信号与系统答案 西北工业大学 段哲民 信号与系统1-3章答案

合集下载

信号与系统习题部分参考答案

信号与系统习题部分参考答案

信号与系统第三章习题部分参考答案3-2 已知连续时间周期信号()⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=35sin 432cos 2t t t f ππ。

将其表示成复指数傅立叶级数形式,求n F ,并画出双边幅度谱和相位谱。

解:由于()t f 为连续的时间周期信号。

由于题易知T=61ω=3π又()⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=35sin 432cos 2t t t f ππ即有2=a 12=a 45=b 200==a F ()2121222=−=jb a F ()221555j jb a F −=−=431F F F ==故()53322212t j tj jee tf ππ−+=又nn F F −=其双边幅度谱如图 3-2-1所示易知43210ϕϕϕϕϕ====25πϕ−=25πϕ=−其相位谱如图 3-2-2所示15w −12w −012w 15w wnF 0F 2 15−F 2−F 2F 5F 图 3-2-115w −015w wnϕ2π2π−图3-2-2 相位谱3-4 如题图3-4所示信号,求指数形式和三角形式的傅里叶级数。

所示信号,求指数形式和三角形式的傅里叶级数。

()t f 1EE −T2/T 题图3-4t()t f 21T t()t f 31TT−00T−T 24T 4T −t()t f 61TT−04T 4T −2T 2T −()t f 5()t f 4A TT2T−A TT−4T 4T−00()a ()b ()c()d()e ()f ttt解:(a ) 由于)(1t f 为奇函数故有为奇函数故有 00=a })sin()sin([2202∫∫+=−TT n dt nwt dt nwt T E b=]1)[cos(2−ππn n E0 n=2k N k ∈πn E4− n=2k+1 N k ∈∴ ]))12sin((121)5sin(51)3sin(31)[sin(4)(1⋅⋅⋅++++⋅⋅⋅⋅+++−=wt k k wt wt wt E t f π=)sin(]1)[cos(121nwt n nEn −−∑∞=ππ]1)[cos()(21−−=−=ππn n E j jb a F n n njnwt jnwt n e n n E j e F t f }1)[cos(1)(1−−==∑∑+∞∞−+∞∞−ππ3-8:设()()ωF t f ↔,试用()ωF 表示下列各信号的频谱。

信号与系统答案西北工业大学段哲民信号与系统1_3章答案

信号与系统答案西北工业大学段哲民信号与系统1_3章答案

第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt ×[U(t-1)-U(t-2)]。

答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。

答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1); (3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sin πt)。

答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

西北工业大学《827信号与系统》习题解析讲义

西北工业大学《827信号与系统》习题解析讲义

西北工业大学《827 信号与系统》习题解析 第 1 讲第 一 章信号与系统的基本概念1 -1 画出下列各信号的波形: (1)f 1 ( t ) = (2 -e -t )U ( t );(2)f 2 ( t ) =e -t cos10πt ×[U ( t -1) -U ( t -2) ] 。

1 -2 已知各信号的波形如图题 1 -2 所示,试写出它们各自的函数式。

1 -3 写出图题 1 -3 所示各信号的函数表达式。

(图见视频)1 -4 画出下列各信号的波形:(1) f 1 ( t ) =U ( t 2 -1); (2) f 2 ( t ) = ( t -1)U ( t 2 -1); (3) f 3 ( t ) =U ( t 2 -5t +6); (4)f 4 ( t ) =U ( sin πt ) 。

1 -5 判断下列各信号是否为周期信号,若是周期信号,求其周期 T 。

1) f 1 ( t ) = 2 cos (2t -) 2) f 2 ( t ) = [ sin ( t -) ]3) f 3 ( t ) = 3 cos2πtU ( t ) 1 -6 化简下列各式: (1)jt -wδ(2τ-1)d τ1; (2)[ cos ( t +)( δ(t ))]; (3)jw -w[ cost δ(t ) ] sintdt 。

1 -7 求下列积分: (1)jw cos [ ω( t -3) δ(t -2)] dt ;(2)jδ(t +3)dt ;(3) jwe -2t δ(t 0 -t )dt 。

— 1 —21-8试求图题1-8中各信号一阶导数的波形,并写出其函数表达式,其中f3( t) =cos t[ U( t) -U( t-5) ] 。

1-9已知信号f() 的波形如图题1-9所示,试画出y( t) =f(t+1)U( -t)的波形。

1-10已知信号f( t)的波形如图题1-10所示,试画出信号与信号的波形。

信号与系统课后习题答案-第1章

信号与系统课后习题答案-第1章

第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d );④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。

1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。

解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。

① 线性1)可加性不失一般性,设f(t)=f 1(t)+f 2(t),则y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。

由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。

2)齐次性由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数)即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。

② 时不变特性由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。

依据上述①、②两点,可判定此系统为一非线性时不变系统。

信号与系统第三章习题部分参考答案

信号与系统第三章习题部分参考答案
(5) t f (3t);
(7) (1 − t) f (1 − t) ;
(2) [1 + m f (t)]cosω0 t
(4) (t + 2) f (t); ( ) (6) e− jω0 t df t
dt
(8) f (t)∗ f (t − 3);
t
(9) ∫τ f (τ )dτ −∞
1−t / 2
(11) ∫ f (τ )dτ −∞
2π (sin π t )2 ↔ 2π (1− ⎜w⎜)[ε(w + 2π ) − ε(w − 2π )]
πt

即 (sin π t )2 ↔ (1− ⎜w⎜)[ε(ω + 2π ) − ε(w − 2π )]
πt

(3)双边指数信号
∵ e−a⎜t⎜

2a a2 + w2
(−∞
<
t
<
+∞)
∴ 2a a2 + w2
(13) f (t)∗ Sa(2t) (15) t df (1 − t)
dt
t+5
(10) ∫ f (τ )dτ −∞
(12) df (t) + f (3t ) − 2 e− jt ;
dt
(14) f (t) u(t)
(16) (t − 2) f (t)e j2(t−3)
解:(1) f 2 (t) + f (t) = f (t). f (t) + f (t) ↔ 1 [F (w}* F (w)] + F (w)
又 f (t) = 2 + cos⎜⎛ 2πt ⎟⎞ + 4sin⎜⎛ 5πt ⎟⎞
⎝3⎠

信号与系统第三章习题部分参考答案

信号与系统第三章习题部分参考答案

(w)
(14) f (t)u(t) ↔ 1 F ( jw) *[ 1 + πδ (w)]

jw
(15) df (1 − t) ↔ jwF (−w)e− jw
dt t df (1 − t) ↔ jwF (−w)e− jw − F (−w)e− jw − wF ′(−w)e− jw
dt
(16) (t − 2) f (t)e j2(t−3) ↔ e− j6[F ′(w − 2) − 2F (w − 2)]
−τ τ
w
方法二 利用时域微分性质
对 f(t)求一阶导数得到
f
′(t)
=
1 τ
G2τ
(t)

δ
(t
+
τ
)

δ
(t

δ
)
F1 (w) = 2sa(wτ ) − 2 cos(wτ )
F1 (0) = 0
F (w) =
F1 (w) jw
+
πF1
(0)δ
(w)
=
j
2 [cos(wτ ) − sa(wτ )] w
1
− F(
jw )]
−∞
−∞
j2w 2
(12) df (t) ↔ jwF (w)
dt
df (t) + f (3t − 2)e− jt ↔ jwF (w) + 1 F ( w + 1)e j2(w+1) / 3
dt
33
(13) sa(t) ↔ πG4 (w) / 2
f
(t)
*
sa(t)

π 2
F (w)G4
↔ 2π e−a⎜−ω⎜

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。

信号与系统课后答案第三章作业答案

信号与系统课后答案第三章作业答案

初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2

3dy(t) dt来自2y(t)

df (t) dt

6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)

a[u(t
s) 2

u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)

h(t)

ab[(t

1 2
)
u(t
1 2
)

(t

1 2
)
u(t
1) 2

tu(t)

1 4
(et

e3t
)u(t)

1 2
t
e3tu(t)

[
1 4
et

(
1 2
t

1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号与系统_西北工业大学中国大学mooc课后章节答案期末考试题库2023年

信号与系统_西北工业大学中国大学mooc课后章节答案期末考试题库2023年

信号与系统_西北工业大学中国大学mooc课后章节答案期末考试题库2023年1.所以非周期信号都是能量信号。

参考答案:错误2.连续周期信号的傅里叶级数是()参考答案:离散的3.所有连续的周期信号的频谱都具有收敛性。

参考答案:错误4.状态方程和输出方程共同构成了描述系统特征的完整方程。

参考答案:正确5.连续系统状态变量的个数等于动态元件数。

参考答案:错误6.一个信号存在傅氏变换,则一定存在双边拉氏变换。

参考答案:正确7.周期奇函数的傅里叶级数中,只含有()参考答案:正弦项8.理想低通滤波器是一个因果系统。

参考答案:错误9.没有信号可以既是有限长的同时又有带限的频谱。

参考答案:正确10.一个信号存在傅氏变换,则一定存在单边拉氏变换。

参考答案:错误11.一个信号存在拉氏变换,则一定存在傅氏变换。

参考答案:错误12.下列叙述正确的是()参考答案:一个信号存在傅立叶变换,就一定存在双边拉普拉斯变换。

13.非周期连续时间信号的频谱是连续频率的非周期函数。

参考答案:正确14.状态变量在某一确定时刻的值,即为系统在时刻的状态。

参考答案:正确15.状态空间分析法可以推广至非线性和时变系统。

参考答案:正确16.下面的各种描述,正确的是()参考答案:若零、极点离虚轴很远,则它们对频率响应的影响非常小。

17.状态空间分析法可以用于多输入多输出系统分析,也可用于但输入单输出系统的分析。

参考答案:正确18.周期信号的频谱一定是()参考答案:离散谱19.两个非线性系统级联构成的系统是非线性的。

参考答案:错误。

信号与系统第三章习题答案

信号与系统第三章习题答案

d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:

信号与系统习题答案第三章

信号与系统习题答案第三章

第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。

它是否是完备集? 解:(积分???)此含数集在(0,2)π为正交集。

又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。

由完备正交函数定义所以此函数集不完备。

3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。

3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。

如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。

解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。

和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。

信号与系统前三章习题答案

信号与系统前三章习题答案

信号与系统前三章习题答案信号与系统前三章习题答案第一章:信号与系统基础1.1 习题答案1. 信号是指随时间变化的物理量,可以用数学函数表示。

系统是指对输入信号进行处理或变换的过程或装置。

2. 信号可以分为连续时间信号和离散时间信号。

连续时间信号在每个时间点上都有定义,可以用连续函数表示;离散时间信号只在某些离散的时间点上有定义,可以用数列表示。

3. 周期信号是在一定时间间隔内重复的信号,非周期信号则不具有重复性。

周期信号可以用正弦函数或复指数函数表示。

4. 信号的能量是指信号在无穷远处的总能量,可以用积分的形式表示;信号的功率是指信号在某个时间段内的平均功率,可以用平均值的形式表示。

5. 系统的特性可以通过冲激响应和频率响应来描述。

冲激响应是指系统对单位冲激信号的响应,可以用单位冲激函数表示;频率响应是指系统对不同频率信号的响应,可以用频率函数表示。

1.2 习题答案1. 线性系统具有叠加性和齐次性。

叠加性是指系统对两个输入信号的响应等于两个输入信号分别经过系统的响应的叠加;齐次性是指系统对输入信号的线性组合的响应等于输入信号分别经过系统的响应的线性组合。

2. 时不变性是指系统的特性不随时间的变化而变化。

即如果输入信号发生时间平移,系统的响应也会相应地发生时间平移。

3. 因果性是指系统的输出只依赖于当前和过去的输入信号。

即系统的响应不会提前预知未来的输入信号。

4. 稳定性是指系统对有界输入信号产生有界输出信号。

即输入信号有限,输出信号也有限。

5. 可逆性是指系统的输出可以唯一确定输入。

即系统的响应函数是可逆的。

第二章:连续时间信号与系统2.1 习题答案1. 连续时间信号的频谱是指信号在频域上的表示,可以通过傅里叶变换得到。

频谱表示了信号在不同频率上的能量分布情况。

2. 系统的冲激响应可以通过输入信号和输出信号的傅里叶变换来求得。

通过傅里叶变换,可以将系统的时域特性转换为频域特性。

3. 傅里叶变换具有线性性、时移性、频移性和共轭对称性。

信号与系统课后答案

信号与系统课后答案

信号与系统课后答案第1章1-1题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解(a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。

](a) 2f (t - 2 ) (b) f ( 2t )(c)f (2t )(d)f (-t +1 ) 题1-2图解以上各函数的波形如图p1-2所示。

图p1-21-3如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i C t u ττd )(1)(S RS L S C1-4如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题1-4图解系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) +f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

[工学]信号与系统答案 西北工业大学 段哲民 信号与系统1-3章答案

[工学]信号与系统答案 西北工业大学 段哲民 信号与系统1-3章答案

[工学]信号与系统答案西北工业大学段哲民信号与系统1-3章答案第一章习题-t1-1 画出下列各信号的波形:(1) f(t)=(2-e)U(t); (2) 1-tf(t)=ecos10πt×[U(t-1)-U(t-2)]。

2答案f(t)1 (1)的波形如图1.1(a)所示.,2T,,0.2sf(t)cos10,t,102(2) 因的周期,故的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案f(t),t[u(t),u(t,1)],u(t,1)1f(t),,(t,1)[u(t),u(t,1)]2f(t),(t,2)[u(t,2),u(t,3)]31-3 写出图题1-3所示各信号的函数表达式。

答案11,(t,2),t,1,2,t,0,22f(t),,1110,t,2,(,t,2),,t,122,f(t),u(t),u(t,1)u(t,2)2,f(t),,sint[u(t,2),u(t,2)]32f(t),u(t,2),2u(t,1),3u(t,1),4u(t,2),2u(t,3)421-4 画出下列各信号的波形:(1) f(t)=U(t-1); (2) f(t)=(t-1)U(t-1); 1222(3) f(t)=U(t-5t+6); (4)f(t)=U(sinπt)。

34答案f(t),u(t,1),u(,t,1)1 (1) ,其波形如图题1.4(a)所示.f(t),(t,1)[u(t,1),u(,t,1)],(t,1)u(t,1),(t,1)u(,t,1)2(2)其波形如图题1.4(b)所示.f(t),u(,t,2),u(t,3)3(3) ,其波形如图1.4(c)所示.f(t),u(sin,t)4(4) 的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T。

,,2(1)f(t),2cos(2t,)(1)f(t),[sin(t,)]1246; ; (3) f(t),3cos2,tU(t)3。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

信号与系统课后习题参考答案精心整理1-试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴(1x ⑷2x ⑺1x 1-4 题图1-4⑴(1x ⑷2x ⑺1x 1-51-6⑴(t x 2⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t t t x =1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --= ⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。

⑴)()()(221t x dtt x d t x +=⑵ττd x t x t ?∞-=)()(21-101-11⑴?∞-⑶?∞-⑸?∞-1-12⑴x 1⑶x 31-13⑴t y =)(⑶)2()(t x t y =⑷)1()1()(t x t x t y ---=⑸?∞-=2)()(t d x t y ττ⑹2()(n x n y =⑺)()(n nx n y =⑻)1()()(-=n x n x n y1-14如题图1-14中已知一线性时不变系统当输入为)(t x 时,响应为)(t y 。

试做出当输入为)(1t x 时,响应)(1t y 的波形图。

智慧树答案信号与系统(西北工业大学明德学院)知到课后答案章节测试2022年

智慧树答案信号与系统(西北工业大学明德学院)知到课后答案章节测试2022年

第一章1.下列信号中,哪一个是非周期信号?答案:;2.=答案:-13.离散序列的能量E=答案:4/34.离散系统的时域数学模型是微分方程。

答案:错5.已知,可判断该系统具备以下()性质。

答案:线性;可逆性;记忆性;稳定性第二章1.已知某离散系统的差分方程为y(n)+3y(n-1)+2y(n-2)=2x(n-1)+6x(n-2),求系统的传输算子H(E)答案:;;2.已知连续系统的输入激励x(t) = tu(t),系统单位冲激响应h(t) = δ(t+1),求系统的零状态响应为答案:(t+1)u(t+1)3.已知某连续系统的传输算子为,试求出该系统的自然频率()。

答案:-1;-24.反卷积可以看作是卷积的逆运算。

答案:对5.单位冲激响应是指仅由单位冲激信号引起的系统零状态响应。

答案:对第三章1.方波信号傅里叶级数展开后缺少偶次谐波分量,这是因为方波是()。

答案:奇谐信号2.所有周期信号的频谱一定是收敛的。

答案:错3.信号若时域压缩则对应的频域也必将压缩。

答案:错4.u(-t)的傅里叶变换为答案:;5.已知抽样信号,对其进行采样,要使采样后的信号频谱不发生混叠现象,采样频率应为答案:第四章1.周期序列的频谱分布规律可用其DFS或DTFT表示,且二者结果相等。

答案:错2.已知序列x(n)的DTFT为,则等于()。

答案:2πX(0)3.实、偶序列的DTFT是()答案:实偶函数;共轭对称函数4.DFT可看作是DTFT在一个周期内N点等间隔采样点上的值。

答案:对5.对长度分别为5和10的序列x(n)、y(n)作10点DFT,得到X(k)和y(k),令则:n在()范围内时,f(n)等于x(n)和y(n)的线性卷积。

答案:第五章1.若,则。

答案:错2.下列说法不正确的是答案:H(s)的零点在左半平面所对应的响应函数为衰减的。

即当t→∞时,响应均趋于0。

3.已知某系统的系统函数H(s)=,则该系统一定是()答案:稳定系统4.下图是某电路的一部分,其中电感电容的初始状态均不为0,其复频域电路模型正确的是答案:5.下列特征方程对应的因果系统可能稳定的是()答案:s3+2008s2+2007s+2000=0第六章1.已知象函数,收敛域<3,则反变换z是()答案:2.离散序列的z变换是,收敛域是>1。

信号与系统课后习题答案—第章完整版

信号与系统课后习题答案—第章完整版

信号与系统课后习题答案—第章HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号哪些是离散信号哪些是周期信号哪些是非周期信号哪些是有始信号解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d );④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。

1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。

解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。

① 线性 1)可加性不失一般性,设f(t)=f 1(t)+f 2(t),则y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。

由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。

2)齐次性由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数)即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。

② 时不变特性由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|, 即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。

信号与系统课后习题答案

信号与系统课后习题答案

第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号哪些是离散信号哪些是周期信号哪些是非周期信号哪些是有始信号解: ① 连续信号:图a 、c 、d ; ② 离散信号:图b ; ③ 周期信号:图d ;④ 非周期信号:图a 、b 、c ; ⑤有始信号:图a 、b 、c;1-2 已知某系统的输入ft 与输出yt 的关系为yt=|ft|,试判定该系统是否为线性时不变系统; 解: 设T 为此系统的运算子,由已知条件可知: yt=Tft=|ft|,以下分别判定此系统的线性和时不变性; ① 线性 1可加性不失一般性,设ft=f 1t+f 2t,则y 1t=Tf 1t=|f 1t|,y 2t=Tf 2t=|f 2t|,yt=Tft=Tf 1t+f 2t=|f 1t+f 2t|,而|f 1t|+|f 2t|≠|f 1t+f 2t|即在f 1t →y 1t 、f 2t →y 2t 前提下,不存在f 1t +f 2t →y 1t +y 2t,因此系统不具备可加性; 由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性; 2齐次性由已知条件,yt=Tft=|ft|,则Taft=|aft|≠a|ft|=ayt 其中a 为任一常数即在ft →yt 前提下,不存在aft →ayt,此系统不具备齐次性,由此亦可判定此系统为一非线性系统;② 时不变特性由已知条件yt=Tft=|ft|,则yt-t 0=Tft-t 0=|ft-t 0|,即由ft →yt,可推出ft-t 0→yt-t 0,因此,此系统具备时不变特性; 依据上述①、②两点,可判定此系统为一非线性时不变系统; 1-3 判定下列方程所表示系统的性质: 解:a ① 线性 1可加性由 ⎰+=tdx x f dtt df t y 0)()()(可得⎪⎩⎪⎨⎧→+=→+=⎰⎰tt t y t f dxx f dt t df t y t y t f dxx f dt t df t y 01122011111)()()()()()()()()()(即即则即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性; 2齐次性由)()(t y t f →即⎰+=tdx x f dtt df t y 0)()()(,设a 为任一常数,可得 即)()(t ay t af →,因此,此系统亦具备齐次性; 由上述1、2两点,可判定此系统为一线性系统;② 时不变性)()(t y t f → 具体表现为:⎰+=tdx x f dtt df t y 0)()()( 将方程中得ft 换成ft-t 0、yt 换成yt-t 0t 0为大于0的常数,即 ⎰-+-=-tdx t x f dtt t df t t y 0000)()()( 设τ=-0t x ,则τd dx =,因此⎰--+-=-0)()()(00t t t d f dt t t df t t y ττ也可写成⎰--+-=-0)()()(00t t t dx x f dtt t df t t y , 只有ft 在t=0时接入系统,才存在)()(00t t y t t f -→-,当ft 在t ≠0时接入系统, 不存在)()(00t t y t t f -→-,因此,此系统为一时变系统;依据上述①、②,可判定此系统为一线性时变系统; b ① 线性 1可加性 在由)2()()(3)(2)(''''-+=++t f t f t y t y t y 规定的)()(t y t f →对应关系的前提下,可得 即由)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++可推出→−−→−⎭⎬⎫→→,系统满足可加性;2齐次性 由)()(t y t f →,即)2()()(3)(2)(''''-+=++t f t f t y t y t y ,两边同时乘以常数a,有 即)()(t ay t af→,因此,系统具备齐次性;由1、2可判定此系统为一线性系统;② 时不变性分别将)()(00t t f t t y --和t 0为大于0的常数代入方程)2()()(3)(2)(''''-+=++t f t f t y t y t y 左右两边,则左边=)(3)(2)(00202t t y dt t t dy dtt t y d -+-+- 而 ,)()()(000t t y dt d t t y t t d d -=-- )()]()([)(022000t t y dtd t t y t t d d t t d d -=---所以,右边=)(3)(2)(00202t t y dt t t dy dtt t y d -+-+-=左边,故系统具备时不变特性; 依据上述①、②,可判定此系统为一线性时不变系统; c ① 线性 1可加性在由式)(3)(2)(2)('''t f t y t ty t y =++规定的)()(t y t f →对应关系的前提下,可得即在)()()()(2211t y t f t y t f →→、的前提下,有式)()()()(2121t y t y t f t f +→+存在,即系统满足可加性;2齐次性 由)()(t y t f →,即)(3)(2)(2)('''t f t y t ty t y =++,两边同时乘以常数a,有)]([3)]([2)]([2)]([)(3)(2)(2)(''''''t af t ay t ay t t ay t af t ay t aty t ay =++⇒=++,即有 )()(t ay t af→,因此,系统具备齐次性;依据上述1、2,此系统为一线性系统; ② 时不变性分别将)()(00t t f t t y --和 t 0为大于0的常数代入方程)(3)(2)(2)('''t f t y t ty t y =++ 左右两边,则因此,系统是时变的;依据上述①、②,可判定此系统为一线性时变系统; d ① 线性 1可加性在由式)()()]([2't f t y t y =+规定的)()(t y t f →对应关系的前提下,可得而不是:)]()([)]()([})]'()({[2121221t f t f t y t y t y t y +=+++ 即在)()()()(2211t y t f t y t f →→、的前提下,并不存在)()()()(2121t y t y t f t f +→+因此系统不满足可加性,进而系统不具备线性特性;下面的齐次性判定过程可省略 2齐次性 由)()(t y t f →,即)()()]([2't f t y t y =+,两边同时乘以常数a,有)()()]([2't af t ay t y a =+,即式)]([)]([})]({[2't af t ay t ay =+不成立,不存在)()(t ay t af →因此,系统也不具备齐次性;单独此结论,也可判定此系统为一非线性系统; ② 时不变性分别将)()(00t t f t t y --和 t 0为大于0的常数代入方程)()()]([2't f t y t y =+ 左右两边,则即以式)()()]([2't f t y t y =+规定的)()(t y t f →关系为前提,存在)()(00t t y t t f -→-因此,系统是非时变的;依据上述①、②,可判定此系统为一线性时不变系统; 1-4 试证明方程)()()('t f t ay t y =+所描述的系统为线性系统;提示:根据线性的定义,证明满足可加性和齐次性; 证明:1证明齐次性2证明可加性由以上1、2,可知系统是线性的;1-5 试证明题1-4的系统满足时不变性;提示:将方程中的t 换为t-t 0,导出ft-t 0与yt-t 0对应; 证明:分别将)()(00t t f t t y --和 t 0为大于0的常数代入方程)()()('t f t ay t y =+ 左右两边,则即以式)()()('t f t ay t y =+规定的)()(t y t f →关系为前提,存在)()(00t t y t t f -→-因此,系统满足时不变性;1-6 试一般性的证明线性时不变系统具有微分特性;提示:利用时不变性和微分的定义推导; 证明:设线性时不变系统的激励与响应的对应关系为)()(t y t f →,则由线性可加性可得)()()()(t t y t y t t f t f ∆--→∆--因此tt t y t y t t t f t f ∆∆--→∆∆--)()()()(所以t t t y t y t t t f t f t t ∆∆--→∆∆--→∆→∆)()()()(lim lim即)()(''t y t f → 线性时不变系统具有微分特性;1-7 若有线性时不变系统的方程为)()()('t f t ay t y =+,若在非零ft 作用下其响应te t y --=1)(,试求方程)()(2)()(''t f t f t ay t y +=+的响应;解:已知tet y t f --=→1)()(,由线性关系的齐次性特性,有又由线性系统的微分特性,有 再由线性关系的可加性特性,可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 习 题
1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。

答案
(1))(1t f 的波形如图1.1(a )所示.
(2) 因t π10cos 的周期
s T 2.0102==
ππ
,故)(2t f 的波形如图题1.1(b)所示.
1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案
)1()]1()([)(1-+--=t u t u t u t t f
)]1()()[1()(2----=t u t u t t f
)]3()2()[2()(3----=t u t u t t f
1-3 写出图题1-3所示各信号的函数表达式。

答案
2
002121
)2(21121)2(21
)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f
)2()1()()(2--+=t u t u t u t f
)]
2()2([2sin )(3--+-=t u t u t t f π
)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f
1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);
(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。

答案
(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.
(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.
(3)
)
3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.
(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.
1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

)42cos(2)()
1(1π
-=t t f ;
2
2)]6[sin()()
1(π
-=t t f ; (3)
)
(2cos 3)(3t tU t f π=。

答案
周期信号必须满足两个条件:定义域R t ∈,有周期性,两个条件缺少任何一个,则就不是周期信号了.
(1) 是,
s T 32π=
.
(2)
)]32cos(1[213)(π--⨯=t t f ,故为周期信号,周期s
T ππ
==22.。

相关文档
最新文档