最新计算机中的数制和编码

合集下载

计算机中的数制和编码

计算机中的数制和编码
1、被表示的数的绝对值的大小 2、被表示的数的有效数字的多少
试比较下面二组数字: 3×102 和 3×1032 3.14 和 3.14159265
用科学计数法表示:N=2P×S
S 尾数(N的全部有效数字) P 阶码(指明小数点的位置) P和S均用二进制数表示,2为阶码的底
定点数:小数点位置固定不变, P=0 浮点数:小数点位置随P可变,P有一定的取值范围
+43=00101011 -43=10101011
真值 机器数
真值 机器数
机器数:带有数码化正负号的数 真值:机器数所代表的实际数值
3、有符号数的三种表示方法 原码表示方法
+43=00101011 -43=10101011
反码表示方法 (负数是原码求反)
+43=00101011 -43=11010100
二、不同进制数的相互转换
二进制数与八进制数、十六进制数之间的相互转换
方法简便
8=23
16=24
三位二进制数对应一位八进制数 四位二进制数对应一位十六进制数
二进制
八进制
以小数点为中心,整数部分从低位向高 位(即从右向左)每三位用一个八进制数来 表示,最后一组不足三位时,用 0 补齐;小 数部分从高位向低位(即从左向右)每三位 用一个八进制数来表示,最后不足三 位时, 用0补齐。
+1
……
……
……
126
+126
+126
127
+127
+127
128
-0
-127
129
-1
-126
……
……
254
-126
-1

计算机中的数制与编码

计算机中的数制与编码

计算机中的数制与编码在计算机科学中,数制和编码是非常重要的概念。

数制是一种数学表示法,用于表示不同类型的数值。

而编码是将字符、符号或信息转化为特定形式的过程。

数制和编码在计算机中扮演着至关重要的角色,它们用于存储、传输和处理数字和数据。

数制(Number System)在计算机中,常见的数制有二进制、十进制、八进制和十六进制。

每种数制有其各自的特点和用途。

1. 二进制(Binary System):二进制是最常见和基础的数制,在计算机中广泛使用。

它只包含两个数字0和1,以2为基数。

计算机内部存储和处理的数据都是以二进制形式表示的。

每个二进制位称为一个bit(二进制位),每8位为一个字节(Byte)。

2. 十进制(Decimal System):十进制是我们日常生活中最常用的数制,以10为基数,包含0-9的数字。

在计算机中,通常使用十进制数制进行人机交互和显示。

3. 八进制(Octal System):八进制以8为基数,包含0-7的数字。

在计算机中,八进制表示法不太常用,但是在Unix操作系统中仍然使用八进制权限表示法。

4. 十六进制(Hexadecimal System):十六进制以16为基数,包含0-9的数字和A-F的字母。

在计算机中,十六进制数制常用于表示内存地址和字节编码。

十六进制数更加简洁和紧凑,便于人们阅读和理解。

编码(Coding)在计算机中,数据和字符需要以特定的方式进行编码,以便计算机可以正确存储和处理它们。

常见的编码方式包括ASCII码、Unicode、UTF-8和UTF-16等。

1.ASCII码:ASCII(American Standard Code for Information Interchange)是一种最早的字符编码标准,用于将字符映射为对应的数字编码。

ASCII码使用7位二进制数表示128个字符,包括英文字母、数字、标点符号和控制字符等。

2. Unicode:Unicode是一种字符编码标准,为世界上几乎所有的字符建立了唯一的数字表示。

计算机中的数值和编码

计算机中的数值和编码

计算机中的数制和编码一、数制的概念:数制是用一组固定的数字和一套统一的规则来表示数目的科学方法。

按照进位方式计算的数制叫做进位数制。

例如:逢十进一即为十进制,逢二进一为二进制,逢八进一为八进制,逢十六进一为十六进制。

进位计数制有两个要素:基数和权值。

1、基数:它是指各种进位计数制中允许选用基本数码的个数。

例如:十进制的数码有0、1、2、3、4、5、6、7、8、9十个数码,所以十进制的基数为10;二进制的数码有0、1两个数码,所以二进制的基数为2;八进制的数码有0、1、2、3、4、5、6、7八个数码,所以八进制的基数为8;十六进制的数码有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码,所以十六进制的基数为16。

2、权值:每个数码所表示的数值等于该数码乘以一个与数码所在位置相关的常数,这个常数叫权值。

其大小是以基数为底,数码所在位置的序号为指数的整数次幂。

例如:十进制数356.4=3×100+5×10+6×1+0.4=3×102+5×101+6×100+4×10-1(3在百位上,所以3×100=3×102;5是在十位上,所以5×10=5×101;6是在个位上,所以6×1=6×100;0.4为小数,所以0.4=4×10-1)。

二、十进制(D ecimal notation)及其特点:1、两个特点:①、十个数码:0、1、2、3、4、5、6、7、8、9;②、进位方法:逢十进一,借一当十。

(满了10个就得进一位)2、基数:103、按权展开式:任意一个a位整数和b位小数的十进制数D可以表示为:D=D a-1×10a-1+D a-2×10a-2+…+D0×100+D-1×10-1+D-2×10-2+…+D-b×10-b4、十进制在书写中的三种表达方式:128或者128D或(128)10三、二进制(B inary notation)及其特点:1、两个特点:①、两个数码:0、1;②、进位方法:逢二进一,借一当二。

进制及编码

进制及编码
15
3. 计算机中的编码

BCD码
用二进制数为十进制数编码,每一位十进制数需要由 四位二进制数来表示。在计算机中较常用的是8421 BCD码(在以后的章节中简称BCD码)。 例如:(208)10=(0010 0000 1000)8421BCD (1001 0001 0111 0101) 8421BCD=(9175)10
16
3. 计算机中的编码
8421BCD码编码表 例:78D用8421BCD码表示为0111 1000
17
3. 计算机中的编码

ASCII码
记住的ASCII码:
0DH表示回车,0AH表示换行 目前,在微机、通信设备和仪器仪表中广泛采用的 30H~39H表示:‘0’~‘9’ 是美国标准信息交换码ASCII码。其中包括数字0~9、 41H表示‘A’ 英文26个大、小写字母、运算符、标点及其他的一些 61H表示‘a’ 控制符号。 例如:数字0的ASCII码为0110000B 或 30H 数字9的ASCII码为0111001B 或 39H 字母A的ASCII码为1000001B 或 41H ASCII码多用于微型计算机的输入/输出设备(如电 传打字机)及在数据传送过程中进行奇偶校验。
可以转换为移位与加法运算

除法运算(注意除数为2时的规律)
可以转换为移位与减法运算
21
乘除运算例

00001011×0100 =00101100B

00001011÷0100=00000010B
即:商=00000010B
余数=11B
22
2. 无符号数的表示范围:
0 ≤ X ≤ 2n-1 若运算结果超出这个范围,则产生溢出。 对无符号数:运算时,当最高位向更高位 有进位(或借位)时则产生 溢出。

计算机中的数制及其编码

计算机中的数制及其编码

一、计算机中的数制及其转换
2. 数制之间的转换
(4) 二、十六进制之间的转换
二进制十六进制: 以小数点为界,分别向左、向右四位一组分段,不足四位 补0(整部在前,小数部分在后),然后将每段换成对应的十 六进制数码。 十六进制二进制: 将每位十六进制数码换成对应的四位二进制数,然后去前 后无效的0。 例7 (10110101.10101011)2 =(1011 0101. 1010 1011)2 =(B5.AB)16 (56A.C4)16 =(0101 0110 1010. 1100 0100)2
一、计算机中的数制及其转换
2. 数制之间的转换
(2) 十进制数转换为非十进制数
例4 (123.45)10 =(? 2 123……..1 2 61…….1 2 30……0 2 15…...1 2 7…..1 2 3…..1 2 1….1 0 )2 低位
0
1
高位
除 到 商 为 0 时 停 止
1
1 0 0 1
一、计算机中的数制及其转换
2. 数制之间的转换
(1) 非十进制数转换为十进制数
例2:(345.67)8 = 3*82 + 4*81 + 5*80 + 6*8-1 + 7*8-2 = 192 + 32 + 5 + 0.75 + 0.109375 = (229.859375)10
例3: (2FA.D)16 = 2*162 + 15*161 + 10*160 + 13*16-1 = 512 + 240 + 10 + 0.8125 = (762.8125)10
+101.0001 1111.0001 10.1 ×100 000 000 +101 10100 101.0001 11001.0101 101 101 101

1-2计算机的数制与编码

1-2计算机的数制与编码

1.2 计算机的数制与编码计算机能处理的信息有数值、字符、图形、声音等,它们都要转化为0、1代码串的形式,才能由计算机来处理。

1.2.1 数制 一、各种数制:所谓数制是指 。

都叫做进位记数制。

进位制的关键问题是决定数码 的和 。

●进位记数制中有数位、基数、位权三个要素: 数位是指数码在一个数中所处的位置;基数是指在某种进位记数制中,每个数位上所能使用的数码的个数。

权是指在某种进位记数制中,每个数位上的数码所代表的数值的大小。

如:表1.1 常用的几种进位制对同一个数值的表示(P9)二、数制间的转换:例:(重点:十进制与二进制的互相转换)●各种进制转十进制●十进制转各种进制●二进制转八进制、八进制转二进制与二进制转十六进制、十六进制转二进制练习:P39:20、21、22、23、24、25、26、27、28、29(写在课本上)如何检查?(计算器!)1.2.2 ASCII码●通称为字符。

字符没有数值意义。

为了便于计算机的应用推广,这些字符必须用统一的规定编码方式来表示。

目前在国际上广泛采用“”表示、和作为使用的等。

●ASCII码的英文全称:,中文。

●ASCII码用位0、1代码串来编码一个符号,每个符号占的存储空间,字节最高位(左)为,作奇偶校验用。

(注:1字节= 位,一个字符的ASCII码占位,余下位用作)●ASCII码给出了个数码,个英文字母,个通用符号,个动作控制符的编码标准。

◆例:查表P308(1)字母“A”的ASCCII的二进制表示为:,十六进制表示为:,十进制表示为:(2)将字符“2”的ASCII码当成数值,转换为十进制数得到50,数字字符“5”的ASCII码转换为十进制数应得到●ASCII码的比较:(详见附录1:P308)空格(space)的ASCCII码是32‘0’~‘9’的ASCCII码是48~57‘A’~‘Z’的ASCCII码是65~90‘a’~‘z’的ASCCII码是97~1221.2.3 汉字编码1.国标码GB 2312-80《》1级汉字个,按顺序排列、2级汉字个,按排列,汉字有6763个,常用符号、字母、图形符号等682个,共计7445个。

计算机中的数制与编码

计算机中的数制与编码

计算机中的数制与编码一、数制1、什么是进位计数制数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。

按进位的原则进行计数的方法,称为进位计数制。

比如,在十进位计数制中,是按照“逢十进一”的原则进行计数的。

常用进位计数制:a、十位制(Decimal notation);b、二进制(Binary notation);c、八进制(Octal notation);d、十六进制数(Hexdecimal notation)2、进位计数制的基数与位权"基数"和"位权"是进位计数制的两个要素。

(1)基数:所谓基数,就是进位计数制的每位数上可能有的数码的个数。

例如,十进制数每位上的数码,有"0"、"1"、"3",…,"9"十个数码,所以基数为10。

(2)位权:所谓位权,是指一个数值的每一位上的数字的权值的大小。

例如十进制数4567从低位到高位的位权分别为100、101、102、103。

因为:4567=4x103+5x 102+6x 101 +7x100(3)数的位权表示:任何一种数制的数都可以表示成按位权展开的多项式之和。

比如:十进制数的435.05可表示为:435.05=4x102+3x 101+5x100+0x10-1 +5x 10-2位权表示法的特点是:每一项=某位上的数字X基数的若干幂次;而幂次的大小由该数字所在的位置决定。

3、二进制数计算机中为何采用二进制:二进制运算简单、电路简单可靠、逻辑性强(1)定义:按“逢二进一”的原则进行计数,称为二进制数,即每位上计满2 时向高位进一。

(2)特点:每个数的数位上只能是0,1两个数字;二进制数中最大数字是1,最小数字是0;基数为2;比如:10011010与00101011是两个二进制数。

(3)二进制数的位权表示:(1101.101)2=1x23+1x 22+0x 21+1x 20+1x2-1 +0x 2-2+1x2-3(4)二进制数的运算规则1 加法运算① 0+0=0 ③ 1+1=10② 0+1=1+0=12 乘法运算① 0×0=0 ③ 1×1=1② 0×1=1×0=04、八进位制数(1)定义:按“逢八进一”的原则进行计数,称为八进制数,即每位上计满8时向高位进一。

计算机常用数制及编码

计算机常用数制及编码

计算机常用数制及编码1.二进制数制:二进制是计算机中最基本的数制,只包含两个数字0和1、它是一种逢二进一的计数法,每位上的数值以2为底数的幂来表示。

例如,二进制数1101表示1*2^3+1*2^2+0*2^1+1*2^0=13、在计算机中,二进制数被广泛应用于存储和运算等操作。

2.八进制数制:八进制使用8个数字0-7来表示。

它是二进制数制的一种压缩表示方法,每3位二进制数可以表示为一位八进制数。

例如,二进制数1101可以表示为八进制数15、八进制数在计算机界并不常见,但在一些特定场景下仍然有一定的应用。

3.十进制数制:十进制是我们常用的数制,使用10个数字0-9来表示数值,每位上的数值以10为底数的幂来表示。

例如,十进制数123表示1*10^2+2*10^1+3*10^0=123、十进制数制通常用于人类的日常计算中,但在计算机中也会涉及到十进制的处理,例如在涉及到金额、日期和时间等数字的场景中。

4.十六进制数制:十六进制使用16个数字0-9和A-F来表示,其中A-F分别表示十进制数10-15、它是二进制数制的另一种压缩表示方法,每4位二进制数可以表示为一位十六进制数。

十六进制数常用于计算机领域,因为它们可以更紧凑地表示二进制数。

例如,二进制数1101可以表示为十六进制数D。

编码系统是为了实现计算机和人类之间的信息交流而发展的。

下面介绍几种常见的编码系统:1.ASCII码:ASCII(American Standard Code for Information Interchange)是最早和最广泛使用的字符编码系统之一、它使用7位二进制数(扩展ASCII使用8位二进制数)来表示128(或256)个字符,包括英文字母、数字、符号等。

ASCII码可以用于存储和表示文本文件中的字符。

2. Unicode编码:3.UTF-8编码:UTF-8(Unicode Transformation Format - 8-bit)是一种对Unicode进行可变长度编码的字符编码系统。

计算机中的数和编码

计算机中的数和编码
n 1
N= di(10)i
im
十进制数的规律:
(1)由0~9是不同的数码;
(2)r=10,每个数位有一定的位值—权, 它是基值10的某次幂;
(3)在加减运算中,采用“逢十进一”
“借一当十”。
2、二进制
基值为二,即r=2,只能取两个数码:0和 1,用上通式对(11011•101)可写成 11011•101 =
=-105=-1101001 反=10010110
4、补码
正数的补码与原码相同;负数的补码是它 的反码末位加1。
=+105=+1101001 补=01101001
=-105= -1101001 补=10010111 8位补码数值范围80H~7FH(-
128~+127)。 16位数值的范围为8000H~7FFFH(-
两边相等 b1 1
0 375 b2 21 ... bm 2m1
用竖式表示:
0•6875

2
1•3750 整数部分
0•3750

2
0•7500 整数部分
0•7500

2
1•5000 整数部分
0•5000

2
1•0000 整数部分
(0•6875)=(0•1011)
计算机中的数和编码
补充内容
一、进位计数制
常用的数制是位置数制,它是按位定值的数 制,即是按各个数码的位置规定该数码所具 有的数值,在位置数制中,数N可写成:
n 1
N= di ri
im
式中m、n为正整数,n为整数的位数,m为 小数的位数,d是中的任一个数,r表示基值。
所谓基值常用的有十进制中,r=10,十 六进制中,r=16,二进制中,r=2,八进制 中,r=8。

计算机基础知识之数制与编码

计算机基础知识之数制与编码

计算机基础知识之数制与编码数制是计算机基础知识中非常重要的一部分,它涉及到了计算机中数字的表示和存储方式。

编码则是将数字和字符等信息转换成计算机能够识别和处理的形式。

在计算机领域中,常用的数制有二进制、十进制、十六进制等,而编码方式常见的有ASCII、Unicode、UTF-8等。

接下来,我们将详细介绍数制与编码的概念、特性以及在计算机中的运用。

一、数制1.二进制二进制是计算机中最基本的数制。

它使用了 0 和 1 两个数字,表示任何一个二进制位(bit)的状态。

二进制的每一位表示2的幂,从右到左依次是1、2、4、8、16、32...二进制数的转换和计算相对复杂,因此在计算机中常用于存储和处理数据。

2.十进制十进制是人类最常用的数制。

它使用了0-9十个数字,每一位表示10的幂。

十进制数的转换和计算相对简单,因此在日常生活和大多数计算中都使用十进制。

3.十六进制十六进制是二进制的一种表示方式,它使用了0-9和A-F十六个数字,每一位表示16的幂。

十六进制数比较紧凑且易于理解,因此在计算机领域中经常用于表示二进制值,尤其是内存地址和寄存器的值。

4.八进制八进制使用了0-7八个数字,每一位表示8的幂。

八进制在计算机领域中应用较少,通常仅用于一些特定的场景。

5.其他进制除了二进制、十进制、十六进制和八进制外,还有其他一些进制,如二十四进制、三十六进制等。

但它们在计算机领域中使用相对较少。

二、编码编码是将数字、字符和其他信息转换成计算机能够理解和处理的形式。

常见的编码方式有ASCII、Unicode、UTF-8等。

1.ASCII码ASCII (American Standard Code for Information Interchange)是计算机中最早使用的编码方式,它共定义了128个字符,包括数字、字母、符号和控制字符等。

每个字符用一个字节(8位)来表示,其中的 7位用于字符的编码,最高位用于保持数据的完整性。

数制与编码专业知识讲座

数制与编码专业知识讲座

整数 小数 整数部分 部分 部分 取1或0
小数部分
由(2)式知:等号两边旳整数部分和小数部分应分别相等。a-1=1。
(2)式等号两边分别减去a-1 =1,再分别乘以2得到:
0.252 = a-2 + a-3. 2-1 +……+ a-m+1. 2-m+3 + a-m. 2-m+2 =0. 5 (3)
整数部分 取1或0
因为24=16。
0000
0001
所以每四位二进制数就是一位十六进制数,如右表所示。 0 0 1 0
0011
转换措施:从小数点开始,分别向左、右方向每 四位一组地划分二进制数;然后把每四位一组旳 二进制数作为一位十六进制数。
0100 0101 0110 0111
1000
1001
例:(1 1 0 1 0 0 1 . 1 1 1)2 = ( 6 9 . E)16
(0.625)10 2进制数整数:
0.625-0.5(2-1)=0.125 a-1=1 0.125-0.125(2-3)=0 a-3=1
a-1=1; a-3=1。
a-2=0。
a-1a-2a-3=101
(43.625)10 =(101011.101)2
2. 10进制
8进制、16进制
转换措施:先由10进制转换为2进制,再由2进制转换为8进制或16进制。
16进制旳特点:逢16进1。有16个符号(数字):0,1, 2,3,4,5,6,7,8,9,A,B,C, D,E,F(没有16)
12/30/2023
7
数字电路——分析与设计
第1章 数制与编码
每一种数制旳“逢几进1”, 这个“几”就叫作该数制旳基数 , 用r表达。 10进制数旳基数r是10 ; 2进制数旳基数r是2 ; 8进制数旳基数r是8 ; 16进制数旳基数r是16 ; …… ; n进制数旳基数r是n 。

数制与编码PPT课件

数制与编码PPT课件

1.1.3 计算机中带符号数的表示
一、机器数及其真值
•带符号的正数 +100 0101B(+45H),可以表示成 0100 0101B;(45H) •带符号的负数 - 101 0101B(- 55H),可以表示成 1101 0101B。(D5H)
数在计算机内的表示形式称为机器数。而这 个数本身称为该机器数的真值。
ASCII码
41H 42H 43H ∶ 5AH
字符
a b c ∶ z
ASCII码
61H 62H 63H ∶ 7AH
字符
SP(空格) CR(回车) LF(换行) BEL(响铃) BS(退格)
ASCII码
20H 0DH 0AH 07H 08H
二、二进制编码的十进制数----BCD码
用二进制码表示十进制数的代码称为BCD码 。
1 0000B 10H
1 0001B 11H
1.1.2 编码
计算机中数以及数以外的其它信息(如字符或字符串) 要用二进制代码来表示。这些二进制代码称为二进制编码。
一、字符的二进制编码----ASCII码
常用字符的ASCII码
字符
0 1 2 ∶ 9
ASCII码
30H 31H 32H ∶ 39H
字符
A B C ∶ Z
补码 0111 1111B(7FH) 0000 0001B(01H) 0000 0000B(00H) 0000 0000B(00H) 1111 1111B(FFH) 1000 0001B(81H) 1000 0000B(80H)
采用补码时,“0”只有一种表示方式,单字节 表示的范围是:+127 ~ -128。
已知一个负数的补码求其真值的方法是:对该补码求补 (符号位不变,数值位取反加1)即得到该负数的原码(符号 位+数值位),依该原码可知其真值。

计算机中的数制和码制

计算机中的数制和码制
0-9,A-F,其中A表示10,B表示11,以此类推,F表示15。
运算规则
遵循四则运算规则,但需要注意进位和借位的情况。
八进制数制
定义
八进制数制是一种基数为8的数系统,使用0-7的数字 来表示数值。
数字符号
0-7。
运算规则
遵循四则运算规则,但需要注意进位和借位的情况。
02
不同数制间的转换
十进制转二进制
表格法
将十进制数转换为十六进制数的表格, 通过查表得到对应的十六进制数。
二进制转十进制
累加权重法
将二进制数从右往左依次乘以2的幂次方,并将结果相加得到十进制数。
表格法
将二进制数转换为十进制数的表格,通过查表得到对应的十进制数。
十六进制转十进制
累加权重法
将十六进制数从右往左依次乘以16的幂次方,并将结果相加得到十进制数。
误。
哈希码
MD5
一种常用的哈希算法,将任意长度的数 据映射为固定长度的哈希值,用于验证 数据的完整性和身份识别。
6等,也是常用的 哈希算法,具有更高的安全性和更难碰撞 的特点。
THANKS
感谢观看
GB2312和GBK
中国的字符编码标准,支持简体中文和部分 繁体中文。
校验码
奇偶校验码
通过在数据中添加一个校验位,使得整个数据(包括校验位)中1的个数为偶数(偶校 验)或奇数(奇校验)。用于检测数据传输过程中的错误。
CRC校验码
循环冗余校验码,通过将数据视为二进制数,并计算出一个余数,附加在数据后面,接 收方通过同样的算法计算校验,并与发送方的校验进行比较,检测数据传输过程中的错
二进制数制
定义
01
二进制数制是一种基数为2的数系统,仅使用0和1两个数字符号。

数制与编码

数制与编码

例如:819.18这个数,第一个8处于百位,代表800。第二个
1处于十位,代表10。第三个9处于个位,代表9。第四个1处 于十分位,代表1/10。第五个8处于百分位,代表8/100。 因此,十进制的819.18可以写成: 819.18=8×102+1 ×101+9 ×100+1 ×10-1+8 ×10-2
正元计算机培训中心
钱新平
三、计算机中字符的编码
3、汉字的编码: 、汉字的编码:
区位码:汉字也有一张国标码表,把7445个国标码放 ④ 区位码 在一个94行×94列的阵列中。阵列的行称为“区”, 列称为“位”,这样,区号范围和列号范围都是1~ 94。这样,一个汉字在表中的位置就可以用它所在 的区号和位号来确定。 如“中”的区位码为5448, 即54区48位。 区位码和国标码之间的关系: ⑤ 区位码和国标码之间的关系:将一个汉字的十进制 区号和十进制位号分别转换成十六进制数,再加上 20H,就成为此汉字的国标码。例如:“中”的区位 码是:5448,分别将区号54 ,位号48转为十六进制 为36H和30H。然后区号,位号分别加上20H,得 “中”的国标码:3630H+2020H=5650H
钱新平
三、计算机中字符的编码
1、字符编码: 、字符编码:
计算机所表示和使用的数据可分为两大 类:数值数据 字符数据 数值数据和字符数据 数值数据 字符数据。 数值数据: ① 数值数据:用以表示量的大小、正负。 如正整数、小数等。 ② 字符数据:用以表示一些符号、标记。 字符数据: 如英文字母、数字、标点符号、汉字、 声音、图形等等。
对于任意一个既有整数部分, 对于任意一个既有整数部分,又有小数部分的十进 制数,在转换为二进制数时: 制数,在转换为二进制数时:只要将它的整数部分 和小数部分分别按除2取余和乘2取整的法则转换, 最后把所得的结果用小数点连接起来即可。 必须注意: 必须注意:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、不同进制数的相互转换
二进制数与八进制数、十六进制数之间的相互转换
方法简便
8=23
16=24
三位二进制数对应一位八进制数 四位二进制数对应一位十六进制数
二进制
八进制
以小数点为中心,整数部分从低位向高 位(即从右向左)每三位用一个八进制数来 表示,最后一组不足三位时,用 0 补齐;小 数部分从高位向低位(即从左向右)每三位 用一个八进制数来表示,最后不足三 位时, 用0补齐。
二进制、八进制、十六进制转换成十进制
-----------按权展开相加
例:(101.101)2=1×22+0×21+1×20+1×2-1+0×2-2+1×2-3=(5.625)10 (34.6)8=3×81+4×80+6×8-1=(28.75)10 (2AB.C)16=2×162+10 ×161+11 ×160+12 ×16-1 = 512 + 160 + 11 + 0.75 = (683.75)10
0110 0001B 61H ‘a’
0011 1001B 39H ‘9’
0110 0010B 62H ‘b’
…………
0110 0011B 63H ‘c’
00001000B 0AH
换行LF …………
00001011B 0DH 回车CR
0010 0000B 20H 空格SP
三、汉字的编码
西文字符的结构决定了它只要128个ASCII字符就 能够满足计算机进行信息处理的需要。而中文字符 有数万之众,为了适应计算机处理汉字信息的需要, 1981年我国颁布了“信息交换用汉字编码字符 集 ·基本集”(GB2312 - 80)供汉字信息在不同的 计算机系统之间交换信息使用 , 该标准称为 “ 国标 码”。
例如:
将(111001011010.10111001)2转换为十六进制数。 (1110 0101 1010 . 1011 1001)2 E 5 A. B 9 =(E5A.B9)16
常用不同进制数在书写时的表示方法
10011100B
B
二进制数
337Q
Q
八进制数
4B7DH
H
十六进制数
1339D 1339
常用的ASCII码(需要记住)
0011 0000B 30H ‘0’
0100 0001B 41H ‘A’
0011 0001B 31H ‘1’
0100 0010B 42H ‘B’
…………
0100 0011B 43H ‘C’
0011 0111B 37H ‘7’
…………
0011 1000B 38H ‘8’
D
十进制数
十进制数
§2.2 码制 字符的常用编码
一、BCD码(二—十进制数)
编码方式:用四位二进制数表示一位十进制数
0000
0
0001
1
0010
2
0011
3
0100
4
0101
5
0110
6
0111
7
1000
8
1001
9
1010 1011 1100 1101 1110 1111
丢弃不用
一、BCD码(二—十进制数)
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
例如:
将(16.327)8转换为二进制数。 (16.327)8=(001 110 . 011 010 111)2 1 6.3 2 7 =(1110.011010111)2
二进制
十六进制
以小数点为中心,整数部分从低位向高位(即 从右向左)每四位用一个十六进制数来表示,最后 一组不足四位时,用 0 补齐;小数部分从高位向低 位( 即从左向右 )每四位用一个十六进制数来表 示,最后不足四 位时,用 0 补齐。
西文字符在计算机中的表示
10个数字:0~9 26个大写字母:A~Z 26个小写字母:a~z 32个可打印字符 34个不可打印字符
共128个字符
ASCII码的代码组成结构
b7 b6 b5 b4 b3 b2 b1 b0
0
最高位 高3位
低4位
bi=0或1 (i=0~6) 共有27=128种不同的表示。
微机中一个字节是8位,尽管ASCII码只用了低7 位,在计算机中一个ASCII字符仍用一个字节( 8bit ) 的空间来存放,最高位保持为“0”
组合式BCD码:一个字节(8位)为2位BCD码
(01101001)BCD = (69)10
非组合式BCD码(8)10
1、BCD码实际上是十进制数(不是二进制数)
2、BCD码转换成二进制数应按十进制数向二进制 数转换的办法进行
二、ASCII码(美国标准信息交换码)
长 的 时 间 隧 道,袅
计算机中的数制和编码
§2.1 数制 不同进制数的相互关系和转换
一、计数制

十进制数的计数方法
例:427=4×102+2×101+7×100
1、有十个符号:0、1、2、…、9
基 = 10
2、每个符号所代表的数与所处位置有关
3、遵从“逢十进一”的规则
二、不同进制数的相互转换
相关文档
最新文档