海上风电现状及发展趋势

合集下载

我国海上风力发电发展现状和趋势

我国海上风力发电发展现状和趋势

我国海上风力发电发展现状和趋势海上风力发电,作为可再生能源的重要组成部分,近年来在全球范围内经历了快速发展。

我国作为世界最大的能源消费国,对海上风力发电的发展非常重视。

下面将从现状和趋势两个方面进行分析。

一、现状目前,我国海上风力发电尚处于起步阶段,但取得了一定的进展。

截至2024年,我国已经建成并运行的海上风电装机容量达到10.9GW,位居世界第三、同时,还有一大批项目正在建设和规划之中,预计到2024年底,我国的海上风电装机容量将达到30GW左右。

我国海上风力发电主要集中在东海、南海和黄海等地区。

其中,浙江舟山群岛风电示范区、广东陈家、湛江、深圳等地和江苏南通、上海和辽宁的三沙项目等都具备一定的推广和示范作用。

同时,在福建、山东、天津、黑龙江和辽宁等地也有一些项目正在规划和建设之中。

二、趋势1.政策支持:国家对于海上风力发电的政策支持力度逐渐加大。

2024年,国家发改委发布了《关于加快推进风电发展的指导意见》,明确提出要大力发展海上风电。

此外,国家还加大了对海上风电技术研究和示范项目的支持力度。

2.技术进步:海上风力发电技术不断成熟和改进,风机容量逐渐增大,综合利用率也在提高。

同时,我国在自主研发和生产风机装备方面取得了巨大的成就,逐渐摆脱对进口设备的依赖。

4.国际合作:随着我国海上风力发电技术的不断成熟和发展,我国开始积极参与国际海洋能源合作,与德国、丹麦、英国等国家开展技术合作和项目合作,进一步推动我国海上风力发电的发展。

5.资金支持:近年来,我国海上风力发电项目的融资环境逐渐优化,各类融资渠道得到拓宽,海上风电项目的投资成本也在降低,吸引了更多的投资者的关注和参与。

总之,我国海上风力发电发展正处于快速发展期,未来仍然具有很大的潜力和空间。

然而,也需要注意到一些挑战和问题,比如技术成熟度、环境保护、海域规划等方面的挑战。

未来,随着技术的不断进步和政策的支持,我国的海上风力发电必将迎来更加广阔的发展前景。

调研报告 海上风电

调研报告 海上风电

调研报告海上风电1. 简介海上风电是利用海域上的风力资源进行发电的一种可再生能源形式。

它与传统的陆地风电相比,具有更稳定和更高的风速,有望成为未来能源转型的重要组成部分。

本调研报告旨在分析海上风电发展的现状、趋势和挑战,并探讨其在可持续能源行业中的前景。

2. 发展现状目前,全球海上风电装机容量不断增加。

欧洲是海上风电发展最为成熟的地区,丹麦、德国、英国等国家在该领域取得了显著成就。

亚洲的海上风电市场也正逐渐崛起,中国、韩国、日本等国家纷纷投资兴建海上风电项目。

3. 发展趋势随着技术的发展和成本的下降,海上风电有望在未来几年内迎来快速增长。

其中,随着风机尺寸的增大和水深的解决方案的出现,远海风电项目将成为发展的新方向。

此外,海上资源丰富的地区将成为海上风电的主要发展区域。

4. 竞争与合作海上风电市场竞争激烈,核心企业在技术和专利方面具有竞争优势。

同时,各国也在积极探索国际合作,共同推动海上风电技术的发展和创新。

5. 可持续性与环境保护海上风电是一种清洁、可再生的能源形式,有助于减少化石燃料的使用并减少碳排放。

然而,海上风电的建设和运维过程也可能对海洋生态环境造成一定的影响,故可持续性和环境保护需作为发展的重要考量因素。

6. 挑战与前景尽管海上风电发展前景广阔,但仍面临一些挑战。

如高装机成本、电网接入困难、风电场运维等。

然而,随着技术进步和政策环境的提升,这些挑战将逐渐克服,并为海上风电带来更加可行和可持续的前景。

7. 结论海上风电作为一种清洁、可再生能源形式,具有巨大的发展潜力。

在技术、政策、合作等方面的进一步努力将推动海上风电的发展,为实现可持续能源转型做出重要贡献。

浅谈海上风电发展趋势

浅谈海上风电发展趋势

浅谈海上风电发展趋势随着可再生能源的发展,海上风电成为了越来越受关注的能源形式。

在过去的几年中,海上风电发展取得了巨大的进步,成为了可再生能源领域的热点之一。

本文将就海上风电发展的趋势进行浅谈,探讨海上风电的发展现状以及未来的发展趋势。

一、海上风电的发展现状目前,全球范围内已经建成了大量的海上风电项目,主要集中在欧洲、北美和亚洲地区。

欧洲是全球海上风电的领头羊,拥有大规模的海上风电装机容量。

根据国际能源署的数据,截至2021年底,全球海上风电的装机容量已经超过了30GW,并且预计在未来几年内将会继续增长。

中国、美国、德国等国家也在积极推动海上风电项目的建设,预计未来几年内将会迎来更加快速的发展。

在技术方面,海上风电的技术水平也在不断提升。

从最早期的浅海固定式风机到现在的深水浮式风机,海上风电的技术已经取得了重大突破。

随着技术的不断进步,海上风电的成本也在逐渐降低,使得海上风电成为了更加具有竞争力的可再生能源形式。

1.技术创新将推动海上风电的发展随着海上风电技术的不断创新,越来越多的优质风能资源将会被开发利用。

目前,深水浮式风机已经成为了海上风电发展的新趋势,该技术能够在更深的海域中进行风电的开发,将大大扩大海上风电的可开发范围。

风机的大型化、智能化也将成为未来海上风电发展的重要方向,这将有效降低风电的成本,提升整体的竞争力。

2.全球范围内将会出现更多的海上风电示范项目3.海上风电的成本将继续下降随着技术的不断进步和规模的不断扩大,海上风电的成本将会继续下降。

根据国际能源署的估计,到2030年,海上风电的成本有望下降30%,这将使得海上风电在更多地区成为一种经济可行的可再生能源形式。

4.海上风电将成为未来能源转型的重要组成部分5.政策支持将会促进海上风电的发展在各国的政策支持下,海上风电的发展将会得到更多的推动。

各国政府将会加大海上风电项目的扶持力度,通过补贴、税收优惠等措施来降低海上风电的投资风险,为海上风电的发展创造更加良好的环境。

国内海上风电发展现状及趋势-概述说明以及解释

国内海上风电发展现状及趋势-概述说明以及解释

国内海上风电发展现状及趋势-概述说明以及解释1.引言1.1 概述海上风电是指在海洋上利用海风发电的一种可再生能源形式,近年来在全球范围内得到了快速发展。

作为绿色能源的一种,海上风电具有环保、高效、可持续的特点,被广泛认为是未来能源领域的重要发展方向。

在国内,海上风电发展也取得了显著的成就。

经过多年的发展和探索,我国已成为全球最大的海上风电市场之一。

截至目前,我国海上风电装机容量已经超过了XXGW,遥遥领先于其他国家。

海上风电项目的规模和数量也在不断增加,海上风电已经成为我国新能源领域的一颗新的璀璨明珠。

然而,我国海上风电发展仍面临一些挑战和问题。

一是技术和成本方面的挑战,包括风机设计、基础设施建设和维护等方面的问题;二是政策和市场环境的不完善,包括政策扶持力度不足、管理和监管机制不完善等问题;三是与海洋生态环境的冲突和影响问题,包括对渔业资源的影响、环境保护等问题。

针对这些问题,未来国内海上风电发展仍面临一些挑战和压力。

但同时也有一系列的发展趋势和机遇。

首先,我国政府加大了对海上风电产业的支持力度,出台了一系列的政策和措施,为海上风电的发展提供了更好的政策环境和市场机制。

其次,技术的创新和突破将进一步降低海上风电的成本,提升其竞争力。

此外,随着科技水平的不断提升,海上风电的装机容量将继续增加,海上风电将成为国内能源结构的重要组成部分。

综上所述,国内海上风电发展正处于快速增长的阶段,取得了一系列的成就和进展。

未来随着政策和技术的不断完善,以及市场的进一步开放,国内海上风电发展前景将更加广阔。

同时,我们也需要进一步关注环境保护和生态平衡问题,合理规划和管理海上风电项目,实现海上风电行业的可持续发展。

1.2文章结构1.2 文章结构本文将主要围绕国内海上风电的发展现状和趋势展开讨论,并深入分析影响国内海上风电发展的重要因素。

文章分为引言、正文和结论三个部分,具体结构如下:1. 引言部分1.1 概述:介绍海上风电作为清洁能源的重要组成部分,具有的优势以及国内海上风电产业的重要性和发展态势。

海上风电发展现状及趋势

海上风电发展现状及趋势

海上风电发展现状及趋势随着全球对可再生能源的需求不断增长,海上风电作为一种清洁、可再生的能源形式,正逐渐崭露头角。

海上风电发展迅猛,成为全球清洁能源市场的重要一环。

本文将介绍海上风电的发展现状以及未来的发展趋势。

一、海上风电的发展现状海上风电是指在海洋上的风能利用,并通过将风能转化为电能,供应给人们使用。

相比陆地风电,海上风电具有以下优势:1.更稳定的风力资源:海上风电可以利用到更稳定、更强劲的海上风力资源,相比陆地风电更为可靠。

2.更大的装机容量:海上风电场通常可以容纳更多的风力发电机组,具有更大的装机容量。

3.更低的视觉影响:海上风电场相对于陆上风电场,对人们的视觉影响较小,更易被接受。

目前,全球海上风电的发展已经取得了显著的进展。

欧洲是全球海上风电的主要发展地区,其中丹麦、英国、德国等国家在海上风电技术和装备方面处于领先地位。

同时,亚洲国家如中国、韩国、日本等也开始积极推动海上风电的发展。

根据2020年的数据,全球海上风电装机容量已超过25GW,其中欧洲占据了近80%的份额。

这一数字与2010年的不到4GW相比,增长了超过6倍。

可以看出,海上风电正以惊人的速度在发展壮大。

二、海上风电的发展趋势海上风电作为一种新兴的能源形式,未来的发展前景广阔。

以下是海上风电的发展趋势:1.技术进步与成本降低:随着技术不断进步,海上风电的设备和工艺将更加成熟。

与此同时,生产规模的扩大以及成本的降低也将使海上风电更加具有竞争力。

2.深海开发:随着浅海资源的逐渐开发利用,未来海上风电将进一步拓展至深海领域。

深海风资源更为丰富,海上风电的装机容量有望大幅提升。

3.综合利用与能量存储:海上风电场可以与其他能源形式进行综合利用,如与海洋能源、太阳能和储能技术结合,形成能源互补和优化供应系统。

4.国际合作与政策支持:各国政府将继续加大对海上风电的支持力度,加强国际合作,以推动海上风电的发展。

政策的支持和市场的规模也将成为海上风电发展的重要驱动力。

海上漂浮式风电基础的发展现状和趋势

海上漂浮式风电基础的发展现状和趋势

海上漂浮式风电基础的发展现状和趋势全文共四篇示例,供读者参考第一篇示例:海上浮式风电基础是一种新型的风电基础形式,具有灵活性高、安装便捷等优势,近年来得到了越来越多的关注和投资。

本文将分析当前海上浮式风电基础的发展现状和未来趋势。

一、发展现状1. 技术成熟度提高随着技术的不断进步和研发投入的增加,海上浮式风电基础的技术成熟度逐渐提高。

目前,一些海上风电项目已经采用了浮式基础,并取得了不错的效果。

2. 项目规模逐渐扩大随着海上浮式风电基础技术的不断完善,项目规模也在逐渐扩大。

一些大型风电开发商纷纷投入海上浮式风电项目,推动了全球浮式风电的发展。

3. 政策支持力度加大为了推动清洁能源发展,各国政府纷纷加大对海上浮式风电项目的支持力度。

欧洲多国已经出台了针对海上风电的支持政策,促进了浮式风电的发展。

二、发展趋势1. 技术不断创新未来,海上浮式风电基础将会不断进行技术创新,提升风电机组的效率和稳定性。

随着新材料的应用和智能化技术的发展,浮式风电基础将会更加可靠和高效。

3. 区域多元化发展未来,海上浮式风电基础将面向更多的区域进行发展。

除了传统的海洋地区,陆上水域和淡水水域也将成为浮式风电的新兴市场,为风电产业带来新的发展机遇。

海上浮式风电基础是风电行业的未来发展趋势之一,具有巨大的市场潜力和发展空间。

随着技术的不断进步和政策的支持,相信浮式风电将在未来得到更好的发展。

第二篇示例:我们不得不承认,目前海上飘浮式风电基础技术相对于传统的固定式基础技术还处于发展的初级阶段。

随着技术的不断成熟和发展,人们对于海上飘浮式风电基础技术的潜力也有了更大的认识。

相比较于传统的固定式基础技术,海上飘浮式风电基础技术具有以下几个优势:海上飘浮式风电基础技术可以有效解决水深较大的海域无法使用固定式基础的困扰。

由于海上飘浮式风电基础不需要在海底上固定,而是通过浮力或者吸盘等方式保持稳定,因此可以适用于更深的海域,开辟了更多的海上风电开发潜力;海上飘浮式风电基础技术在安装和维护方面更加方便和灵活。

海上风电发展现状及未来趋势分析和展望

海上风电发展现状及未来趋势分析和展望

海上风电发展现状及未来趋势分析和展望随着全球对可再生能源的需求不断增加,海上风电作为一种环保、可持续的能源解决方案,引起了广泛关注。

本文将就海上风电的发展现状进行分析,并展望未来的发展趋势。

首先,让我们来了解一下海上风电的发展现状。

海上风电是指在海洋上建设风力发电设施,利用海上的强风资源发电。

相比陆地上的风电项目,海上风电具有更高的风能资源和更稳定的风速,因此具备更大的发电潜力。

目前,世界各地的海上风电项目正在不断扩大。

根据国际能源署的数据,截至2021年底,全球共有37.5吉瓦(GW)的海上风电装机容量,占全球总风电装机容量的2.5%。

欧洲是全球海上风电的领先市场,占据了海上风电总装机容量的88%。

丹麦、英国、德国和荷兰等欧洲国家是海上风电的主要推动者。

此外,中国、韩国和美国等国家也在积极发展海上风电项目。

虽然海上风电发展进展迅速,但仍面临一些挑战。

首先,建设和维护海上风电设施需要巨大的投资和技术支持。

海上环境的复杂性和恶劣的天气条件增加了设备安装和维护的难度。

其次,海上风电设施与陆地之间的电网连接需要建设海底电缆,这增加了成本和技术难度。

此外,海上风电设施对海洋生态环境的影响也需要得到合理的评估和管理。

展望未来,海上风电有望继续快速发展。

首先,技术进步将推动海上风电设施的效能提高和成本降低。

风机的尺寸和功率将继续增加,同时材料和制造技术的进步将提高设备的可靠性和维护效率。

其次,政策支持将为海上风电的发展提供动力。

各国政府在可再生能源方面的政策引导和补贴措施将促进海上风电项目的推进。

第三,能源转型的趋势将进一步推动海上风电的发展。

替代化石燃料的需求增加和减少碳排放的目标将导致对风能资源的更大需求。

此外,海上风电在解决可再生能源波动性和间歇性挑战方面具有潜力。

通过将海上风电与其他可再生能源技术(如潮汐能、浪能)以及储能技术相结合,可以实现能源的平衡和稳定供应。

总的来说,海上风电作为可再生能源的重要组成部分,具有巨大的发展潜力。

《2024年海上风电并网可靠性分析及提升关键技术综述》范文

《2024年海上风电并网可靠性分析及提升关键技术综述》范文

《海上风电并网可靠性分析及提升关键技术综述》篇一一、引言随着全球能源结构的转型和环保意识的提高,海上风电作为清洁可再生能源的代表,得到了越来越多的关注。

然而,海上风电的并网可靠性及技术问题成为了制约其进一步发展的关键因素。

本文将就海上风电并网可靠性进行分析,并对提升关键技术进行综述。

二、海上风电并网可靠性分析1. 海上风电并网现状海上风电作为新兴的能源产业,具有广阔的发展前景。

然而,由于海洋环境的复杂性和特殊性,海上风电并网仍存在一系列技术挑战和问题。

包括海缆连接问题、并网点的接入技术问题以及海洋能级差异带来的系统冲击等。

2. 影响因素分析海上风电并网的可靠性受到多方面因素的影响。

包括:海洋气候的复杂性、风电机组的维护及管理、电网接入的技术标准等。

其中,海缆的稳定性和质量、风电机组的抗风性能等是影响并网可靠性的关键因素。

三、提升海上风电并网可靠性的关键技术1. 先进的风电机组技术(1)高抗风性能:通过改进风电机组的设计和制造工艺,提高其抗风性能,以适应复杂多变的海洋环境。

(2)智能化维护:利用远程监控和诊断技术,实时监测风电机组的运行状态,及时发现并处理故障,提高风电机组的运行效率。

2. 优化海缆系统(1)高质量海缆材料:采用高强度、高绝缘性能的海缆材料,提高海缆的稳定性和可靠性。

(2)海缆防护技术:针对海底地形地貌和海洋气候条件,采用适当的防护措施,如海底保护套管、浮式电缆保护系统等,减少海缆故障率。

3. 电网接入技术(1)优化并网策略:根据电网需求和风电机组特性,制定合理的并网策略,确保风电场与电网的协调运行。

(2)柔性输电技术:采用柔性直流输电技术,提高电网对风电的接纳能力,降低电网波动对风电场的影响。

四、未来发展趋势与挑战未来,随着海上风电技术的不断发展,并网可靠性将得到进一步提高。

然而,仍需面临诸多挑战,如海况极端条件下风电机组的稳定性问题、大规模风电并网的电网安全稳定控制等。

为解决这些问题,需要加强技术创新和研发力度,推动海上风电技术的持续发展。

全球海上风电发展现状及展望

全球海上风电发展现状及展望

全球海上风电发展现状及展望发展海上风电,不仅有助于能源低碳转型,还有利于提升能源安全保障能力。

过去10年,全球海上风电以年均21%的增速蓬勃发展。

据全球风能理事会分析,全球32个区域市场的海上风电装机容量预计将在未来10年内增加380吉瓦以上,除南极洲外,世界上各个大陆都有计划大规模发展利用海上风电。

而未来10年,新增海上风电装机将更多来自于亚太国家。

全球风能理事会近期发布《2023年全球海上风电报告》,对2022年全球海上风电发展情况进行了较为全面的梳理,本文摘取报告重点内容,以飨读者。

一、全球海上风电市场概况2022年,全球海上风电装机容量达64.3吉瓦,占全球风电总装机容量的7.1%,海上风电新增装机8.8吉瓦,同比增长16%o在亚太地区,受平价上网政策影响,中国海上风电新增装机从2021年的21吉瓦下降至2022年的5吉瓦,但仍继续引领全球海上风电的发展。

在欧洲,2022年有2.5吉瓦海上风电装机并网,尽管2022年欧洲风电装机率是2016年以来的最低水平,但欧洲的海上风电装机总量达到了30吉瓦,英国海上风电装机占欧洲的46%,进一步巩固了在欧洲海上风电市场的领先地位,法国和意大利各自启动了首批商业海上风电项目。

随着2022年亚太地区海上风电装机容量达到34吉瓦,欧洲不再是世界上最大的海上风电市场。

尽管如此,欧洲继续在浮式风电领域处于领先地位。

挪威2022年新增了60兆瓦的浮式风电,使欧洲地区的浮式风电总装机容量达到171兆瓦,占据全球浮式风电市场份额的91%o亚太地区浮式风电装机16.7兆瓦,占全球市场份额的9%。

除欧洲和亚太地区外,截至2022年底,北美地区有42兆瓦的海上风电装机并网,占全球海上风电装机总量的0.1%。

图1截至2022年底全球海上风电装机占比情况二、海上风电相关产业进展情况1、浮式风电当前,浮式风电正在全球范围内快速拓展商业规模。

全球风能理事会预测,到2030年,全球将建成10.9吉瓦浮式风电。

浅析海上风力发电的现状及展望

浅析海上风力发电的现状及展望

浅析海上风力发电的现状及展望一、本文概述随着全球能源结构的转型和环保意识的日益增强,可再生能源的开发和利用已成为全球关注的焦点。

其中,海上风力发电作为一种清洁、可再生的能源形式,正逐渐展现出其巨大的潜力和价值。

本文旨在浅析海上风力发电的当前发展现状,探讨其面临的挑战与机遇,并展望未来的发展趋势。

我们将从海上风力发电的基本原理、全球范围内的建设情况、技术进步及经济效益等方面入手,进行全面而深入的分析。

通过本文的阐述,我们期望能为读者提供一个清晰、全面的海上风力发电领域发展现状的概览,并为未来的研究和应用提供参考和启示。

二、海上风力发电的现状随着全球能源需求的日益增长,以及对可再生能源的迫切需求,海上风力发电作为一种清洁、可再生的能源形式,正逐渐受到世界各国的重视和投入。

当前,海上风力发电在全球范围内的发展呈现出蓬勃的态势,技术不断创新,产业规模持续扩大。

从全球范围来看,欧洲是全球海上风力发电的领跑者,尤其是英国、德国和荷兰等国家,在海上风电的技术研发、项目建设和政策支持等方面均走在世界前列。

亚洲地区,尤其是中国,近年来在海上风力发电领域也取得了显著的进展,装机容量和项目数量均实现了快速增长。

在技术层面,海上风力发电的技术不断成熟和进步,风电机组的单机容量不断增大,基础结构设计更加合理,运维管理也更加智能化和高效化。

随着深远海风电技术的发展,海上风力发电的潜力将进一步释放,为未来的能源结构转型提供有力支撑。

然而,海上风力发电也面临着一些挑战和问题。

海上风电项目的建设成本相对较高,尤其是在深海区域,基础结构的设计和建造难度加大,增加了项目的投资风险。

海上风电的运维管理难度较大,需要克服海洋环境的复杂性和不确定性。

海上风电项目还需要考虑与海洋生态保护的协调问题,确保项目的可持续发展。

尽管如此,随着技术的进步和政策的支持,海上风力发电的未来发展前景仍然十分广阔。

随着全球能源结构的转型和可再生能源的大力推广,海上风力发电将在未来的能源供应中发挥越来越重要的作用。

海上风电技术的开发与应用

海上风电技术的开发与应用

海上风电技术的开发与应用随着环境保护意识的不断提高和对传统能源的逐渐耗竭,海上风电技术成为了新型清洁能源中的一种重要形式。

目前,许多国家都开始着手开展海上风电技术的开发与应用。

而对于中国而言,由于其拥有着广阔的海域资源,也在加快着海上风电技术的研发和应用。

本文将探讨海上风电技术的现状、未来以及存在的问题。

一、海上风电技术的现状海上风电技术,即将风能转化为电能的技术。

与陆上风电不同的是,它将风力利用范围拓展至海平面以下,减少了陆地对于风资源的争夺,并具有更稳定更高效的特性。

目前,世界各国都在大力开发海上风电,但欧洲等西方发达国家在这一领域上已远甩中国等发展中国家一大截。

作为全球最大的发展中国家,中国的海上风电建设情况较为落后。

但在近年来,随着政策的相继出台,中国的海上风电也开始慢慢崛起。

据了解,截至2019年底,中国累计海上风电装机容量已达到40万千瓦,而且已经进入规模化发展的阶段。

其中最大的风电场就位于广东省。

综上,我国在海上风电技术方面还有很大的提升空间。

二、海上风电技术的未来展望海上风电技术的未来发展将与以下几个方面密不可分:1、技术的快速进步和降低成本目前,海上风电技术在成本上还不具备与传统能源竞争的优势,例如燃煤发电;同时,该技术还存在可靠性的问题,如台风等自然灾害的考验。

因此,未来海上风电技术需要更快速地发展,并降低相关成本以提高其经济性和市场竞争力;同时,也需要逐步解决上述可靠性问题,以提高其在实际运行过程中的效果。

2、政策的支持中国政府制定了一系列东海、南海、黄海等区域能源规划,并于2019年公布了《2019-2035年能源发展规划》,大力推动海上风电技术的研发和应用。

这些政策的出台为海上风电技术的快速发展提供了政策保障,也为海上风电技术的未来发展做出了重要的贡献。

3、行业的标准化和合规化目前,由于海上风电技术依赖于产业链的协作和配合,所以行业标准化和合规化对于该技术的长期发展至关重要。

海上风力发电技术现状及发展趋势

海上风力发电技术现状及发展趋势

海上风力发电技术现状及发展趋势一、本文概述随着全球能源结构的转型和清洁能源的日益重视,海上风力发电作为可再生能源的重要组成部分,正逐渐崭露头角。

本文旨在对海上风力发电技术的现状进行深入剖析,并展望其未来的发展趋势。

文章将首先介绍海上风力发电的基本概念、原理及其在全球能源转型中的重要性。

随后,将重点阐述当前海上风力发电技术的关键进展,包括风力发电机组的大型化、深远海风电技术的发展以及海上风电与海洋能的融合等。

在此基础上,文章将探讨海上风力发电面临的挑战,如海洋环境的复杂性、基础设施建设的高成本等。

文章将展望海上风力发电技术的未来发展趋势,包括技术创新、成本控制、政策支持等方面,以期为全球海上风力发电产业的可持续发展提供参考。

二、海上风力发电技术现状近年来,随着全球能源结构的调整与环保意识的加强,海上风力发电作为一种清洁、可再生的能源形式,逐渐受到世界各地的重视。

目前,海上风力发电技术已经取得了显著的进步,并在全球范围内实现了商业化应用。

在技术层面,海上风力发电的关键技术主要包括风机设计、风机基础结构、海上施工与运维等方面。

风机设计方面,现代海上风力发电机组已实现了大型化、高效率、高可靠性,单机容量不断提升,以适应更为复杂和严苛的海上环境。

风机基础结构方面,随着技术的发展,已经形成了固定式基础(如单桩基础、三脚架基础等)和浮式基础(如半潜式基础、张力腿平台等)两大类,以适应不同水深和地质条件的需求。

在施工与运维方面,随着工程经验的积累和技术进步,海上风力发电项目的建设周期不断缩短,施工效率不断提高。

同时,随着远程监控、智能诊断等技术的应用,海上风力发电项目的运维管理也日趋智能化、精细化,有效提升了项目的运营效率和安全性。

在全球范围内,欧洲是海上风力发电技术的先行者和领导者,特别是英国、德国和荷兰等国家,已经建成了一批规模化的海上风力发电场。

亚洲地区,特别是中国,近年来在海上风力发电领域也取得了显著的进展,已成为全球海上风力发电市场的重要力量。

国内海上风电发展现状

国内海上风电发展现状

国内海上风电发展现状国内海上风电发展现状700字近年来,随着能源需求的不断增长和对环境保护意识的加强,海上风电作为一种清洁、可再生的能源形式,逐渐成为国内能源发展的重要方向之一。

国内海上风电的发展现状如下:首先,国内海上风电的装机容量不断增加。

截至2020年底,中国海上风电装机容量已经超过了10GW,居于全球第二位。

其中,我国福建、广东、江苏等地是海上风电发展的主要区域,在海洋资源丰富的情况下,利用海上风能具有巨大的潜力。

其次,技术水平持续提升。

通过多年的研究和实践,国内企业在海上风电技术方面取得了突破性进展。

目前,我国已经具备了自主研发和生产大型海上风机的能力,并且逐渐开始向海外市场输出技术和设备。

此外,政府政策的支持也是国内海上风电发展的重要推动力。

国家能源局出台了一系列文件,鼓励和支持海上风电的发展,包括提供资金支持、优惠税收政策和土地使用政策等。

这些政策的出台为海上风电项目的落地和发展提供了有力支持。

然而,国内海上风电发展还面临一些挑战。

首先,海上风电的项目投资成本较高,需要大量的资金投入。

其次,海上风电设备的运维成本也比较高,在海洋环境中面临更加严峻的环境条件,设备的技术可靠性和运作稳定性是一个关键问题。

此外,我国海上风电项目的审批和建设审批程序相对较长,项目的推进进度较慢。

为了解决上述问题,国内多个相关部门已经开始制定相关政策和措施。

例如,国家能源局发布《海上风电建设用海管理暂行规定》,明确了海上风电项目的用海程序和管理要求。

同时,国内企业也在积极引进国外先进技术和设备,提高海上风电项目的可靠性和效率。

总的来说,国内海上风电发展取得了一定的进展,但仍需要进一步发展和完善。

希望通过政府和企业的共同努力,海上风电作为一种清洁、可再生的能源形式能够得到更广泛的应用和推广,为国内能源转型和环境保护做出更大的贡献。

中国海上风电发展现状分析及展望

中国海上风电发展现状分析及展望

中国海上风电发展现状分析及展望近年来,随着全球对于清洁能源的关注度不断上升,中国海上风电的发展也在逐步壮大。

作为一种新型的清洁能源形式,海上风电具有开发潜力大、资源丰富、风能稳定等特点,因此在能源结构转型中得到了广泛的支持和认可。

本文将对中国海上风电的现状进行分析,并对未来的发展进行展望。

一、中国海上风电现状分析1.发展历程中国海上风电的发展,始于2005 年。

当时,中国开始着手建设海上风电项目,开发南海油田沿岸的风电资源。

2007 年,中国第一批海上风电项目在浙江海域正式启动。

从此之后,中国的海上风电项目发展迅速,经历了新的技术、新的政策的不断改进和完善,发电规模和装机容量也不断扩大。

2.发展现状目前,中国的海上风电发展已经进入到了快速发展期,呈现出以下的现状:第一,发展规模不断扩大。

截至2020 年底,中国已经累计投入了超过1.4 万亿人民币的海上风电项目,海上风电装机容量已经达到了超过10 万兆瓦。

第二,技术水平不断提高。

中国在海上风电制造、运维等方面积累了丰富的经验,技术水平逐渐提高。

比如,中国目前开发出了自主品牌的海上风电涡轮机,已经在国内外市场上取得了较好的市场表现。

第三,政策支持力度大。

近年来,中国国家能源局连续颁布了《海上风电发展规划(2019-2035 年)》、《海上风电政策(2019 年度)》等一系列文件,为海上风电的发展提供了政策保障。

二、中国海上风电发展展望1.发展方向未来,中国海上风电的发展方向主要包括:一是高效利用风能资源。

针对地形、气候、浪况等因素,加强研究实现海上风电资源的高效利用。

二是加强科技innotvation。

研发出新的技术手段不断提升产业整体质量和效益。

三是提高海洋运维服务能力。

加强海洋经济发展,优先发展海洋运输、海洋工程、海洋科技等重大领域,提高海上风电的运维服务水平。

四是政策加持。

持续性地出台有利于海上风电的发展的政策文件,在市场、技术、资金、人才等方面进行全方位的支持。

海上风电产业深度调研及未来发展现状趋势分析

海上风电产业深度调研及未来发展现状趋势分析

海上风电产业深度调研及未来发展现状趋势分析一、中国海上风电发展情况近年来,我国在国家各项政策、双碳目标的驱动下,海上风电行业发展迅速,2021年中国海上风电装机容量为16.9GW,这使我国成为全球领先的海上风电市场,并在一年内创造了全球海上风电装机容量的新纪录。

2021年装机容量的爆发式增长,主要是由发改委在2019年所颁布的一项新政策所推动,政策指出海上风电如果在2021年底之前没有完全并网,则2019年之前已经批准的项目将不会获得上网电价。

因此我国海上风电的装机容量在2021年激增,领先全球市场。

2022年起,国家停止对海上风电设施进行财政补贴,这一举措将会使我国海上风电装机容量大幅下降,但受到广东、浙江、山东等省对于海上风电行业的财政支持和大力发展,我国海上风电行业未来仍会呈现出稳步增长的态势。

GWEC预测,2022年我国海上风电新增装机容量较2021年会大幅度下降,仅4000MW,2025年新增装机容量达10000MWO二、全球海上风电总览海上风能资源丰富稳定,海上风电发电利用率高、不占用土地和适宜大规模开发,是全球风电发展的最新前沿,全球风电开发整体上呈现出由陆地向海洋发展的趋势。

全球海上风电行业起源于欧洲,1991年世界上第一个真正意义上的海上风电场投入运营,迄今为止已经有三十多年的历史了。

发展海上风电不仅有助于能源低碳转型,还将加强能源供应安全。

现如今,越来越多的国家把目光投向海上风电,海上风电行业迎来大规模快速发展的时期,发展潜力巨大。

2017-2021年,全球海上风电新增装机容量呈现出上涨的趋势,随着全球越来越多国家开展海上风电,全球海上风电装机容量的增速明显加快。

据GWEC发布的《全球海上风电报告2022》相关数据显示,2021年全球海上风电新增装机容量为21.1GW,较2020年增长了207.89%,创下历史最大增幅;2021年全球海上风电累计装机容量为56GW,较2020年增长了55.56%o海上风电起源于欧洲,2018年以前,欧洲的海上风电装机容量整体上处于领先的地位,全球海上风电以欧洲为主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能源与环境问题已经成为全球可持续发展所面临的主要问题,日益引起国际社会的广泛关注并寻求积极的对策.风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富.据估计,全球可利用的风能总量在53 000 TW·h/年.风能的大规模开发利用,将会有效减少石化能源的使用、减少温室气体排放、保护环境.大力发展风能已经成为各国政府的重要选择[1~6]. -在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此风力发电系统分为恒速恒频发电机系统(CSCF 系统)和变速恒频发电机系统(VSCF 系统).恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能.恒速恒频系统一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼式感应发电机,前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行.变速恒频发电机系统是指在风力发电过程中发电机的转速可以随风速变化,而通过其他的控制方式来得到和电网频率一致的恒频电能. -1 恒速恒频发电系统-目前,单机容量为600~750 kW 的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易、励磁功率可直接从电网中获得的笼型异步发电机[7~9]. -恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机.定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单.这种风力机的叶片结构复杂,成型工艺难度较大.而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率.由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机. -1.1 定桨距失速控制-定桨距风力发电机组的主要特点是桨叶与轮毂固定连接,当风速变化时,桨叶的迎风角度固定不变.利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的.采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机. -1.2 变桨距调节方式-在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定.这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩. -由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此比较适合于平均风速较低的地区安装.变桨距调节的另外一个优点是在风速超速时可以逐步调节桨距角,屏蔽部分风能,避免停机,增加风机发电量.对变桨距调节的一个要求是其对阵风的反应灵敏性. -1.3 主动失速调节-主动失速调节方式是前两种功率调节方式的组合,吸取了被动失速和变桨距调节的优点.系统中桨叶设计采用失速特性,系统调节采用变桨距调节,从而优化了机组功率的输出.系统遭受强风达到额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出.随着风速的不断变化,桨叶仅需微调即可维持失速状态.另外调节桨叶还可实现气动刹车.这种系统的优点是既有失速特性,又可变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击.系统控制容易,输出功率平稳,执行机构的功率相对较小[8~13]. -恒速恒频风力发电机的主要缺点有以下几点: -1)风力机转速不能随风速而变,从而降低了对风能的利用率; -2)当风速突变时,巨大的风能变化将通过风力机传递给主轴、齿轮箱和发电机等部件,在这些部件上产生很大的机械应力; -3)并网时可能产生较大的电流冲击. -目前的恒速机组,大部分使用异步发电机,在发出有功功率的同时,还需要消耗无功功率(通常安装电容器给以补偿).而现代变速风电机组却能十分精确地控制功率因数,甚至向电网输送无功,改善系统的功率因数.由于以上原因,变速风电机组越来越受到风电界的重视,特别是在进一步发展的大型机组中将更为引人注目.当然,决定变速机组设计是否成功的一个关键是变速恒频发电系统及其控制装置的设计. -2 变速恒频发电系统-利用变速恒频发电方式,风力机就可以改恒速运行为变速运行,这样就可能使风轮的转速随风速的变化而变化,使其保持在一个恒定的最佳叶尖速比,使风力机的风能利用系数在额定风速以下的整个运行范围内都处于最大值,从而可比恒速运行获取更多的能量.尤其是这种变速机组可适应不同的风速区,大大拓宽了风力发电的地域范围.即使风速跃升时,所产生的风能也部分被风轮吸收,以动能的形式储存于高速运转的风轮中,从而避免了主轴及传动机构承受过大的扭矩及应力,在电力电子装置的调控下,将高速风轮所释放的能量转变为电能,送入电网,从而使能量传输机构所受应力比较平稳,风力机组运行更加平稳和安全. -风力发电机变速恒频控制方案一般有四种:鼠笼式异步发电机变速恒频风力发电系统;交流励磁双馈发电机变速恒频风力发电系统;无刷双馈发电机变速恒频风力发电系统;永磁发电机变速恒频风力发电系统[14~15]. -2.1 鼠笼式异步发电机变速恒频风力发电系统-采用的发电机为鼠笼式转子,其变速恒频控制策略是在定子电路实现的.由于风速是不断变化的,导致风力机以及发电机的转速也是变化的,所以实际上鼠笼式风力发电机发出的电是频率变化的,即为变频的,通过定子绕组与电网之间的变频器把变频的电能转化为与电网频率相同的恒频电能.尽管实现了变速恒频控制,具有变速恒频的一系列优点,但由于变频器在定子侧,变频器的容量需要与发电机的容量相同,使得整个系统的成本、体积和重量显著增加,尤其对于大容量的风力发电系统. -2.2 双馈式变速恒频风力发电系统-双馈式变速恒频风力发电系统常采用的发电机为转子交流励磁双馈发电机,其结构与绕线式异步电机类似.由于这种变速恒频控制方案是在转子电路实现的,流过转子电路的功率是由交流励磁发电机的转速运行范围所决定的转差功率,该转差功率仅为定子额定功率的一小部分,故所需的双向变频器的容量仅为发电机容量的一小部分,这样该变频器的成本以及控制难度大大降低.这种采用交流励磁双馈发电机的控制方案除了可实现变速恒频控制,减少变频器的容量外,还可实现对有功、无功功率的灵活控制,对电网而言可起到无功补偿的作用.缺点是交流励磁发电机仍然有滑环和电刷. -目前已经商用的有齿轮箱的变速恒频系统,大部分采用绕线式异步电机作为发电机,由于绕线式异步发电机有滑环和电刷,这种摩擦接触式结构在风力发电恶劣的运行环境中较易出现故障.而无刷双馈电机定子有两套级数不同绕组,转子为笼型结构,无须滑环和电刷,可靠性高.这些优点都使得无刷双馈电机成为当前研究的热点.但在目前,这种电机在设计和制造上仍然存在着一些难题. -2.3 直驱型变速恒频风力发电系统-近几年来,直接驱动技术在风电领域得到了重视.这种风力发电机组采用多极发电机与叶轮直接连接进行驱动,从而免去了齿轮箱这一传统部件,由于其具有很多技术方面的优点,特别是采用永磁发电机技术,其可靠性和效率更高,处于当今国际上领先地位,在今后风电机组发展中将有很大的发展空间.在德国2003 年上半年所安装的风力机中,就有40.9%采用了无齿轮箱系统.直驱型变速恒频风力发电系统的发电机多采用永磁同步发电机,其转子为永磁式结构,无须外部提供励磁电源,提高了效率.其变速恒频控制也是在定子电路实现的,把永磁发电机发出变频的交流电通过变频器转变为与电网同频的交流电,因此变频器的容量与系统的额定容量相同.采用永磁发电机可做到风力机与发电机的直接耦合,省去了齿轮箱,即为直接驱动式结构,这样可大大减少系统运行噪声,提高了可靠性.尽管由于直接耦合,永磁发电机的转速很低,使发电机体积很大,成本较高,但由于省去了价格更高的齿轮箱,所以,整个系统的成本还是降低了. -另外,电励磁式径向磁场发电机也可视为一种直驱风力发电机的选择方案,在大功率发电机组中,它的直径大而轴向长度小.为了能放置励磁绕组和极靴,极距必须足够大,它输出的交流电频率通常低于50 Hz,必须配备整流逆变器. -直驱式永磁风力发电机的效率高、极距小,况且永磁材料的性价比正得到不断提升,应用前景十分广阔. -2.4 混合式变速恒频风力发电系统-直驱式风力发电系统不仅需要低速、大转矩电机而且需要全功率变流器,为了降低电机设计难度,带有低变速比齿轮箱的混合型变速恒频风力发电系统得到实际应用.这种系统可以看成是全直驱传动系统和传统解决方案的一个折中.发电机是多极的,和直驱设计本质上一样,但它更紧凑,相对来说具有更高的速度和更小的转矩. -2.5 其他-开关磁阻发电机和无刷爪极自励发电机也可以用在风力发电系统中.其中,开关磁阻发电机为双凸极电机,定子、转子均为凸极齿槽结构,定子上设有集中绕组,转子上既无绕组也无永磁体,故机械结构简单、坚固,可靠性高. -无刷爪极自励发电机与一般同步电机的区别仅在于它的励磁系统部分.其定子铁心及电枢绕组与一般同步电机基本相同.由于爪极发电机的磁路系统是一种并联磁路结构,所有各对极的磁势均来自一套共同的励磁绕组,因此与一般同步发电机相比,励磁绕组所用的材料较省,所需的励磁功率也较小.几种变速恒频控制方案的对比如表1所列. -3 离网型风力发电机系统-通常离网型风力发电机组容量较小,均属小型发电机组.可按照发电容量的大小进行分类,其大小从几百W至几十kW不等.自20世纪80年代初开始,中国的小型风力机制造业,在政府的支持下,尤其是内蒙古自治区政府的大力扶植,得到了引人瞩目的发展,十几万台小型风力发电机的生产和推广应用,为远离电网的农牧民解决了基本的生活用电,尤其是照明和收听广播电视,作出了不可磨灭的贡献.据统计,在20世纪80 年代初期,国内有近百家小型风力发电机制造企业.随着改革开放的不断深化以及社会经济的发展,这些小型风力发电机制造企业经过内部的调整和外部的整合,根据中国农村能源行业协会小型电源专委会的统计,到目前为止,全国有23 家小型风力发电机生产企业,2005年共生产小型风力发电机32 433台,装机容量为12 020 kW,产值8 472万元,利税为993万元.国内生产的小型风力发电机,单机容量从60 W到30 kW不等. -小型风力发电机按照发电类型的不同进行分类,可分为直流发电机型、交流发电机型.较早时期的小容量风力发电机组一般采用小型直流发电机,在结构上有永磁式及电励磁式两种类型.永磁式直流发电机利用永磁铁提供发电机所需的励磁磁通;电励磁式直流发电机则是借助在励磁线圈内流过的电流产生磁通来提供发电机所需要的励磁磁通,由于励磁绕组与电枢绕组连接方式的不同,又可分为他励与并励(或自励)两种形式. -随着小型风力发电机组的发展,发电机类型逐渐由直流发电机转变为交流发电机.主要包括永磁发电机、硅整流自励交流发电机及电容自励异步发电机.其中,永磁发电机在结构上转子无励磁绕组,不存在励磁绕组损耗,效率高于同容量的励磁式发电机;转子没有滑环,运转时更安全可靠;电机重量轻,体积小,工艺简便,因此在离网型风力发电机中被广泛应用,但其缺点是电压调节性能差.硅整流自励交流发电机是通过与滑环接触的电刷与硅整流器的直流输出端相连,从而获得直流励磁电流.但是由于风力的随机波动会导致发电机转速的变化,从而引起发电机出口电压的波动,这将导致硅整流器输出直流电压及发电机励磁电流的变化,并造成励磁磁场的变化,这样又会造成发电机出口电压的波动.因此,为抑制这种连锁的电压波动,稳定输出,保护用电设备及蓄电池,该类型的发电机需要配备相应的励磁调节器.电容自励异步发电机是根据异步发电机在并网运行时,电网供给的励磁电流对异步感应电机的感应电动势而言是容性电流的特性而设计的.即在风力驱动的异步发电机独立运行时,未得到此容性电流,须在发电机输出端并接电容,从而产生磁场建立电压.为维持发电机端电压,必须根据负载及风速的变化调整并接电容的数值. -目前小风机产业的规模不大,年产量仅12 MW,年产值仅8 472万元.主要以几百W的小风机为主. -无论是小型风力发电机的数量还是单机容量,主打产品的规格为200 W和300 W,约占了半壁江山.我国的小型风力发电机产业总体上是在向好的方向发展,小型风力发电机及其与太阳能的互补系统在解决边远地区无电问题上作出了不可磨灭的贡献.它的功率比同类太阳能系统来得大,能为更多的负载甚至小型生产性负载提供电力,它的价位更易为广大农牧民所接受,如果政府采用小风电或风光互补系统来解决农村无电问题,则政府的投入将比相同功率的太阳能系统少得多.但是,小型风力发电机及其行业在发展中也同样面临着困难和挑战.这些困难和挑战,既来自产业的内部,也来自产业的外部环境. -4 发展趋势-随着各国政策的倾斜和科技的不断进步,世界风力发电发展迅速,展现出了广阔的前景.未来数年世界风力发展的趋势如下. -4.1 风力发电从陆地向海面拓展-海面的广阔空间和巨大的风能潜力使得风机从陆地移向海面成为一种趋势.目前只有少数国家建立了海上风电场,但预计从2006 年开始,欧洲的海上风力发电将会大规模地起飞. -4.2 单机容量进一步增大-自MW级风力机出现后,风力机的尺寸和发电机组的单机容量增长速度加快.截至2003年,商品化的风力机风轮直径达到120m,单机容量达到4.5MW.随着各项技术的成熟,更大容量的风力发电机组将从实验室走向工业应用. -4.3 新方案和新技术不断被采用-在功率调节方式上,变速恒频技术和变桨距调节技术将得到更多的应用;在发电机类型上,控制灵活的无刷双馈型感应发电机和设计简单的永磁发电机将成为风力发电的新宠;在励磁电源上,随着电力电子技术的发展,新型变换器不断出现,变换器性能得到不断的改善;在控制技术上,计算机分布式控制技术和新的控制理论将进一步得到应用;在驱动方式上,免齿轮箱的直接驱动技术将更加吸引人们的注意. -在技术上,经过不断发展,世界风力发电机组逐渐形成了水平轴、三叶片、上风向、管式塔的统一形式.进入21世纪后,随着电力电子技术、微机控制技术和材料技术的不断发展,世界风力发电技术得到了飞速发展,主要体现在: -1)单机容量不断上升,单机容量为5 MW 的风机已经进入商业化运行阶段; -2)变桨距功率调节方式迅速取代定桨距功率调节方式,采用变桨距调节方式避免了定桨距调节方式中超过额定风速发电功率将下降的缺点,德国2003年上半年所安装的风机中91.2%采用的是变桨-距调节方式; -3)变速恒频方式迅速取代恒速恒频方式,变速恒频方式可通过调节机组转速追踪最大风能,提高了风力机的运行效率,德国2003年上半年所安装的风机中90.5%采用的是变速恒频方式; -4)无齿轮箱系统的直驱方式增多,去掉齿轮箱虽然提高了发电机的设计和制造成本,但有效地提高了发电系统的效率和可靠性,德国2003年上半年所安装的风机中40.9%采用的是无齿轮箱直驱方式. -4.4 风力发电机组更加个性化-适合特定市场和风况的风力机将被更多地推出,目前,德国的Repower公司已经推出了这方面的-产品. -4.5 从事风力发电的队伍进一步扩大-随着对风力发电诱人前景认识的深入和更多优惠政策的出台,更多的新成员将加入风力发电产业,例如2002年初刚涉足风能业务的GE风能公司和英国的FKI公司. -5 结语-变桨距风力机的起动风速较定桨距风力机低,停机时传动机械的冲击应力相对缓和.风机正常工作时主要采用功率控制,对功率调节的速度取决于风机桨距调节系统的灵敏度.在实际应用中,随着并网型风力发电机组容量的增大,大型风力机的单个叶片已重达数吨,操纵如此巨大的惯性体,并且响应速度要能跟得上风速变化是相当困难的.事实上,如果没有其他措施的话,只是通过变桨距来调节风力发电机组的功率对高风速变化仍然是无能为力的.因此,变桨距风力发电机组,除了对桨叶进行节距控制外,还须通过控制发电机输出功率来调节整个风力发电机组的转速,使之在一定范围内能够快速响应风速的变化,使风力机的叶尖速比达到最佳,以捕获最大的风能.这就是近年来所发展的变速恒频风力发电技术. -比较来看,定桨距失速控制风力机结构简单,造价低,并具有较高的安全系数,利于市场竞争,但失速型叶片本身结构复杂,成型工艺难度也较大.随着功率增大,叶片加长,所承受的气动推力增大,叶片的失速动态特性不易控制,使制造更大机组受到限制.变桨距型风力机能使叶片的节距角随风速而变化,从而使风力机在各种工况(起动、正常运转、停机)下按最佳参数运行,可使发电机在额定风速以下的工作区段有较大的功率输出,而在额定风速以上的高风速区段不超载,无需过大容量的发电机等.当然,它的缺点是需要有一套比较复杂的变距调节结构.现在这两种功率调节方案都在大、中型风力发电机组中得到了广泛应用.目前中国风电发展面临两个突出的问题:一是风电发展规模迅速扩大,形成巨大的市场空间;二是国产机组缺乏竞争力,进口机组以压倒的优势占领了中国风电装机的主要份额.因此,大型风电机组的国产化是推动我国风电持续发展的根本途径.-。

相关文档
最新文档