霍尔效应
霍尔效应简介
![霍尔效应简介](https://img.taocdn.com/s3/m/38597df9f18583d048645953.png)
霍尔效应霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(E.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。
[1]当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。
霍尔效应使用左手定则判断。
中文名霍尔效应外文名Hall effect表达式Vh=BI/(nqd)提出者霍尔提出时间1879应用学科电磁学适用领域范围电磁学衍生效应量子霍尔效应,量子反常霍尔效应目录1. 1 发现2. 2 解释3. 3 本质1. 4 应用2. 5 发展3. 6 相关效应1.7 研究前景发现霍尔效应 [2]在1879年被物理学家霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的电磁感应完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的作用力,从而在垂直于导体与磁感线的两个方向上产生电势差。
虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。
根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。
解释在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应。
而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。
电流经过ad,电流I = nqv(ad),n为电荷密度。
设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。
霍尔效应机理
![霍尔效应机理](https://img.taocdn.com/s3/m/2392347aff4733687e21af45b307e87101f6f892.png)
霍尔效应机理霍尔效应(Hall effect)是指在导体中通过电流时,垂直于电流方向和磁场方向的方向上会产生一种电压差的现象。
这一现象是由美国物理学家爱德华·霍尔(Edwin Hall)于1879年发现的,对电子学和磁学的研究起到了重要的推动作用。
霍尔效应的机理和应用广泛存在于电子器件、传感器和材料研究等领域。
霍尔效应的机理如下:当一个导体中通过电流时,由于洛伦兹力的作用,电子会在垂直于电流方向和磁场方向的方向上受到一个力,导致电子在这个方向上聚集。
这样就会形成一个电势差,即霍尔电压(Hall voltage),垂直于电流和磁场方向。
霍尔电压的大小与电流强度、磁场强度以及材料的特性相关。
霍尔效应在实际中有许多应用,包括:1. 霍尔传感器:霍尔传感器利用霍尔效应测量磁场强度。
它们广泛应用于磁场检测、位置检测、电流测量等领域。
例如,在汽车中用于测量转速、车速和方向盘位置。
2. 磁场测量:由于霍尔效应对磁场强度的敏感性,它可以用于测量磁场的大小和方向。
这在磁学实验、地磁测量和材料磁性研究中非常有用。
3. 材料性质研究:通过测量霍尔电压,可以获得材料的载流子类型、浓度和迁移率等信息,从而对材料的电导性和电子结构进行研究。
4. 磁性存储器:在硬盘驱动器等磁性存储设备中,霍尔传感器被用于读取磁头位置和方向,从而实现数据的定位和读取。
5. 磁流变液技术:磁流变液是一种特殊的流体,其粘度可以通过外加磁场的调节而改变。
霍尔效应可以用于测量磁流变液的粘度变化,从而控制和调节液体的流动性能。
综上所述,霍尔效应在电子学、传感器技术、材料研究和磁学等领域具有重要的应用价值。
通过利用霍尔效应的特性,可以实现对磁场强度、位置、磁性材料性质和流体流动性能的测量和控制。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/e9c304f1aef8941ea76e05c8.png)
霍尔效应:是电磁效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。
当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象就是霍尔效应。
这个电势差也被称为霍尔电势差。
霍尔效应传感器:霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。
霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。
霍尔效应传感器的特点:1、霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。
副边电流忠实地反应原边电流的波形。
而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波。
2、原边电路与副边电路之间完全电绝缘,绝缘电压一般为2KV至12KV,特殊要求可达20KV至50KV。
3、精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量。
而普通互感器一般精度为3%至5%且适合50Hz正弦波形。
4、线性度好:优于0.1%5、动态性能好:响应时间小于1μs跟踪速度di/dt高于50A/μs6、霍尔传感器模块这种优异的动态性能为提高现代控制系统的性能提供了关键的基础。
与此相比普通的互感器响应时间为10-12ms,它已不能适应工作控制系统发展的需要。
7、工作频带宽:在0-100kHz频率范围内精度为1%。
在0-5kHz频率范围内精度为0.5%。
8、测量范围:霍尔传感器模块为系统产品,电流测量可达50KA,电压测量可达6400V。
9、过载能力强:当原边电流超负荷,模块达到饱和,可自动保护,即使过载电流是额定值的20倍时,模块也不会损坏。
10、模块尺寸小,重量轻,易于安装,它在系统中不会带来任何损失。
11、模块的初级与次级之间的“电容”是很弱的,在很多应用中,共模电压的各种影响通常可以忽略,当达到几千伏/μs的高压变化时,模块有自身屏蔽作用X光机维修。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/25b7e034b90d6c85ec3ac6a9.png)
霍尔效应1879年,24岁的美国人霍尔在研究载流导体在磁场中所受力的性质时看,发现了一种电磁效应,即如果在电流的垂直方向加上磁场,则在同电流和磁场都垂直的方向上将建立一个电场。
这个效应后来被称为霍尔效应。
产生的电压(U H),叫做霍尔电压。
好比一条路, 本来大家是均匀的分布在路面上, 往前移动。
当有磁场时, 大家可能会被推到靠路的右边行走,故路(导体) 的两侧, 就会产生电压差。
这个就叫“霍尔效应”。
根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。
而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。
采用功率霍尔开关电路可以减小这些现象。
实验目的1. 了解霍尔效应实验原理2. 测量霍尔电流与霍尔电压之间和励磁电流与霍尔电压之间的关系3. 学会用霍尔元件测量磁场分布的基本方法4. 学会用“对称测量法”消除负效应的影响实验原理1. 霍尔效应霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。
当电流I沿X轴方向垂直于外磁场B(沿Z方向)通过导体时,在Y方向,即导体的垂直于磁场和电流方向的两个端面之间会出现电势差V H,如图1所示,这现象称为霍尔效应。
这个电势差也被叫做霍尔电压。
实验表明,在磁场不太强时,霍尔电压V H 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即IB K dIBR V H HH ==(1)。
其中RH 称为霍尔系数,KH 称为霍尔元件的灵敏度,单位为mv/(mA.T)。
霍尔效应简介
![霍尔效应简介](https://img.taocdn.com/s3/m/cf06dc0132687e21af45b307e87101f69e31fbde.png)
霍尔效应简介
霍尔效应是指当电流通过垂直于电流方向的导体时,会在导体两侧
形成电势差。
这个现象是由瑞典物理学家爱德华·霍尔于1879年发现的。
霍尔效应的原理是:当电流通过导体时,自由电子也会随之移动。
如果在电流流动方向的垂直方向上施加一个磁场,磁场力会使电子在
该方向上受到一个向外的力。
这个力会使得电子在垂直方向上聚集,
导致导体两侧分别形成正负电荷的区域,从而形成电势差。
根据霍尔效应,可以制造霍尔传感器。
霍尔传感器能够测量磁场的
大小和方向,因此在许多应用中被广泛使用,例如磁力计、速度传感器、转速计等。
此外,霍尔效应还有一些其他应用,包括测量电流、
磁强计、电子元件的开关等。
总的来说,霍尔效应是一种电磁现象,利用电流通过导体时产生的
电势差可以实现磁场测量和其他应用。
霍尔效应解释
![霍尔效应解释](https://img.taocdn.com/s3/m/25241cd60342a8956bec0975f46527d3240ca668.png)
霍尔效应解释
霍尔效应是指在某些材料的导电过程中,当通过导体的电流与磁场垂直时,会在导体两侧产生电压差现象。
这种现象被称作霍尔效应,它是一种基于洛伦兹力和电子自旋的现象。
霍尔效应的解释可以从两个方面来理解。
首先,从经典电动力学的角度来看,当电流流过导体时,导体内部的电荷将受到磁场的作用而向一侧偏移。
这种偏移会导致在导体两侧产生电势差,也就是霍尔电势。
其次,从量子力学的角度来看,霍尔效应可以理解为电子自旋所导致的磁矩在磁场中受到作用力,从而沿着磁场方向分裂成两个能级。
当电流通过导体时,这两个能级的电子数量会发生变化,从而导致在导体两侧产生电势差。
总之,霍尔效应是一种基于磁场和电流交互作用的现象,它在磁学、半导体和电子学等领域都有广泛的应用。
- 1 -。
霍尔效应(Hall Effect)
![霍尔效应(Hall Effect)](https://img.taocdn.com/s3/m/f9a94442c281e53a5902ff5d.png)
8
外加一磁场沿正y轴
在动并A1受,正A2Z间方加向一磁电场位作差用使力电F洞B 以q漂v流速B 度沿正x方向运
因材料原呈电中性,故有相等之负电荷累积在材料下 方并产生负Z方向静电力Fe=qE
稳定态时,FB=FE 即 qvB=qE
E=vB
此时上下两侧之电压差即为霍尔电压
归零
使用按钮上方英文字
所提示功能时,须先 按住SHIFT键才可使 用。
选取单位
数值撷取
范围设定
11
实验仪器
探针置入位置
测
厚 压 克 力 垫
磁 场 测 试 板
探 针
试 板 放 置 处
片
待
磁
测
铁
半
架
导
体
材料12如 Nhomakorabea量测磁场
先将高斯计执行 归零程序。
依操作说明找出磁 鐵N、S极。
量测示意图
将实验器材架设好,
14
9
计算
J nev I I A ab
v B E VH b
n IB aeVH
n : 載子濃度 e : 電荷電量 v: 漂移速度 J : 電流密度 B : 外加磁場 VH : 霍爾電壓 a : 樣品厚度(y方向) b : 樣品高度(z方向) A : 電流通過之樣品截面積
10
实验仪器-----高斯计(量测磁场使用 )
多数载子为电洞,少数载子为电子。
三价杂质通常为硼(B) 、鋁(Al)、鎵(Ga)、 銦(In)。
6
N型半导体
在纯硅中加入五价元素杂質,使每个硅原子与五价 杂质结合成共价键时多一电子,即为N型半导体。
多数载子为电子,少数载子为电洞。 五价杂质通常为磷(P)、
名词解释霍尔效应
![名词解释霍尔效应](https://img.taocdn.com/s3/m/275fa2152bf90242a8956bec0975f46527d3a7db.png)
名词解释霍尔效应
霍尔效应(霍尔效应)是一种量子效应,涉及到电子在磁场中的运动。
当电子在磁场中受到一个电场的作用时,它们会受到洛伦兹力,从而改变它们的运动状态。
这种改变可以导致电子的霍尔系数(霍尔系数)发生变化,从而指示电子在磁场中的运动方向和速度。
霍尔效应最初被发现是在20世纪50年代。
当时,研究人员发现,如果将一个霍尔传感器放置在一个磁场中,它可以通过检测电子的霍尔系数来测量磁场强度。
这种技术被广泛应用于各种电子设备中,例如磁共振成像设备、硬盘驱动器和传感器等。
霍尔效应的应用范围非常广泛,但它也有一些限制。
例如,在强磁场中,霍尔传感器可能会受到损坏。
此外,霍尔系数也受到温度和湿度等因素的影响,因此需要对它们进行校准。
除了用于测量磁场外,霍尔效应还可以用于控制电流。
例如,可以使用霍尔传感器来检测电流的方向,从而控制电路中的电流。
霍尔效应技术还被应用于许多其他领域,例如量子计算、量子存储和量子通信等。
霍尔效应是一个非常重要的量子效应,它的应用将推动计算机科学和技术的发展。
随着技术的不断发展,霍尔效应的应用前景将越来越广阔。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/6d4d564d69eae009581bec49.png)
霍尔效应测磁场霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
【实验目的】1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。
3.学习利用霍尔效应测量磁感应强度B及磁场分布。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
【实验原理】霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图13-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。
由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
简述霍尔效应原理
![简述霍尔效应原理](https://img.taocdn.com/s3/m/cbff0f5c974bcf84b9d528ea81c758f5f61f29a6.png)
简述霍尔效应原理
霍尔效应是指在一定条件下,当电流通过垂直于磁场的导体时,导体两侧产生的电势差与电流强度和磁场强度之间的关系。
霍尔效应的原理基于洛伦兹力和磁通量的作用。
在导体中通过电流时,电子受到洛伦兹力的作用而偏转,导致电子在导体横截面上产生一个电势差。
这个电势差称为霍尔电势差,可以通过一个横向连接的电势计量出来。
霍尔电势差与电流的方向、电流强度以及磁场强度有关。
当电流和磁场垂直时,霍尔电势差达到最大值。
此时,电子受到洛伦兹力作用,偏转的电子堆积在导体两侧,形成正负电荷分别聚集的区域。
由于电场力和洛伦兹力平衡,形成霍尔电势差。
根据电势差与磁场强度的关系,可以推导出霍尔系数。
霍尔系数既与材料的特性有关,也可以用于测量材料中的磁场强度。
霍尔效应被广泛应用于各种设备和传感器中。
例如,霍尔传感器通过测量磁场引起的霍尔电势差来检测磁场强度。
霍尔效应也可以用于测量电流,速度和位移等物理量。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/f0345068783e0912a2162a2f.png)
1-输入轴;2-转盘; 3-小磁铁;4-霍尔传感器
实验内容
实验任务
——利用霍尔效应测量螺线管内轴线上磁感应强度的分布.
完成这一实验任务,必须做以下工作:
仪器调节(将仪器调节到标准工作状态). 仪器标定(确定霍尔电压与磁感应强度的关系). 测量通电螺线管内轴线上磁感应强度的分布.
关键提示
U0=Ix·R0
U0的方向只与Ix的方向有关。
霍尔效应中负效应的消除
埃廷斯豪森效应
能斯特效应 里吉-勒迪克效应 不等位效应
UE 方向与I和B方向有关。
UN方向只与B方向有关。 URL的方向只与B的方向有关 U0的方向只与I的方向有关。
负效应的消除:改变I和B的方向,即对称测量法。
+B,+I, 测得电压U1=UH+UE+UN+URL+U0
109.45
109.85 110.10 110.40 110.40 110.20 110.25 110.15 109.80
3.59
3.60 3.61 3.62 3.62 3.61 3.61 3.61 3.60
实验数据例——螺线管内轴线磁场分布的测定
(续表2)
X/cm
23.00 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 298年的诺贝尔物理学奖
实验原理
现象 —— 霍尔效应
在长方形导体薄板上通以电流,沿电流的垂直方向施加磁 场,就会在与电流和磁场两者垂直的方向上产生电势差,这 种现象称为霍尔效应,所产生的电势差称为霍尔电压。
理论分析 磁场中运动载流子受洛伦兹力作用
UH
电荷聚集形成电场 电场力与洛伦兹力 达到平衡,形成稳 定电压UH
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/65dce49a51e79b89680226a8.png)
定义1: 定义 : 在物质中任何一点产生的感应电场强度与电流密度 和磁感应强度之矢量积成正比的现象。 定义2: 定义 : 通过电流的半导体在垂直电流方向的磁场作用下, 在与电流和磁场垂直的方向上形成电荷积累和出现 电势差的现象。
霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场 和感应电压之间的关系,这种效应和传统的感应效果 完全不同。当电流通过一个位于磁场中的导体的时候, 磁场会对导体中的电子产生一个横向的作用力,从而 在导体的两端产生电压差。 虽然这个效应多年前就已 经被大家知道并理解,但基于霍尔效应的传感器在材 料工艺获得重大进展前并不实用,直到出现了高强度 的恒定磁体和工作于小电压输出的信号调节电路。根 据设计和配置的不同, 霍 尔效应传感器可以作 为 开/关传感器或者线性 传 感器。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/7fe2126c011ca300a6c390d1.png)
霍尔效应一、简介霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
流体中的霍尔效应是研究“磁流体发电”的理论基础。
二、理论知识准备1.霍尔效应将一块半导体或导体材料,沿Z 方向加以磁场,沿X 方向通以工作电流I ,则在Y 方向产生出电动势,如图1所示,这现象称为霍尔效应。
称为霍尔电压。
(2)(b)图1 霍尔效应原理图实验表明,在磁场不太强时,电位差与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即(1)或(2)式(1)中称为霍尔系数,式(2)中称为霍尔元件的灵敏度,单位为mv / (mA ·T)。
产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。
如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为 (3)式中为电子的漂移运动速度,其方向沿X 轴的负方向。
E 为电子的电荷量。
指向Y 轴的负方向。
自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场(即霍尔电场),使运动电子受到一个沿Y 轴正方向的电场力,A 、B 面之间的电位差为(即霍尔电压),则(4)将阻碍电荷的积聚,最后达稳定状态时有BH V H VH V d IB R V HH =IB K V H H =H RH KB jeVB B V e B V q F m-=⨯-=⨯=Vm FH Ee F H V jb V e j eE E e E q F H H H H e==-==0=+e m F F即得(5)此时B 端电位高于A 端电位。
霍尔效应概述
![霍尔效应概述](https://img.taocdn.com/s3/m/8c134930b90d6c85ec3ac606.png)
霍尔效应概述霍尔效应Hall Effect是一种磁电效应,是德国物理学家霍尔1879年研究载流导体在磁场中受力的性质时发现的。
根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
通过该实验可以了解霍尔效应的物理原理以及把物理原理应用到测量技术中的基本过程。
当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应,该电势差称为霍尔电势差(霍尔电压)。
霍尔效应原理所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。
金属的霍尔效应是1879年被美国物理学家霍尔发现的。
当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。
半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。
利用霍尔效应可以设计制成多种传感器。
霍尔电位差UH的基本关系为UH=RHIB/d(18)RH=1/nq(金属)(19)式中RH——霍尔系数:n——载流子浓度或自由电子浓度;q——电子电量;I——通过的电流;B——垂直于I的磁感应强度;d——导体的厚度。
对于半导体和铁磁金属,霍尔系数表达式与式(19)不同,此处从略。
由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。
利用这一原理可以设计制成霍尔电流传感器。
其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。
若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差与电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。
利用这种方法可以构成霍尔功率传感器。
霍尔效应及产生原因
![霍尔效应及产生原因](https://img.taocdn.com/s3/m/0438dd20640e52ea551810a6f524ccbff121cae7.png)
霍尔效应及产生原因霍尔效应及其产生原因一、引言霍尔效应是指当电流通过一定材料时,在垂直于电流方向的磁场作用下,产生电势差的现象。
霍尔效应的发现和研究为电子学和材料科学领域做出了重要贡献。
本文将围绕霍尔效应及其产生原因展开讨论。
二、霍尔效应的基本原理霍尔效应是由美国物理学家霍尔于1879年发现的。
当一块导电材料(如金属或半导体)中有电流通过时,如果垂直于电流方向施加一个磁场,那么在材料的一侧将产生一个电势差。
这个电势差称为霍尔电压,它与电流、磁场的大小和方向都有关系。
三、霍尔效应的产生原因1. 约瑟夫逊效应霍尔效应的产生与约瑟夫逊效应有关。
约瑟夫逊效应是指在磁场中运动的电荷受到洛伦兹力的作用,导致电荷沿磁场方向偏转的现象。
在导电材料中,当电流通过时,电子因受到洛伦兹力的作用而在材料中运动。
由于电子带有负电荷,所以在磁场的作用下,电子将向一侧偏转。
2. 霍尔电场当电子受到洛伦兹力的作用而偏转后,产生的正电荷与原本的负电荷分布不均,形成了一个电场。
这个电场称为霍尔电场,它垂直于电流方向和磁场方向,并且在材料的一侧产生电势差。
这个电势差就是霍尔电压。
3. 电子浓度差异在导电材料中,电子的浓度是不均匀的。
当电流通过时,电子受到洛伦兹力的作用而偏转,导致电子在材料中的分布发生改变。
在偏转后,电子在材料的一侧积累,从而形成了正电荷的聚集区。
这种电子浓度差异也是霍尔效应产生的原因之一。
四、应用领域1. 传感器技术霍尔效应被广泛应用于传感器技术中。
由于霍尔效应与磁场的大小和方向有关,因此可以利用霍尔传感器来检测磁场的强度和方向。
这种传感器常用于测量转速、位置、方位等应用。
2. 电流测量霍尔效应也可以用于电流测量。
通过将电流通过一个导电材料,利用霍尔电压与电流大小的线性关系,可以测量电流的大小。
这种测量方法具有高精度和无需电流分流的优点,因此在电力系统和电子设备中得到广泛应用。
3. 半导体器件霍尔效应在半导体器件中也有重要应用。
简述霍尔效应原理
![简述霍尔效应原理](https://img.taocdn.com/s3/m/4e9fed90185f312b3169a45177232f60ddcce798.png)
简述霍尔效应原理霍尔效应是磁电效应的一种,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
以下将从五个方面简述霍尔效应的原理。
1. 霍尔电压的产生当电流通过一个导体时,电子不仅沿着导体的表面流动,还会受到洛伦兹力的作用。
在垂直于电流和磁场的方向上,洛伦兹力使得电子向一个特定的方向聚集,导致该方向上出现负电荷的积累。
这使得导体垂直于电流和磁场的方向上出现电场,即产生霍尔电压。
2. 霍尔元件的几何形状为了提高霍尔电压的输出和稳定性,通常将导体制作成特殊的几何形状,称为霍尔元件。
常见的霍尔元件有矩形、圆柱形、薄膜形等。
这些形状的设计主要考虑如何最大化电流和磁场的相互作用面积,从而提高霍尔电压的输出。
3. 磁场的作用磁场对霍尔效应的影响至关重要。
在磁场的作用下,电子受到洛伦兹力的作用,改变其运动轨迹,从而产生霍尔电压。
磁场的强度和方向可以通过改变霍尔元件的材料和几何形状进行调整,以适应不同的应用需求。
4. 温度的影响温度对霍尔效应的影响主要体现在两个方面。
一方面,温度会影响材料的电阻率,从而影响电流的大小。
另一方面,温度会影响电子的热运动速度,改变洛伦兹力对电子运动轨迹的影响程度。
因此,在应用霍尔效应时,需要考虑温度的影响,并进行相应的温度补偿或使用具有优良温度稳定性的材料。
5. 测量方法测量霍尔电压的方法主要包括直接测量法和锁相放大器法。
直接测量法是通过测量霍尔元件两端之间的电势差来计算霍尔电压的方法。
这种方法简单易行,但精度相对较低。
锁相放大器法是通过使用专门的电子设备对信号进行滤波和放大,以测量微弱的霍尔电压。
该方法精度较高,但需要使用专业的设备和电路。
为了进一步优化霍尔元件的性能,通常还会采取以下几种措施:6. 金属电极的制备:在霍尔元件的四个端面上制备金属电极,用于导通电流和收集霍尔电压。
金属电极通常采用蒸镀、溅射等方法制备,要求具有低电阻、高导电性等特点。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/caeb623f87c24028915fc371.png)
[实验原理]1、霍尔效应及其产生机理一块长方形金属薄片或半导体薄片,若在某方向上通入电流I H ,在其垂直方向上加一磁场B ,则在垂直于电流和磁场的方向上将产生电位差U H ,这个现象称为“霍尔效应”。
U H 称为“霍尔电压”。
霍尔发现这个电位差U H 与电流强度I H 成正比,与磁感应强度B 成正比,与薄片的厚度d 成反比,即d BI R U H H H = (1)式中R H 叫霍尔系数,它表示该材料产生霍尔效应能力的大小。
霍尔电压的产生可以用洛伦兹力来解释。
如图1所示,将一块厚度为d 、宽度为b 、长度为L 的半导体薄片(霍尔片)放置在磁场B 中,磁场B 沿z 轴正方向。
当电流沿x 轴正方向通过半导体时,若薄片中的载流子(设为自由电子)以平均速度v 沿x 轴负方向作定向运动,所受的洛伦兹力为B ev f B ⨯= (2)在f B 的作用下自由电子受力偏转,结果向板面“I ”积聚,同时在板面“Ⅱ”上出现同数量的正电荷。
这样就形成一个沿y 轴负方向上的横向电场,使自由电子在受沿y 轴负方向上的洛伦兹力f B 的同时,也受一个沿Y 轴正方向的电场力f E 。
设E 为电场强度,U H 为霍尔片I 、Ⅱ面之间的电位差(即霍尔电压),则bU eeE f HE == (3)f E 将阻碍电荷的积聚,最后达稳定状态时有E B f f =(4)即bU eevB H= 或vBb U H = (5)设载流子浓度为n ,单位时间内体积为v ·d ·b 里的载流子全部通过横截面,则电流强度I H 与载流子平均速度v 的关系为dbneI v vdbne I HH == 或 (6)将(6)式代入(5)式得图1 霍尔效应原理图I Hvd B I ne U H H ⋅=1= R H dBI H (7)(7)式中,R H 即为(1)式中的霍尔系数 R H =ne 1=BI d U H H(8)(8)式中U H 的单位为伏特,d 的单位为厘米,I H 的单位为安培,B 的单位为高斯,霍尔系数R H 的单位为(厘米3/库仑)。
霍尔效应
![霍尔效应](https://img.taocdn.com/s3/m/ed860a79f6ec4afe04a1b0717fd5360cba1a8d29.png)
由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关, 成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测 的全过程,都是由我国科学家独立完成。
此次中国科学家发现的量子反常霍尔效应也具有极高的应用前景。量子霍尔效应的产生需要用到非常强的磁 场,因此至今没有广泛应用于个人电脑和便携式计算机上——因为要产生所需的磁场不但价格昂贵,而且体积大 概要有衣柜那么大。而反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦 兹力而产生的运动轨道偏转,反常霍尔电导是由于材料本身的自发磁化而产生的。
由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍 尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是中国科学家从实验中独立观测到 的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。
研究前景
中国科学家发 现量子反常
量子反常将为 我们带来什么
本质
本质
固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生 电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一 个稳定的电势差即霍尔电压。 正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度 之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。
霍尔效应简述
![霍尔效应简述](https://img.taocdn.com/s3/m/ded236356d85ec3a87c24028915f804d2a16874d.png)
霍尔效应简述
霍尔效应是一种电学现象,描述了在金属表面形成的电场和磁场之间的相互作用。
根据霍尔效应,可以通过检测磁场来测量金属表面的电动势,从而实现对电子的测量和自动控制。
霍尔效应的基本原理是:当金属表面被磁场穿过时,会产生一个电动势,这个电动势的大小与金属表面的磁导率成反比。
如果有一个电流通过金属表面,那么金属表面的磁导率越高,产生的电动势就越大,产生的电流也就越大。
霍尔效应有多种应用,包括传感器、开关、控制器、磁盘驱动器等。
例如,在磁盘驱动器中,霍尔效应可以用来检测磁盘的旋转和读写操作。
在传感器中,霍尔效应可以用来检测物体的距离、形状和运动状态等。
在控制器中,霍尔效应可以用来实现开关功能,以及控制电流和电压等。
除了用于电子领域外,霍尔效应还可以应用于其他领域,例如农业、医疗和天文学等。
在农业中,霍尔效应可以用来检测农作物的生长状态和害虫的数量,从而进行有效的种植管理和病虫害防治。
在医疗中,霍尔效应可以用来检测医疗器械的状态和故障,从而提高医疗器械的可靠性和治疗效果。
在天文学中,霍尔效应可以用来检测天体的距离和位置,从而进行天体观测和分析。
霍尔效应是一种非常重要的电学现象,它在电子、机械、自动化等领域都有广泛的应用。
随着科技的不断进步,霍尔效应的应用前景将越来越广泛,将为人类带来更多的便利和效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔效应摘要:霍尔效应是霍尔--德国物理学家于1879年在他的导师罗兰的指导下发现的这一效应,这一效应在科学实验和工程技术中得到广泛应用。
可以用它测量磁场、半导体中载流子的浓度及判别载流子的极性,还可以利用这一原理作成各种霍尔器件,已广泛地应用到各个领域中。
近年来霍尔效应得到了重要发展,冯·克利青发现了量子霍尔效应,为此,冯·克利青获得1985年度诺贝尔物理学奖。
关键词: 霍尔效应副效应霍尔电压直流电压高精度的隔离传送和检测直流电流高精度的隔离检测监控量越限时准确的隔离报警引言:利用霍尔效应电压与磁场的线性关系可知,通过测量元件两端的电压,可以得知空间某区域的磁场分布及其此处的磁感应强度。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽、寿命长、可靠性高等优点,已广泛用于非电量测量和信息处理等方面。
正文:通过自己多次到实验室去体验并做了这些试验,本试验共有4个实验--霍尔效应、直流电压高精度的隔离传送和检测、直流电流高精度的隔离检测和监控量越限时准确的隔离报警。
现在把实验内容及其结论在下面做详细介绍:一、霍尔效应试验实验目的:认识霍尔效应并懂得其机理;研究霍尔电压与工作电流的关系;研究霍尔电压与磁场的关系;了解霍尔效应的副效应及消除方法。
实验原理:霍尔元件是根据霍尔效应原理制成的磁电转元件,如图所示图1.1 霍尔效应磁原理 图1.2 霍尔效应磁电转换 在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即d IBR V HH =(1.1)或 IB K V H H =(1.2)式(1.1)中H R 称为霍尔系数,式(1.2)中H K 称为霍尔元件的灵敏度,单位为mv /(mA ·T)。
如图1.1所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B中,在X 轴方向通以电流I ,则其中的载流子—电子所受到的洛仑兹力为j eVB B V e B V q F m -=⨯-=⨯=(1.3)。
即b V e eVB H=得 VBb V H =(1.5)此时B 端电位高于A 端电位。
若N 型单晶中的电子浓度为n ,则流过样片横截面的电流I =nebdV (1.6) 得nebd IV =(1.7)将(1.6)式代入(1.5)式得IB K d IB R IB ned V H H H ===1 (1.8)式中ne R H 1=称为霍尔系数,nedK H 1=称为霍尔元件的灵敏度,一般地说,H K 愈大愈好,以便获得较大的霍尔电压H V 。
由(1.8)式可知,如果霍尔元件的灵敏度H R 已知,测得了控制电流I 和产生的霍尔电压H V ,则可测定霍尔元件所在处的磁感应强度为HHIK V B =。
霍尔效应实验电路如图所示。
实验内容及数据处理:已知参数b=4.0mm, d=0.5mm, C B l '==3.0mm.设M KI B =,其中K=6200GS/A ;研究霍尔电压与工作电流霍尔电压与磁场的关系的数据及处理:有基本原理可得:U H-1=(|U 1|+|U 2|+|U 3|+|U 4|)/4=2.10mAB 1=B 0/A* I M =3600*0.300=1080Gs 同理可求其它的值并将结果填在表中。
按作图法要求作出霍尔电压与工作电流霍尔电压与磁场的关系曲线:UH和IH关系图5102468IH(mA)U H (m V )UH实验分析及结论:本实验采用数字仪表控制,所以相当精确;不过还是存在不等势效应、埃廷斯豪森效应和能斯特效应等副反应影响实验结果。
但是该实验总的来说还是验证了霍尔电压与霍尔元件工作电流、直螺线管的励磁电流之间成线性的关系这一结论。
思考题:若磁场不恰好与霍尔元件的法线一致,对测量结果会有何影响?如何用实验的方法判断B 与法线方向是否一致?答:若磁场不恰好与霍尔元件的法线一致,则霍尔片通过电流时,载流子的偏转就会偏离法线方向,而使测的电位差不是真的霍尔电位差,从而造成测量的系统误差。
朝两个方向偏转霍尔元件的方向,如电位差都减小,说明B 与法线方向一致。
二、直流电压高精度的隔离传送和检测实验实验目的:研究直流电压高精度的隔离传送和检测的方法;测量霍尔电压传感器隔离传送和检测直流电压的传感精度和线性度。
实验原理:直流电压高精度隔离传送和检测实验电路如图所示。
当被传电压U IN 通过R 的电流I IN 在初级线圈N 1产生的磁通量与霍尔电压经放大N 2UH和B关系图24680.0360.0720.1080.144B(T)U H (m V )UH而形成的次级电流I 0通过次级线圈N 2所产生的磁通量平衡时,有I IN *N 1= I 0* N 2,因此刺激电流I 0将精确的反映出触及电流I IN ,I 0在W 2上的电压降U 0将精确反映出初级电压的电压值I IN 。
实验内容及数据处理: 霍尔电压传感器隔离传送直流电压的精度线性度测试直流电压精度的隔离检测图0.511.520.20.50.8 1.1 1.4 1.8Ui(V)U o (V )Um实验分析及结论: 从实验所得的表和图可见, 传感器由于应用了霍尔 电压闭环原理, 所以传感精度很高、线性度很好!思考题:在霍尔电压传感中怎样消除失调电压?答:合电源开关,先调‘电压调整’使U IN ≦5.000V,再调W 2使(调比例电位器)使U 0= U IN ,试运行5 min 后断开‘0线’,调W 1(调零电位器)使U 0为2.000V 。
三、直流电流高精度的隔离检测实验实验目的:研究直流电流高精度的隔离检测的方法;测量出霍尔电流传感器隔离检测直流电流的精度和线性度。
实验原理:直流电流高精度的隔离检测实验电路如图所示。
所以由实验所得数据可得霍尔电流传感器的端点线性度图直流电流精度的隔离检测图00.511.520.50.91.41.8Ii(A)U i (V )Ux由表可知△Umax=0.002V ,即△I max=0.002A ,+S=0,-S=0.23%。
实验分析及结论: 从实验所得的表和图可见, 传感器由于应用了霍尔 电压闭环原理, 所以传感精度很高、线性度很好!思考题:怎样判断霍尔电流传感器隔离传送直流电流的精度?N 1N 2答:根据实验数据画出U-I图后,如果这些点均匀的分布在一条直线的两侧,则说明感精度很高、线性度很好。
四、监控量越限时准确的隔离报警实验实验目的:懂得基于霍尔效应的磁比例原理;研究监控量越限时隔离报警的方法;测量霍尔开关量传感器在监视控量(电压或电流)越限时隔离报警的准确性。
实验原理:监控量(电流)越限时隔离报警实验电路如图所示。
根据霍尔效应原理霍尔元件输出的电压U H与被检测的电流I IN成正比,当U H大于越限设置电压时,“A”即输出高电平(开关量)将报警信号灯点亮。
由于直流电实验内容及数据处理:霍尔开关量传感器在直流电流越限时隔离报警准确性测量数据由实验数据显然有△Imax=0.002A实验分析及结论:由上表可见传感器由于应用了霍尔电压闭环原理,所以霍尔开关量传感器在直流电流越限时隔离报警准确性非常高!思考题:霍尔开关量传感器除了对直流电流越限时能准确的隔离报警外,还能对那些监控量越限时能准确报警?答:还适用于直流稳压电源及其设备在电流流过时准确的隔离报警。
总结:1)本实验所采用的直流电压隔离传送、直流电流隔离检测、直流电流越限隔离报警的实用方法是正确的。
2)磁平衡原理和磁比例式原理是研制霍尔效应传感器的实用知识。
3)以上这3 个实验正是霍尔效应被广泛用于自动检测、自动控制和信息技术领域中的3 个典型应用。
由此可见, 应用霍尔效应可以检测磁场, 但检测磁场并不是霍尔效应的主要用途. 霍尔效应的主要用途是: 应用该效应可制造出传感精度高、线性度好、温度漂移小、输出与输入之间高度隔离的高品质的传感器。
这些传感器被广泛地用在自动检测、自动控制和信息技术中, 进行直流电压隔离传送、直流电流隔离检测和直流电流或者电压越限隔离报警, 把计算机监控系统与受控系统隔离开来, 确保计算机的安全和可靠运行。
因此, 通过上述3 个应用实验可以开阔学生视野, 激励学生学习兴趣。
参考文献:[1]王植恒何原朱俊主编大学物理实验高等教育出版社[2]袁希光.传感器技术手册[ M ]北京: 国防工业出版社.[3]周日贵聂爱球龚勇清等 . 霍尔效应实验误差分析[ J] .物理实验.[4]曾晓英.亥姆霍兹线圈磁场的均匀分析及误差估算[J].物理实验学报[5]杨锡震,杨道生,田强.异常霍尔效应和自旋霍尔效应[J].物理实验Hall effect and application experiment paperBy Shi Mao LinCollege: physical science and technology instituteProfessional: microelectronicsStudent id: 1042023058Abstract: Hall effect was discovered by German physics hall in 1879 with his mentor Roland’s help. This effect in scientific experiments and engineering technology is widely used. We can use it measuring magnetic field, semiconductor carriers in concentration and discriminant carriers polarity; Still can use this principle to finish all kinds of hall devices; It has been widely used in various fields. And in recent years hall effect got important development; Von qualicoat green discovered quantum hall effect; Therefore, von qualicoat green get 1985 the annual Nobel Prize in physics.Keywords:Hall effect Vice effect Hall voltageDc voltage high-precision isolation transmit and detectionDc current precision isolation testMonitoring quantity is limited accurate isolation alarm.。