⊂n ⊂α//m ββn////αβ【答案】C【分析】对于A ,若,,则或,故A 错误;αβ⊥m α⊥//m βm β⊂对于B ,若,,则或,故B 错误;//αβ//m α//m βm β⊂对于C ,若,,则,又因为,所以,故C 正确;m α⊥//m n n α⊥n β⊥//αβ对于D ,若,,,,则可能相交,故D 错误;m α⊂n ⊂α//m ββn//,αβ故选:C.9.(2020·宁夏银川市·银川一中高三月考(文))如图所示,在长方体,若,、分别是、 的中点,则下列结论中不1111ABCD A B C D -AB BC =E F 1AB 1BC 成立的是( )A .与垂直EF 1BB B .平面EF ⊥11BDD B C .与所成的角为EF 1C D 45︒D .平面//EF 1111D C B A 【答案】C【分析】连接、、,则为的中点,1A B 11A C 1A D E 1A B 对于A 选项,平面,平面,,1BB ⊥ 1111D C B A 11A C ⊂1111D C B A 111BB A C ∴⊥、分别为、的中点,则,E F 1A B 1BC 11//EF A C ,A 选项正确;1EF BB ∴⊥对于B 选项,四边形为正方形,则, 1111D C B A 1111AC B D ⊥又,,平面,111A C BB ⊥ 1111B D BB B ⋂=11A C ∴⊥11BDD B ,平面,B 选项正确;11//EF A C EF ∴⊥11BDD B 对于C 选项,易知为等腰三角形,11A C D A ,则与所成的角为,11//EF A C EF 1C D 11A C D ∠∵,∴始终是锐角,而,2221111A D C D A C +>11A DC ∠1111A C D C A D ∠=∠∴不可能成立.C 选项错误;1145A C D ∠=︒对于D 选项,,平面,平面,11//EF A C EF ⊄1111D C B A 11A C ⊂1111D C B A 平面,D 选项正确.//EF ∴1111D C B A故选:C .10.(2020·河南洛阳市·高三月考(文))我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱为一个“堑堵”,底面是以为斜边的直角三角形且,111ABC A B C -ABC A AB 5AB =,点在棱上,且,当的面积取最小值时,三棱锥3AC =P 1BB 1PC PC ⊥1APC A 的外接球表面积为( )P ABC-A .BC .D .45π230π45π【答案】D 解法一:由“堑堵”的定义可知,为直角三角形,ABC A 故,4BC ==易知,又,,1AC PC ⊥1PC PC ⊥1PC PC P ⋂=所以平面,而平面,于是得.1PC ⊥APC AP ⊂APC 1AP PC ⊥设,,则,1BB z =BP t =1B P zt =-则AP ==1PC ==1AC ==由,得,整理得,1AP PC ⊥()222925161z t z +=+++-16z t t =+所以,()22212161616PC z t x =+-=+所以1112APC S AP PC =⋅==△,18≥=当且仅当,即的面积取得最小值18.22400t t =t =1APC A 此时AP ==设三棱锥的外接球半径为,P ABC -R 因为,,故线段为外接球的直径,AC CP ⊥AB BP ⊥AP 故所求外接球的表面积.454π45π4S =⨯=故选:D .解法二:令,则,,11PCB C PB θ∠==∠14sin C Pθ=4cos CP θ=AP ==又因为平面,所以,又.AC ⊥11CBB C 1AC C P ⊥1CP C P ⊥所以平面,所以.1C P ⊥ACP 190C PA ∠=︒的面积1APCA 1111422sin APC S C P AP θ=⋅=⋅=△===当且仅当时,取最小值,2210064tan tan θθ=1APCS △此时,.tan θ=AP ===在三棱锥中,因为,取中点为,P ABC -90ACP ABP ∠=∠=︒AP O 则,12OC OB AP OA OP ====故为三棱锥的外接球的球心,O P ABC -所以为外接球直径,.AP 224ππ45πO S R AP ===球故选:D .11.(2020·云南高三其他模拟(文))如图,在四棱锥中,底面四边形P ABCD -中,,,,,在中,ABCD //AD BC AD BC =AD CD =AD DC ⊥PAD △PA PD =,,平面平面.60APD ∠=oPAD ⊥PCD(1)证明:平面;AB ⊥PAD (2)若,为线段的中点,求三棱锥的体积.4AB =Q PB Q PCD -【答案】(1)证明见解析 ;(2.【分析】(1)如下图所示,取的中点,连接,PD O AO 在中,,,则为等边三角形,PAD △PA PD =60APD ∠=oPAD △因为为的中点,则,O PD AO PD ⊥平面平面,平面平面,平面, PAD ⊥PCD PAD PCD PD =AO ⊂PAD 平面,AO ∴⊥PCD 平面,,CD ⊂ PCD CD AO ∴⊥,,平面,CD AD ⊥ AO AD A =I CD \^PAD 在四边形中,且,所以,四边形为平行四边形,ABCD //AD BC AD BC =ABCD所以,,因此,平面;//AB CD AB ⊥PAD (2)由(1)知,四边形为平行四边形,ABCD 因为,,所以,四边形为正方形,,AD CD =AD CD ⊥ABCD 4AD AB ∴==所以,是边长为为等边三角形,PAD △4平面,所以到平面的距离,AO ⊥Q PCD APCD d AO ===,平面,平面,平面,//AB CD Q AB ⊄PCD CD ⊂PCD //AB ∴PCD 所以、两点到平面的距离相等,均为,A B PCD d 又为线段的中点,所以到平面的距离Q PB Q PCD 2d h ==由(1)知,平面,因为平面,所以,CD ⊥PAD PD ⊂PAD CDPD ⊥所以.11144332Q PCD PCD V S h -=⨯⨯=⨯⨯⨯=△12.(2020·通榆县第一中学校高三月考(文))如图,在四棱锥中,底面РABCD -是梯形,,点ABCD //,22,90AD BC AD AB BC PA PD ABC =====∠=︒N 为的中点,连接PD ,,.CN BN AN(1)求证:平面;//CN PAB (2)若平面平面,求点到平面的距离.PAD ⊥ABCD D ABN 【答案】(1)证明见解析;(2【分析】(1)证明:取中点,连接,如图所示:PA M ,MN BM 因为M 、N 为、的中点,所以是的中位线,PA PD MN PAD △所以,且//MN AD 12MN AD =因为,且,//BC AD 12BC AD =所以//,MN BC MN BC =,所以四边形是平行四边形.BCNM 所以//CN BM又平面平面,CN ⊄,PAB BM ⊂PAB 所以平面//CN PAB(2)取中点,连接,再取中点,连接、BD ,如图所示:AD O PO OD QQN 在中,点为的中点,点为中点,POD A N PD Q OD 所以1//,2NQ PO NQ PO =在中,,所以,PAD△2PA PD AD ===222PA PD AD +=所以,又点为中点,PA AD ⊥O AD 所以, 1.PO AD PO ⊥=所以,1,2NQ AD NQ ⊥=因为平面平面平面,平面平面PAD ⊥,ABCD NQ ⊂PAD PAD ABCD AD =,所以平面,NQ ⊥ABCD 又平面,AB ⊂ABCD 所以NQ AB⊥因为,所以.//,90AD BC ABC ︒∠=AD AB ⊥又平面,,,AD NQ Q AD NQ ⋂=⊂PAD 所以平面,AB ⊥PAD 又平面,所以,AN ⊂PAD AB NA ⊥在中,,PAD△2PA PD AD ===点为的中点,所以,N PD 222AN PA PN =+所以AN =设点到平面的距离为,由,D ABN d D ABN N ABD V V --=所以1133ABN ABD S d S NQ ⨯⨯=⨯⨯A A 又,,122ABN S =⨯=A 12222ABD S =⨯⨯=A 代入得到平面d =D ABN 13.(2020·通榆县第一中学校高三月考(文))在直三棱柱中,111ABC A B C -分别为棱的中点.,,,AB AC D E F =1,,BC AA AC(1)求证:1;AD BC ⊥(2)求证:平面//EF 1AB D 【答案】(1)证明见解析;(2)证明见解析.【分析】证明:在三角形中,是的中点,()1ABC ,AB AC D =BC 所以.AD BC ⊥由直三棱柱可知平面111ABC A B C -1BB ⊥,ABC 又平面,AD ⊂ABC 所以1AD BB ⊥因为平面,11,,BC BB B BC BB =⊂ 11BCC B 所以平面AD ⊥11BCC B 又平面,1BC ⊂11BCC B 所以1AD BC ⊥连接,连接交,于点,则是中点,连接()21A C 1A B 1AB O O 1A B OD由于分别是的中点,,E F 1,AA AC 所以1//.EF A C 由于分别是的中点,,O D 1,A B BC 所以1//OD A C所以//EF OD由于平面平面,EF ⊄1,AB D OD ⊂1AB D 所以平面//EF 1ABD 14.(2020·云南高三期中(文))在四棱锥中,底面是边长为2的正P ABCD -ABCD 方形,,E 为的中点.90,,60ADP PD AD PDC ∠==∠=PD (1)证明:平面.CE ⊥PAD (2)求三棱锥外接球的体积.E ABC -【答案】(1)证明见解析;(2【分析】(1)由知:,底面是正方形有,又90ADP ∠=AD DP ⊥ABCD AD DC ⊥,DP DC D =∴面,而面,即,AD ⊥DPC CE ⊂DPC AD CE ⊥∵,,PD AD DC ==60PDC ∠= ∴为等边三角形,E 为的中点,故,PDC △PD CE DP ⊥∵,DP AD D ⋂=∴平面.CE ⊥PAD(2)由(1)知:为等腰直角三角形且 ,有ABC A 2AB BC ==AC =在中,故,AEC A CE AE ==222AC CE AE =+AE CE ⊥∴由上知:、都是以为斜边的直角三角形,由直角三角形斜边中点O ABC A AEC A AC 到三顶点距离相等知:,即O 为三棱锥外接球的球心,OE OC OA OB ===E ABC -∴外接球的半径为,2AC =所以三棱锥外接球的体积为.E ABC -343V π=⨯=15.(2020·全国福建省漳州市教师进修学校高三二模(文))已知等腰梯形ADCE 中,,,,B 为EC 的中点,如图1,将三角形ABE //AD EC 224EC AD AE ===3E π∠=沿AB 折起到(平面ABCD ),如图2.ABE 'E '∉(1)点F 为线段的中点,判断直线DF 与平面的位置关系,并说明理由;AE 'BCE '(2)当的面积最大时,求的长.BCE 'A DE '【答案】(1)相交,理由见解析;(2)2.【分析】(1)解:直线DF 与平面相交,理由如下:BCE '因为平面ABCD ,所以平面,E '∉D ∉BCE '假设平面,设平面平面,如图所示,//DF BCE 'DCF BCE CM '=则,显然CM 与CB 不重合,//DF CM 又因为,平面,且DF ,AD 相交,均在平面内,所以平面//AD BC //AD BCE 'ADE ¢平面,但显然是两个平面的公共点,故矛盾,假设不成立,//ADE 'BCE 'E '所以直线DF 与平面相交;BCE '(2)证明:取AB 的中点O ,连接,BD ,E O '由等腰梯形ADCE 中,,,,知是等边//AD EC 224EC AD AE ===3E π∠=ABE △三角形,四边形是菱形,且,即和都是等边三角形.ADCB 60C ∠=°ABD △BCD △故,, 与相交于平面内,所以平面,E O AB '⊥⊥DO AB E O 'DO E OD 'AB ⊥E OD '所以.又,所以,E D AB '⊥//AB DC E D DC '⊥因为的面积为,BCE 'A 11sin 22sin 2sin 22BE BC E BC E BC E BC ''''⋅⋅∠=⨯⨯∠=∠所以当的面积最大时,,BCE 'A 90E BC '∠=︒所以,所以.E C '==2E D '==。
高考数学 6年高考母题精解精析 专题08 立体几何03 文
备战2013高考数学(文)6年高考母题精解精析专题08 立体几何03 36.【2102高考北京文16】(本小题共14分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2。
(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由。
【答案】37.【2012高考浙江文20】(本题满分15分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点。
(1)证明:(i)EF∥A1D1;(ii)BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值。
38.【2012高考陕西文18】(本小题满分12分) 直三棱柱ABC- A 1B 1C 1中,AB=A A 1 ,C A B∠=2π(Ⅰ)证明11B A C B ⊥;(Ⅱ)已知AB=2,11C A AB - 的体积 【答案】39.【2012高考辽宁文18】(本小题满分12分)如图,直三棱柱///ABC A B C -,90BAC ∠= ,AB AC ==AA ′=1,点M ,N 分别为/A B和//B C 的中点。
(Ⅰ)证明:M N ∥平面//A ACC ; (Ⅱ)求三棱锥/A MNC -的体积。
(椎体体积公式V=13Sh,其中S 为地面面积,h 为高)【答案】【解析】本题以三棱柱为载体主要考查空间中的线面平行的判定、棱锥体积的计算,考查空间想象能力、推理论证能力、运算求解能力,难度适中。
第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明;第二小题求体积根据条件选择合适的底面是关键,也可以采用割补发来球体积。
40.【2012高考江苏16】(14分)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面AD E ⊥平面11BCC B ; (2)直线1//A F 平面ADE .41.【2102高考福建文19】(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
备战高考理科数学6高考母题精解精析 专题8 立体几何06 Word版含答案
7. (2011年高考江西卷理科21)(本小题满分14分)(1)如图,对于任一给定的四面体1234A A A A ,找出依次排列的四个相互平行的1234,,,αααα,使得(1,2,3,4),i i A i α∈=且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面1234,,,αααα,其中每相邻两个平面间的距离为1,若一个正四面体1234A A A A 的四个顶点满足:(1,2,3,4),i i A i α∈= 求该正四面体1234A A A A 的体积.解析:如图,将此正四面体补形为正方体1111ABCD A B C D -(如图),分别取AB 、CD 、11A B 、11C D 的中点E 、F 、1E 、1F ,平面11DEE D 与11BFF B 是分别过点2A 、3A 的两平行平面,若其距离为1,则正四面体1234A A A A 满足条件,右图为正方体的下底面,设正方体的棱长为a ,若1AM MN ==,因为12AE a =,DE =,在直角三角形ADE 中,A M ⊥DE ,所以112a a =⋅,所以a =,又正四面体的棱长为=,所以此正四面体的体积为3311432V a a =-⋅⋅=. 本题考查立体几何中的面面关系、正四面体及体积计算.8.(2011年高考湖南卷理科19)(本小题满分12分)AB=,C是AB的中点,D为如图5,在圆锥PO中,已知PO,⊙O的直径2AC的中点.(Ⅰ)证明:平面POD⊥平面PAC;--的余弦值.(Ⅱ)求二面角B PA C解法2:(I )如图所示,以O 为坐标原点,OB 、OC 、OP 所在直线分别为x 轴、y 轴,z轴建立空间直角坐标系,则(0,0,0),(1,0,0),(1,0,0),(0,1,0),O A B C P -,11(,,0)22D - 设1111(,,)n x y z =是平面POD 的一个法向量,则由110,0n OD n OP ⋅=⋅=,得111110,220.x y ⎧-+=⎪=所以111110,,1,(1,1,0).z x y y n ====取得设2222(,,)n x y z =是平面PAC 的一个法向量,则由220,0n PA n PC ⋅=⋅=,得22220,0.x y ⎧--=⎪⎨+=⎪⎩所以22222,.1,x y ===取z得2(n =。
数学(文)年母题精解精析专题8立体几何8含答案
(2010陕西文数)18.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形PA ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点。
(Ⅰ)证明:EF ∥平面PAD ;(Ⅱ)求三棱锥E —ABC 的体积V.(2010辽宁文数)(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面1AB C ⊥平面11A BC ;(Ⅱ)设D 是11A C 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.(2010全国卷2文数)(19)(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,BB1的中点,EAC=BC,AA1=AB,D为为AB1上的一点,AE=3 EB1异面直线AB1(Ⅰ)证明:DE为与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1—AC1—B1的大小【解析】本题考查了立体几何中直线与平面、平面与平面及异面直线所成角与二面角的基础知识。
(2010安徽文数)19。
(本小题满分13分)【规律总结】本题是典型的空间几何问题,图形不是规则的空间几何体,所求的结论是线面平行与垂直以及体积,考查平行关系的判断与性质。
解决这类问题,通常利用线线平行证明线面平行,利用线线垂直证明线面垂直,通过求高和底面积求四面体体积。
(2010重庆文数)(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分。
)如题(20)图,四棱锥P ABCD-中,底面ABCD为矩形,PA⊥底面ABCD,==,点E是棱PB的中点.PA AB2(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若1AD=,求二面角B EC D--的平面角的余弦值.(2010浙江文数)(20)(本题满分14分)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A'DE,使平面A’DE⊥平面BCD,F为线段A’C的中点。
高考数学 6年高考母题精解精析 专题08 立体几何07 文
备战2013高考数学(文)6年高考母题精解精析专题08 立体几何07 (2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=(2010全国卷2文数)(11)与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个(2010全国卷2文数)(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A ) 34 (B) 54(C)7 (D) 34(2010重庆文数)(9)到两互相垂直的异面直线的距离相等的点(2010浙江文数)(8)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3(C)2243cm3(D)1603cm3解析:选B,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题(2010山东文数)(4)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行答案:D(A)与x,y都有关;(B)与x,y都无关;(C)与x有关,与y无关;(D)与y有关,与x无关;答案:C(2010北京文数)(5)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:(2010广东文数)(2010全国卷1文数)(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A) 23 (B)43 (C) 23 (D) 83(2010全国卷1文数)(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A ) 23 (B )33 (C )23(D )63 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角(2010全国卷1文数)(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线 1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=解析:由已知,AB =2R ,BC =R ,故tan ∠BAC =12(2010湖北文数)4.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .A. ①②B. ②③C. ①④D.③④(2010上海文数)6.已知四棱椎P ABCD -的底面是边长为 6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 96 。
高考数学 6年高考母题精解精析 专题08 立体几何05 文
备战2013高考数学(文)6年高考母题精解精析专题08 立体几何05三、解答题:21. (2011年高考山东卷文科19)(本小题满分12分)理计算得A 1C 1=7a ,所以A 1C 1∥OC 且A 1C 1=OC ,故四边形OCC 1A 1是平行四边形,所以CC 1∥A 1O ,又CC 1⊄平面A 1BD ,A 1O ⊂平面A 1BD ,所以11CC A BD ∥平面.22.(2011年高考湖南卷文科19)(本题满分12分)23. (2011年高考天津卷文科17)(本小题满分13分)24. (2011年高考江西卷文科18) (本小题满分12分)如图,在=2,2ABC B AB BC P AB π∆∠==中,,为边上一动点,PD//BC 交AC 于 点D,现将'',PDA .PDA PD PDA PBCD ∆∆⊥沿翻折至使平面平面(1)当棱锥'A PBCD -的体积最大时,求PA 的长;(2)若点P 为AB 的中点,E 为''.AC B DE ⊥的中点,求证:APB A '∆为等腰直角三角形,PF B A ⊥',所以DE B A ⊥'.25. (2011年高考福建卷文科20)(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE∥AB 。
(1) 求证:CE⊥平面PAD ;(11)若PA=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积26.(2011年高考四川卷文科19)(本小题共12分)如图,在直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=AC=A A1=1,延长A1C1至点P,使C1P= A1C1,连结AP交棱C C1于点D.(Ⅰ)求证:P B1∥BDA1;(Ⅱ)求二面角A- A1D-B的平面角的余弦值.27.(2011年高考陕西卷文科16)(本小题满分12分)如图,在△ABC 中,∠ABC=45°,28. (2011年高考湖北卷文科18)如图,已知正三棱柱111ABC A B C 的底面边长为2,侧棱长为32,点E 在侧棱1AA 上,点F 在侧棱1BB 上,且22,2AE BE ==.(Ⅰ)求证:1CF C ⊥(Ⅱ)求二面角1EE CF C --的大小.29.(2011年高考广东卷文科18)(本小题满分13分)如图所示,将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右平移到的,,,A A B B ''分别为»¼»¼,,,,CD C D DE D E ''''的中点,11220,0,0,0''分别为,,,CD C D DE D E ''''的中点.(1) 证明:120,,0,A B ''四点共面;(2) 设G 为AA '中点,延长10A ''到H ', 使得1100H A ''''=,证明: 20B '''⊥面H B G .【解析】30. (2011年高考全国新课标卷文科18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,︒=∠60DAB ,ABCD PD AD AB 底面⊥=,2,(1)证明:BD PA ⊥;(2) 设,1==AD PD 求三棱锥D-PBC 锥的高. 分析:利用垂直的判定与性质证明并计算。
备战2013高考理科数学6年高考母题精解精析 专题8 立体几何04 Word版含答案.pdf
41.【2012高考真题天津理17】(本小题满分13分) 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1. (Ⅰ)证明PC⊥AD; (Ⅱ)求二面角A-PC-D的正弦值; (Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长. 【答案】 【2011年高考试题】 一、选择题: 1. (2011年高考山东卷理科11)下图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如 下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是 (A)3 (B)2 (C)1 (D)0 【答案】A 【解析】对于①,可以是放倒的三棱柱;容易判断②③可以. 2.(2011年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是 4.(2011年高考安徽卷理科6)一个空间几何体得三视图如图所示,则该几何体的表面积为 (A) 48 (B)32+8 (C) 48+8 (D) 80 【答案】C 【命题意图】本题考查三视图的识别以及空间多面体表面积的求法. 【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。
故 【解题指导】:三视图还原很关键,每一个数据都要标注准确。
5.(2011年高考辽宁卷理科8)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() (A) AC⊥SB (B) AB∥平面SCD (C) SA与平面SBD所成的角等于SC与平面SBD所成的角 (D)AB与SC所成的角等于DC与SA所成的角 6.(2011年高考辽宁卷理科12)已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S-ABC的体积为( ) (A) (B) (C) (D)1 第6题图 8.(2011年高考江西卷理科8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的A.充分不必要条件B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】C 【解析】过点作平面的垂线g,交平面,分别于点A、B两点,由两个平面平行的性质可知∥,所以,故选C. 10.(2011年高考广东卷理科7)如图l—3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( ) A. B. C. D. 11.(2011年高考陕西卷理科5)某几何体的三视图如图所示,则它的体积是 (A)(B) (C)(D) 【答案】A 【解析】:由三视图可知该几何体为立方体与圆锥, 立方体棱长为2,圆锥底面半径为1、高为2, 所以体积为故选A 13.(2011年高考四川卷理科3),,是空间三条不同的直线,则下列命题正确的是( ) (A), (B), (C) ,,共面 (D),,共点,,共面 【答案】C 【解析】如图,作于,由为直二面角,,得平面,进而,又,, 于是平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2013高考数学(文)6年高考母题精解精析专题08 立体几何04
一、选择题:
1.(2011年高考安徽卷文科8)一个空间几何体得三视图如图所示,则该几何体的表面积为
(A )【答案】C
【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.
【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为
2.(2011年高考广东卷文科9)如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( )
A .
B .
C .
D . 2
【答案】C
【解析】由题得该几何体是如图所示的四棱锥P-ABCD ,
,
棱锥的高,3232322
13
1331233
23122
2
=⨯⨯⨯⨯⨯
=
∴=-=-==∴=
-=
V PO h AO 所以选择C.
3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为
A .942π+ B.3618π+
C.
9122
π+ D.
9182
π+
4.(2011年高考湖北卷文科7)设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是
A. V 1比V 2大约多一半
B. V 1比V 2大约多两倍半
C. V 1比V 2大约多一倍
D. V 1比V 2大约多一倍半
5.(2011年高考山东卷文科11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;
③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是
(A)3 (B)2 (C)1 (D)0
6.(2011年高考海南卷文科第8题)在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为()
7.
(2011年高考浙江卷文科4)若直线l 不平行于平面a ,且l a ⊄,则
(A) a 内的所有直线与l 异面 (B) a 内不存在与l 平行的直线 (C) a 内存在唯一的直线与l 平行 (D) a 内的直线与l 都相交 【答案】 B
【解析】:直线l 不平行于平面a ,l a ⊄所以l 与a 相交,故选B
8.(2011年高考陕西卷文科5)某几何体的三视图如图所示,则它的体积是
(A )283
π-
(B )83
π
-
(C )82π- (D )23
π
【答案】A
11.(2011年高考辽宁卷文科8)一个正三棱柱的侧棱长和底面边长相等,体积为三视图中的俯视图如右图所示.左视图是一个矩形.则这个矩形的面积是
12.(2011年高考全国卷文科8)已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,
,,B BD l D β∈⊥为垂足,若2,1,AB AC BD ===则D 到平面ABC 的距离等于
(A )3
(B 3
(C 3
(D )1
14.(2011年高考江西卷文科9)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()
15. (2011年高考四川卷文科6)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A )1223,l l l l ⊥⊥⇒1l //2l (B )12l l ⊥,1l //3l ⇒13l l ⊥
(C )1l //2l //3l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面
16.(2011年高考重庆卷文科10)的四棱锥S A B C D -的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面A B C D 的中心与顶点S 之间的距离为
A 2
B 2
C .
32
D 【答案】A 二、填空题:
16. (2011年高考海南卷文科16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316
,则这两个圆锥中,体积较小者的高与
体积较大者的高的比值为 . 【答案】
13
【解析】设圆锥的底面半径为r ,球半径为R ,则2
2
3416
r R ππ=
⨯,解得2r R =
,所以对应
球心距为12
R ,故小圆锥的高为112
2
R R R -=,大圆锥的高为
32
R ,所以之比为13
.
17. (2011年高考福建卷文科15)如图,正方体ABCD-A 1B 1C 1D 1中,AB =2。
,点E 为AD 的中点,点F 在CD 上,若EF∥平面AB 1C ,则线段EF 的长度等于_____________.
DC 中点,所以EF=
12
A C 18. (2011年高考四川卷文科15)如图,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差是 .
答案:32π
19.(2011年高考全国卷文科15)已知正方体1111ABC D A B C D -中,E 为11C D 的中点,则异面直线AE 与BC 所成的角的余弦值为
20. (2011年高考天津卷文科10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为 3
m .
【答案】4
【解析】由三视图知,该几何体是由上、下两个长方体组合而成的,容易求得体积为4.。