振动理论及应用期末复习题题
《大学物理》期末考试复习题(振动与波)
)
(A) 2 ;
答案:(D)
(B)
m1 m2
2
;
(C)
m2 m1
2
;
(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2
;
(B)
2 2
A 2 ;
(C)
3 2
A 2
;
(D)
3 2
A 2
。
一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.
《机械振动基础》期末复习试题5套含答案.doc
中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。
2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()的振动性质的基础。
5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。
二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。
(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。
(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。
13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。
{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。
(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。
(10 分) 4.简述线性多自由度系统动力响应分析方法。
(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。
振动考试题(带答案)
振动考试试卷一、选择题:(30分)在正确的答案后面打对号。
1、以下那些因素会引发轴承使用寿命达不到设计要求?(1)润滑不良(2)不对中(3)过载(4)转动惯量不平衡(5)轴承座松动(6)转速过低2、最简单的周期振动称为:(1)简谐振动(2)阻尼震动(3)共振3、振动三要素包括:振幅、()和()(1)时间(2)频率(3)相位4、简谐振动公式:F=kx,k反映了系统的:(1)刚度(2)挠度(3)硬度5、振动问题都可以简化为一个含有基本参数m()、c(阻尼)、k(刚度)的系统模型。
(1)m(质量)(2)T(惯量)(3)F(外力)6、以下三种振动传感器哪一种响应最快?(1)位移型(2)速度型(3)加速度型7、两种分析振动的基本频谱是时域谱和()(1)质量谱(2)频域谱(3)色谱8、不平衡震动的特点是:(1)通常水平方向的振幅大于垂直方向的幅值、振幅随转速增加而增加、振动主要发生在1倍频(2)通常垂直方向的振幅大于水平方向的幅值、振幅随转速增加而增加、振动主要发生在1倍频(3)通常水平方向的振幅大于垂直方向的幅值、振幅随转速增加而减少、振动主要发生在1倍频9、不平衡分为:静不平衡、()、动不平衡(1)奇不平衡(2)偶不平衡(3)简谐不平衡10、不对中类型:平行不对中,(),综合不对中。
(1)角度不对中(2)垂直不对中(3)距离不对中二、问答题(20分)提高转速能否区分不对中和不平衡振动?为什么?答:能,区分不对中和不平衡的一个方法是提高机器的转速。
如果是不平衡,振幅的增加会与速度的平方成正比;反之,不对中引起的振动却不会随速度发生变化。
三、频域谱分析题(30分)1、判断以下频域谱,哪个是转子不平衡、哪个是轴弯曲、哪个是轴承座松动?频谱1判断为(转子不平衡)频谱2判断为(轴弯曲)频谱3判断为(轴承座松动)四、时域谱分析题(20分)以下时域谱中,哪个是轴承外滚道损伤?哪个是内滚道损伤?判断为(外滚道损伤)判断为(内滚道损伤)。
最经典机械振动总结、试题及答案(全)
最经典机械振动总结、试题及答案(全)一、简谐运动(一)知识要点1.定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F = -kx⑴简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
⑵回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
⑶“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)⑷F=-kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x 、回复力F 、加速度a 、速度v 这四个矢量的相互关系。
⑴由定义知:F ∝x ,方向相反。
⑵由牛顿第二定律知:F ∝a ,方向相同。
⑶由以上两条可知:a ∝x ,方向相反。
⑷v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。
3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。
⑴振幅A 是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的) ⑵周期T 是描述振动快慢的物理量。
(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
任何简谐振动都有共同的周期公式:km T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。
振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年
振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年1.振动问题属于动力学问题中的第二类问题,即已知主动力求()。
答案:运动2.振动是指物体在平衡位置附近所做的()。
答案:往复运动3.弹簧串联、等效刚度(),弹簧并联,等效刚度()。
答案:减小增加4.在建立单自由度弹簧—质量系统的运动微分方程时,当选择物块的静平衡位置为坐标原点,假设x轴正方向垂直向下,则物块的位移、速度和加速度的正方向如何确定()。
答案:都垂直向下5.质点或质点系的运动相互影响的现象叫做()。
答案:耦联6.激振力与受迫振动的位移相位差为()时,振动系统达到共振状态。
答案:90°7.小车重P在斜面自高度h处滑下与缓冲器相撞,斜面倾角为α,缓冲弹簧刚度系数为k。
如缓冲质量不计,斜面摩擦不计,小车碰撞后,系统的自由振动周期为()。
答案:8.在图示振动系统中,已知重为P的AB杆对O轴的回转半径为ρ,物块重为Q,两个弹簧的刚度系数均为k,当系统静止时,杆处于水平。
则此系统微振动的圆频率为:()答案:9.关于主振型的正交性,下列说法错误的是()答案:零固有圆频率对应的主振型不与系统的其他主振型关于质量矩阵和刚度矩阵正交10.关于主振型矩阵和正则振型矩阵的关系是()。
答案:将主振型矩阵的各列除以其对应主质量矩阵元素的平方根,得到的振型就是正则振型11.关于主振型矩阵和正则振型矩阵下列说法错误的是()。
答案:将主振型矩阵的各列除以其对应主刚度的平方根,得到的振型就是正则振型12.瑞利第一商用()方程求解,瑞利第二商用()方程求解。
答案:作用力位移13.瑞利法估算基频的结果是精确值的(),邓克莱法估算基频的结果是精确值的()答案:上限下限14.子空间迭代法是将()与()结合起来的计算方法,它对自由度数较大系统的前若干阶固有频率及主振型非常有效。
答案:里兹法矩阵迭代法15.一维单元应变位移关系矩阵B为:()答案:16.在杆的纵向振动中,要考虑的边界条件是()答案:位移和轴向力17.以下不属于梁横向振动的近似解法的是()答案:传递矩阵法18.下列哪些是主动控制的特点()。
机械行业振动力学期末考试试题
机械行业振动力学期末考试试题第一大题:单自由度振动1.无阻尼自由振动系统,在初始时刻位移为A,速度为0,求解该振动系统的解析解。
2.阻尼比为0.2的单自由度振动系统受到正弦激励力,激励力的频率为系统固有频率的两倍,求解该振动系统的响应。
3.阻尼比为0.5的单自由度振动系统受到冲击激励力,激励力的持续时间为0.1秒,求解该振动系统的响应。
第二大题:多自由度振动1.有两个自由度的系统,求解其固有频率和模态振型。
2.有三个自由度的系统,求解其固有频率和模态振型。
3.给定一个多自由度振动系统的质量矩阵和刚度矩阵,求解其特征值和特征向量,进而得到固有频率和模态振型。
第三大题:振动测量与分析1.请列举常用的振动测量仪器,并对其原理进行简要说明。
2.振动信号的采样频率应该如何选择?请解释原因。
3.请说明振动信号的功率谱密度函数,并给出其计算公式。
4.请解释振动传感器的灵敏度是什么意思,并给出其计算公式。
第四大题:振动控制1.请说明主动振动控制和被动振动控制的区别。
2.请解释模态分析在振动控制中的作用。
3.请列举常用的振动控制方法,并对其原理进行简要说明。
第五大题:振动摆1.请列举用振动摆进行的实验,并对其原理进行简要说明。
2.请解释摇摆周期与摆长的关系,并给出相关公式。
3.一个摆长为1m的振动摆,其重力加速度为9.8m/s^2,求解其摇摆周期。
本文档由Markdown格式输出。
Markdown是一种轻量级的标记语言,常用于编写文档和博客。
可通过Markdown编辑器进行编辑和输出。
以上是机械行业振动力学期末考试试题的内容。
希望对您的学习有所帮助!。
期末测试的题目(振动和波动、热学)
大 学 物 理 期 末 测 试 题专业________________班级______________学号____________姓名________________一、选择题(一)振动和波动部分1. 一弹簧振子,当把它水平放置时,它作简谐振动。
若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。
提示:两种情况都作简谐振动,平衡位置会变化。
2. 两个简谐振动的振动曲线如图所示,则有 ( A )(A )A 超前π/2; (B )A 落后π/2; (C )A 超前π; (D )A 落后π。
3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( B )(A )T /4; (B )T /12; (C )T /6; (D )T /8。
4. 分振动方程分别为)25.050cos(31ππ+=t x 和)75.050cos(42ππ+=t x (SI 制)则它们的合振动表达式为: ( D )(A ))25.050cos(2ππ+=t x ; (B ))50cos(5t x π=; (C ))71250cos(51-++=tg t x ππ; (D )()15cos 507x t tg π-=-。
5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ∆和2l ∆,且1l ∆=22l ∆,两弹簧振子的周期之比T 1:T 2为 ( B )(A )2; (B )2; (C )21; (D )2/1。
6. 一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。
x =0处,质点振动曲线如图所示,则该波的表式为 ( B )(A ))2202cos(2πππ++=x t y m ; (B ))2202cos(2πππ-+=x t y m ;(C ))2202sin(2πππ++=x t y m ; (D ))2202sin(2πππ-+=x t y m 。
机械振动期末试题及答案
机械振动期末试题及答案1. 选择题1.1 哪种情况下,系统的振动是简谐振动?A. 有耗尽能量的情况B. 存在非线性的力恢复系统中C. 无外部干扰D. 系统的振幅随时间而增长答案:C1.2 振动系统达到稳态的条件是:A. 初始位移为零B. 扰动力为零C. 初始速度为零D. 振幅随时间减小答案:B1.3 一个简谐振动的周期与振幅的关系是:A. 周期与振幅无关B. 周期与振幅成正比C. 周期与振幅成反比D. 周期与振幅正弦相关答案:A2. 判断题2.1 简谐振动的周期和角频率之间满足正比关系。
A. 对B. 错答案:B2.2 简谐振动的中心力是恒力。
A. 对B. 错答案:A2.3 当振动系统有阻尼情况时,振幅会随时间增大。
A. 对B. 错答案:B3. 简答题3.1 什么是简谐振动?它的特点是什么?答案:简谐振动是指振动系统在没有外力干扰的情况下,其平衡位置附近以某一频率固定幅度上下振动的现象。
它的特点包括振动周期与振幅无关,且系统的振动可由正弦或余弦函数进行描述。
3.2 请简要说明受迫振动的原理。
答案:受迫振动是指振动系统在外力作用下的振动。
外力的频率与系统的固有频率相近或相等时,会发生共振现象。
在共振时,外力的能量会以最大幅度传递给振动系统,导致振动幅度增大。
4. 计算题4.1 一个弹簧振子平衡位置附近的势能函数为U(x) = 4x^2 + 3,求振子的振动周期。
答案:根据简谐振动的势能函数表达式,势能函数为U(x) =1/2kx^2,其中k为弹簧的劲度系数。
将已知的势能函数与标准表达式进行比较,可得4x^2 = 1/2kx^2,解得k = 8。
由振动周期公式T =2π√(m/k),代入m和k的值,可计算出振子的振动周期。
5. 算法题设计一个程序,计算一个简谐振动系统的振动频率和振幅,并将结果打印输出。
// 输入参数float k; // 弹簧的劲度系数float m; // 系统的质量// 计算振动频率float omega = sqrt(k / m);// 计算振幅float A = 1; // 假设振幅为1// 打印输出结果print("振动频率:", omega);print("振幅:", A);经过以上计算,我们可以得到一个简谐振动系统的振动频率和振幅。
振动理论练习题
第1章练习题题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。
(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。
题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。
题1.2图题1.3图题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。
试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。
题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。
题1.4图题1.5图题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。
题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。
AB杆为刚性,本身质量不计。
题1.6图题1.7图题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。
题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。
求此系统的相对阻尼系数ζ。
题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。
(1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。
试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。
题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。
(完整word版)振动与波复习题及答案
第九章振动复习题1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max /x m k v =. (B) x mg k /=.(C) 22/4T m k π=. (D) x ma k /=. [ B ] 2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为(A) g l π2. (B) gl22π.(C) g l 322π. (D) gl 3π. [ C ] 3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2. (C) 0 . (D) θ. [ C ]4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x .(C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ B ][ ]6. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3. [ ]7. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ] 8. 一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x(C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A xv 21(E) t m /k A x cos = [ B ] 9. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为(A) 1 s . (B) (2/3) s .(C) (4/3) s . (D) 2 s . [ B ]10.一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D)2321ωA . [ B ] 11. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ B ]12. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ B ]13. 一简谐振动曲线如图所示.则振动周期是(A) 2.62 s . (B) 2.40 s .(C) 2.20 s .(D) 2.00 s . [ B ]A21-A21-A21 21A21 AA21-A21-2115. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为(A) π/6. (B) π/3.(C) π/2. (D) 2π/3. (E) 5π/6.[ A ]17. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ D ]18 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2. (B)221kA . (C) (1/4)kA 2. (D) 0. [ D ]19. 一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1.(D) 2:1. (E) 4:1. [ D ]20.动的初相为 (A) π23. (B) π.(C) π21. (D) 0. [ B ] 二. 填空题21. 在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为 (a) ______________________________;(b) ______________________________;(c) ______________________________.23. 在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振 动的周期之比为___2:1___.24. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有 正最大值的那一时刻为t = 0,则振动表达式为_____50.02cos()22x t π=-___.25. 一物体作余弦振动,振幅为15×10-2m ,角频率为6π s -1,初相为0.5 π,则21--(c)A/ -A 2cos()2x A t T ππ=+2cos()2x A t T ππ=+2cos()x A t T ππ=+振动方程为 __0.15cos(6)2x t ππ=+(SI).27. 一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =____0.05m_________ ,初相φ =____3arcsin 5-____________.30. 已知两个简谐振动的振动曲线如图所示.两简谐振动的最大速率之比为_______1:1__________.31.则此简谐振动的三个特征量为A =_____0.1m________;ω =_____/6rad s π_____;φ =_____3π__________. .34. 已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =10cos t π______________________, x 2 =10cos()2t ππ- _____________________,x 3 =10cos()t ππ+_______________________.37.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为_____4π_______.振动方程为__0.02cos()4x t ππ=+____________.41. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振 幅为0.5 cm ,则其振动能量为______1002πJ________.43. 一弹簧振子系统具有1.0 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率,t x (cm)则弹簧的劲度系数为____200N/m_______,振子的振动频率为_5πHZ________. 44.两个同方向的简谐振动曲线如图所示.合振动的振幅 为______21A A -___________,合振动的振动方程 为_____212()cos()2x A A t T ππ=-+______. 50. 一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___0.01m________,初相为____6π_____.第十章波复习题一、选择题1. 在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计). (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计)[ C ]2. 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ] 3.一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5s 时刻的波形图是 [ A ]·---4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 [ D ](A) A 点振动速度大于零. (B) B 点静止不动. (C) C 点向下运动. (D) D 点振动速度小于零.5. 把一根十分长的绳子拉成水平,用手握其一端.维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长. (B) 振动频率越低,波长越长.(C) 振动频率越高,波速越大. (D) 振动频率越低,波速越大.[ B ] 6. 一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为: (A) 0. (B)π21(C) π (D)π23(或π-21) [ B ]7. 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为(A) ])/(cos[0φω+-=u x t A y .(B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y . (D)})]/([cos{0φω++=u x t A y . [ C ]8.如图所示为一平面简谐波在t = 0 时刻的波形图,该波的波速u = 200 m/s ,则P 处质点的振动曲线为[ C ]9. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是 [ A ]xy Ouy(m)ωSA ϖO ′ωSA ϖO′ωϖO ′ωSAϖO ′(A)(B)(C)(D)S10. 一平面简谐波沿Ox 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处介质质点的振动方程是(A))314cos(10.0π+π=t y P (SI).(B) )314cos(10.0π-π=t y P (SI). (C) )312cos(10.0π+π=t y P (SI).(D) )612cos(10.0π+π=t y P (SI). [ A ]11. 图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则P 处质点的振动速度表达式为 [ C ](A))2cos(2.0π-ππ-=t v (SI). (B) )cos(2.0π-ππ-=t v (SI). (C) )2/2cos(2.0π-ππ=t v (SI).(D) )2/3cos(2.0π-ππ=t v (SI).12.在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B)A 1 / A 2 = 4.(C) A 1 / A 2 = 2.(D) A 1 / A 2 = 1 /4. [ C ] 13. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f . [ B ]14. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [C ] 15. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中(A) 它的势能转换成动能. (B) 它的动能转换成势能. (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.[ C ] 16. 如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为)212cos(1π+π=t A y ,则S 2的振动方程为(A) )212cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C) )212cos(2π+π=t A y . (D) )1.02cos(22π-π=t A y . [ D ]S17. 两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) π. (D) π23. [ C ] 18. S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0.(C) 0,4I 0 . (D) 4I 0,0. [ A ] 19 在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ B ] 20 在波长为λ 的驻波中,两个相邻波腹之间的距离为 (A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ B ] 21.沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是 (A) A . (B) 2A .(C))/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]二、填空题22.一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B_____________ ;C ______________ . 23. 一平面简谐波的表达式为)37.0125cos(025.0x t y -= (SI),其角频率ω =__________________________,波速u =______________________,波长λ = _________________.24. 频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为________________.25. 图为t = T / 4 时一平面简谐波的波形曲线,则其波的表达式为 ______________________________________________.26、一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.S 1S 2Pλ/4-xOP 1P 227、一简谐波沿x 轴正方向传播.x 1和x 2两点处的振动曲线分别如图(a)和(b)所示.已知x 2 .> x 1且x 2 - x 1 < λ(λ为波长),则x 2点的相位比x 1点的相位滞后___________________.28、已知某平面简谐波的波源的振动方程为t y π=21sin 06.0(SI),波速为2 m/s .则在波传播前方离波源 5 m 处质点的振动方程为_-______________________.29、(1)一列波长为λ 的平面简谐波沿x 轴正方向传播.已知在λ21=x处振动的方程为y = A cos ω t ,则该平面简谐波的表达式为______________________________________. (2) 如果在上述波的波线上x = L (λ21>L)处放一如图所示的反射面,且假设反射波的振幅为A ',则反射波的表达式为 _______________________________________ (x ≤L ).30、一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)cos(φω+=t A y ,若波速为u ,则此波的表达式为 _________________________________________________________. 31、一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积∆S 1和∆S 2,则通过它们的平均能流之比=21P /P ___________________.32、一点波源发出均匀球面波,发射功率为4 W .不计媒质对波的吸收,则距离 波源为2 m 处的强度是__________________.33、如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3λ 和10 λ / 3 ,λ 为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P 点的振动频率___________,波源S 1 的相位比S 2 的相位领 先_________________.34、如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是λ ,则P 点振幅A =_________________________________________________________. 35、两相干波源S 1和S 2的振动方程分别是tA y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.36、 S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(λ为波长)如图.已知S 1的初相为π21. (1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的 振动均干涉相消,则S 2的初位相应为_______________________.(a)(b)PS S1237、 两列波在一根很长的弦线上传播,其表达式为 y 1 = 6.0×10-2cos π(x - 40t ) /2 (SI) y 2 = 6.0×10-2cos π(x + 40t ) /2 (SI)则合成波的表达式为__________________________________________________; 在x = 0至x = 10.0 m 内波节的位置是_____________________________________ __________________________________;波腹的位置是________________________________________________________. 38、设入射波的表达式为)(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为固定端,则形成的驻波表达式为____________________________________. 39、 一驻波表达式为t x A y ππ=100cos 2cos .位于x 1 = 3 /8 m 的质元P 1与位于x 2 = 5 /8 m 处的质元P 2的振动相位差为_____________________________. 40、 在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.。
振动力学期末考试试题和答案
振动力学(试题) 2008一、填空(每空2分)1、设周期振动信号的周期为T,则其傅里叶级数的展开的基频为____2、单自由度粘性阻尼系统的阻尼因子ζ与阻尼系数的关系为___3、单自由度粘性阻尼系统在简谐力0sinp tω作用下系统响应的稳态振动的幅值为___4、粘性阻尼一周期内所消耗的能量与频率成___比。
5、无阻尼多自由度系统的主振型正交关系为______6、写出多自由度系统再频率域的输入与输出之间的关系_____7、写出瑞利商的表达式______8、多自由度系统中共存在r个主固有频率,其相应的主振型___正交。
9、无阻尼多自由度系统,利用里兹法计算出的主振型关于M、K是否正交?___(答是或否)10、写出如图T-1所示梁的左端边界条件__________图T-1二、(20分)系统如图T-2所示,杆AB 为刚性、均质,长度为L ,总质量为m ,弹簧刚度为k ,阻尼系数为c 。
求系统的固有频率及阻尼因子。
三、系统如图T-3所示。
求系统的固有频率与主振型。
图T-23图T-3四、五、(20分)简支梁如图T-5所示,弹性模量为E ,质量密度为 ,横截面积为A ,截面惯性矩为J 。
求梁在中央受集中弯矩M 下的响应。
(假设梁的初始状态为零)图T-5答案一、填空(每空2分)1、周期振动信号的周期为T ,则其傅里叶级数的展开的基频为2/T π2、单自由度粘性阻尼系统的阻尼因子ζ与阻尼系数的关系为ζ=3、单自由度粘性阻尼系统在简谐力0sin p t ω作用下系统响应的稳态振动的幅值为0p B k =4、粘性阻尼一周期内所消耗的能量与频率成_正_比。
5、无阻尼多自由度系统的主振型正交关系为 加权(M,K )正交:0()()T T i j pi i j M M i j ϕϕ≠⎧=⎨=⎩0()()T Ti j pi i j K K i j ϕϕ≠⎧=⎨=⎩ 6、写出多自由度系统在频率域的输入与输出之间的关系()()()x H P ωωω=其中21()()H K M i C ωωω-=-+7、写出瑞利商的表达式 ()T T X KXR X X MX=8、多自由度系统中共存在r 个重固有频率,其相应的主振型_?加权(M,K )正交。
机械振动基础期末考试卷
机械振动基础期末考试卷题目:机械振动基础期末考试卷一、选择题1. 机械振动的定义是什么?a. 物体在响亮的声音中发生摆动b. 物体在倾斜的表面上运动c. 物体在平衡位置附近的来回运动d. 物体围绕一个固定点旋转答案:c. 物体在平衡位置附近的来回运动2. 什么是自由振动?a. 机械振动源自外力的作用b. 物体在空气中飘浮运动c. 没有外界干扰下的振动d. 物体受到弹簧的牵引答案:c. 没有外界干扰下的振动3. 以下哪个量不是描述振动速度的?a. 频率b. 振幅c. 距离d. 波长答案:c. 距离4. 当一个物体受到周期性外力作用时,发生受迫振动,这类振动的特点是?a. 振幅不固定b. 振动频率与外力频率一致c. 没有固定的平衡位置d. 振动不受外力干扰答案:b. 振动频率与外力频率一致5. 振幅越大,振动的能量越大,对吗?a. 对b. 错答案:a. 对二、简答题1. 什么是简谐振动?简谐振动的特点是什么?答案:简谐振动是指物体受到恢复力作用,并且恢复力与位移成正比的振动。
简谐振动的特点包括振幅恒定、周期固定、频率稳定、能量守恒等。
2. 请简要说明自由振动和受迫振动的区别?答案:自由振动是物体在没有外界干扰下的振动,由初始位移和初速度决定。
受迫振动是物体受到外界周期性力作用导致的振动,振动频率与外力频率一致。
三、计算题1. 一个简谐振动的物体质量为2kg,弹簧劲度系数为100N/m,振幅为0.1m,求振动的周期。
答案:振动周期T = 2 * π * sqrt(m / k)其中,m = 2kgk = 100N/mT = 2 * π * sqrt(2 / 100)T ≈ 0.89s2. 一根弹簧的振动频率为10Hz,质量为0.5kg,求弹簧的劲度系数是多少?答案:振动频率f = 1 / 2π * sqrt(k / m)其中,f = 10Hzm = 0.5kgk = ?k = (2πf)^2 * mk = (2π*10)^2 * 0.5k = 628N/m以上为机械振动基础期末考试卷的答案,请同学们核对自己的答案,祝顺利通过考试!。
振动理论及应用期末复习题题汇总
2008年振动力学期末考试试题第一题(20分)1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。
当AB 杆处于水平时为系统的静平衡位置。
试采用能量法求系统微振时的固有频率。
解:系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。
AB 转角:L y /=ϕ 系统动能:m 1动能:21121y m T =m 2动能:222222222222)31(21))(31(21)31(2121y m L y L m L m J T ====ϕω m 3动能:232232333)21(21))(21(2121ym R y R m J T ===ω 系统势能:221)21(21)21(y k y g m gy m V ++-=在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:E y k gy m gy m ym m m V T =++-++=+2212321)21(2121)2131(21 上式求导,得系统的微分方程为:E y m m m ky'=+++)2131(4321固有频率和周期为:)2131(43210m m m k++=ω2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。
试采用能量法求系统的固有频率。
解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。
物体B 动能:22121x m T =x轮子与地面接触点为速度瞬心,则轮心速度为x v c 21=,角速度为x R21=ω,转过的角度为x R21=θ。
振动力学_上海交通大学中国大学mooc课后章节答案期末考试题库2023年
振动力学_上海交通大学中国大学mooc课后章节答案期末考试题库2023年1.对于任意初始激励,二自由度系统的响应都是两个主振型的叠加。
答案:正确2.如图所示的系统中,四个物体的质量均为m,由三根刚度系数均为k的弹簧连接,系统的刚度矩阵为:【图片】答案:3.如图所示两自由度系统,系统的固有频率分别为【图片】和【图片】。
系统的模态矩阵为:【图片】答案:4.如图所示两自由度系统,系统的固有频率分别为【图片】和【图片】,系统的模态矩阵为【图片】,系统存在初始条件【图片】和【图片】。
系统的响应分别为:【图片】答案:5.如图所示柔性悬臂梁,梁两端的物理边界条件为:【图片】答案:左端挠度为零、截面转角为零,右端弯矩为零、剪力为零6.一个无阻尼单自由度弹簧质量系统,在【图片】时间间隔内受到如图所示的突加的矩形脉冲力作用【图片】,已知系统的固有频率为【图片】。
采用杜哈梅积分所求得的系统响应为:【图片】答案:7.如图所示等截面梁,长度为l,弹性模量为E,横截面对中性轴的惯性矩为I,梁材料密度为【图片】。
集中质量为m,卷簧刚度为【图片】,直线弹簧刚度为【图片】。
【图片】为梁x位置的截面在t时刻的振动位移。
写出系统的动能和势能表达式:动能为(),势能为()。
【图片】答案:_8.只有一个机械系统的全部元件即弹簧、质量块和阻尼都是非线性的,这个系统的振动才是非线性振动答案:错误9.单自由度线性振动系统有可能会有两个及以上的固有频率。
答案:错误10.粘性阻尼系统的运动微分方程是非线性的。
答案:错误11.无阻尼单自由度系统的振幅随时间变化答案:错误12.对于一个单自由度振动系统,假定系统受到简谐外部激励的作用,如下说法正确的是答案:系统的稳态响应是以外部激励的频率为振动频率进行振动的13.叠加原理适用于线性振动系统分析,也适用于非线性振动系统分析。
答案:错误14.如下说法是否正确:柔性悬臂梁的固有频率和模态函数可以通过梁的动力学方程求得。
(完整版)大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
(完整版)机械振动知识点及习题练习+单元练习(含答案)
1、简谐运动的概念①简谐运动的定义:____________________________________________________________。
②简谐运动的物体的位移x、回复力F、加速度a、速度v、动能E K、势能E P的变化规律:A.在研究简谐运动时位移的起点都必须在处。
B.在平衡位置:位移最、回复力最、加速度最;速度最、动能最。
C.在离开平衡位置最远时:_________________________________________。
D.振动中:注意以上各量的矢量性和对称性。
③简谐运动机械能守恒,但机械能守恒的振动不一定时简谐运动。
④注意:A.回复力是效果力。
B.物体运动到平衡位置不一定处于平衡状态(如单摆,最低点有向心力)。
C.简谐运动定义式F=-K x中的K不一定是弹簧的劲度系数,是振动系数(如双弹簧)。
1.A关于回复力,下列说法正确的是( )A.回复力一定是物体受到的合外力B.回复力只能是弹簧的弹力提供C.回复力是根据力的作用效果命名的D.回复力总是指向平衡位置答案:CD2.A下列的运动属于简谐运动的是( )A.活塞在气缸中的往复运动B.拍皮球时,皮球的上下往复运动C.音叉叉股的振动D.小球在左右对称的两个斜面上来回滚动答案:C3.A一质点做简谐运动,当位移为正的最大值时,质点的( )A.速度为正的最大值,加速度为零B.速度为负的最大值,加速度为零C.速度为零,加速度为正的最大值D.速度为零,加速度为负的最大值答案:D4.A关于简谐运动的位移、加速度和速度的关系,正确的说法是( )A.位移减小时,加速度增大,速度增大B.位移方向总和加速度方向相反,和速度方向相同C.物体的速度增大时,加速度一定减小D.物体向平衡位置运动时,速度方向和位移方向相同答案:C6.B关于简谐运动中的平衡位置,下列说法正确的是( )A.平衡位置就是物体所受合外力为零的位置B.平衡位置就是加速度为零的位置C.平衡位置就是回复力为零的位置D.平衡位置就是受力平衡的位置答案:C7.B一平台沿竖直方向做简谐运动,一物体置于平台上随台一起运动,当振动平台处于什么位置时,物体对台面的压力最大( )A.振动平台在最高位置时B.振动平台向下振动经过平衡位置时C.振动平台在最低位置时D.振动平台向上运动经过平衡位置时答案:C8.B简谐运动是下列哪一种运动( )A.匀速直线运动B.匀加速运动C.匀变速运动D.变加速运动答案:D9.B做简谐运动的物体每次经过同一位置时,一定相同的物理量是( )A.速度B.位移C.回复力D.加速度答案:BCD10.B 对于弹簧振子,其回复力和位移的关系,在下图中正确的是()答案:C11.C 对简谐运动的回复力F=-kx 的理解,正确的是()A.k 只表示弹簧的劲度系数B.式中负号表示回复力总是负值C.位移x 是相对平衡位置的位移D.回复力只随位移变化,不随时间变化答案:C12.C 弹簧振子的质量是0.2kg,在水平方向做简谐运动,当它运动到平衡位置左侧x 1=2cm 的位置时,受到的回复力大小F 1=4N,则当它运动到平衡位置右侧x 2=4cm 的位置时,它的加速度是()A.20m/s 2,方向向左 B20m/s 2,方向向右C.40m/s 2,方向向左 D.40m/s 2,方向向右答案:C二、计算题(共16分)13.C 试证明:用轻弹簧悬挂一个振子,让它在竖直方向振动起来,在弹性限度内,振子是做简谐运动.(如图)答案:设振子的平衡位置为O,令向下为正方向,此时弹簧的形变为x 0,根据胡克定律及平衡条件有mg-kx 0=0.当振子向下偏离平衡位置x 时,有F=mg-k(x+x 0) 整理可得F=-kx(紧扣简谐运动特征及对称性)故重物的振动满足简谐运动的条件 2、总体上描述简谐运动的物理量①振幅A :_ _称为振幅。
大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
振动力学考题集[]资料讲解
振动力学考题集[]1、四个振动系统中,自由度为无限大的是()。
A. 单摆;B. 质量-弹簧;C. 匀质弹性杆;D. 无质量弹性梁;2、两个分别为c1、c2的阻尼原件,并连后其等效阻尼是()。
A. c1+c2;B. c1c2/(c1+c2);C. c1-c2;D. c2-c1;3、()的振动系统存在为0的固有频率。
A. 有未约束自由度;B. 自由度大于0;C. 自由度大于1;D. 自由度无限多;4、多自由度振动系统中,质量矩阵元素的量纲应该是()。
A. 相同的,且都是质量;B. 相同的,且都是转动惯量;C. 相同的,且都是密度;D. 可以是不同的;5、等幅简谐激励的单自由度弹簧-小阻尼-质量振动系统,激励频率()固有频率时,稳态位移响应幅值最大。
A. 等于;B. 稍大于;C. 稍小于;D. 为0;6、自由度为n的振动系统,且没有重合的固有频率,其固有频率的数目(A )。
A. 为n;B. 为1;C. 大于n;D. 小于n;7、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Mu(s)的值一定()。
A. 大于0;B. 等于0;C. 小于0;D. 不能确定;8、无阻尼振动系统的某振型u(r),u(r)T Ku(r)的值一定()。
A. 大于0;B. 等于0;C. 小于0;D. 不能确定;9、如果简谐激励力作用在无约束振动系统的某集中质量上,当激励频率为无限大时,该集中质量的稳态位移响应一定()。
A. 大于0;B. 等于0;C. 为无穷大;D. 为一常数值;10、相邻固有频率之间的间隔呈近似无限等差数列的振动系统是()。
A. 杆的纵向振动;B. 弦的横向振动;C. 一般无限多自由度系统;D. 梁的横向振动;11、两个刚度分别为k1、k2串连的弹簧,其等效刚度是()。
A. k1+k2;B. k1k2/(k1+k2);C. k1-k2;D. k2-k1;12、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Ku(s)的值一定()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年振动力学期末考试试题第一题(20分)1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。
当AB 杆处于水平时为系统的静平衡位置。
试采用能量法求系统微振时的固有频率。
解:系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。
AB 转角:L y /=ϕ 系统动能:m 1动能:21121y m T =m 2动能:222222222222)31(21))(31(21)31(2121y m L y L m L m J T ====ϕω m 3动能:232232333)21(21))(21(2121ym R y R m J T ===ω 系统势能:221)21(21)21(y k y g m gy m V ++-=在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:E y k gy m gy m ym m m V T =++-++=+2212321)21(2121)2131(21 上式求导,得系统的微分方程为:E y m m m ky'=+++)2131(4321固有频率和周期为:)2131(43210m m m k++=ω2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。
试采用能量法求系统的固有频率。
解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。
物体B 动能:22121x m T =轮子与地面接触点为速度瞬心,则轮心速度为x v c 21=,角速度为x R21=ω,转过的角度为x R21=θ。
轮子动能: )83(21)41)(21(21)41(212121212221212212x m x RR m xm J v m T c =+=+=ω 系统势能:22228)21(21)(2121x kxR R k R k kx V c ====θ 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有:E x kxm m V T =++=+22218)83(21上式求导得系统的运动微分方程:083221=++x m m kx固有频率为:210832m m k+=ω第二题(20分)1、在图示振动系统中,重物质量为m ,外壳质量为2m ,每个弹簧的刚度系数均为k 。
设外壳只能沿铅垂方向运动。
采用影响系数方法:(1)以x 1和x 2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。
解:系统为二自由度系统。
当x1=1,x2=0时,有:k11=2k ,k21=-2k 当x2=1,x2=1时,有:k22=4k ,k12=-2k 因此系统刚度矩阵为:⎥⎦⎤⎢⎣⎡--k k k k 4222 系统质量矩阵为:⎥⎦⎤⎢⎣⎡m m 200 系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0042222002121x x k k k k xx m m频率方程为:024222)(Δ22=----=ωωωm k kkm k 解出系统2个固有频率:m k )22(21-=ω,mk )22(22+=ω2、在图示振动系统中,物体A 、B 的质量均为m ,弹簧的刚度系数均为k ,刚杆AD 的质量忽略不计,杆水平时为系统的平衡位置。
采用影响系数方法,试求:(1)以x 1和x 2为广义坐标,求系统作微振动的微分方程;(2)系统的固有频率方程。
解:系统可以简化为二自由度振动系统,以物体A 和B 在铅垂方向的位移x 1和x 2为系统的广义坐标。
当x1=1,x2=0时,AD 转角为L 3/1=θ,两个弹簧处的弹性力分别为L k θ和L k θ2。
对D 点取力矩平衡,有:kL k 91411=;另外有kL k -=21。
同理,当x2=1,x2=1时,可求得:kL k =22,kL k -=12 因此,系统刚度矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡--kL kL kL kL 914 系统质量矩阵为:⎥⎦⎤⎢⎣⎡m m 00 系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00914002121x x kL kL kL kL x x m m频率方程为:091422=----ωωm kL kLkL m kL即:0523922242=+-L k kmL m ωω第三题(20分)在图示振动系统中,已知:物体的质量m 1、m 2及弹簧的刚度系数为k 1、k 2、k 3、k 4。
(1)采用影响系数方法建立系统的振动微分方程;(2)若k 1= k 3=k 4= k 0,又k 2=2 k 0,求系统固有频率;(3)取k 0 =1,m 1=8/9,m 2 =1,系统初始位移条件为x 1(0)=9和x 2(0)=0,初始速度都为零,采用模态叠加法求系统响应。
解:(1)系统可以简化为二自由度振动系统。
当x1=1,x2=0时,有:k11=k1+k2+k4,k21=-k2x x当x2=1,x2=1时,有:k22=k2+k3,k12=-k2。
因此,系统刚度矩阵为:⎥⎦⎤⎢⎣⎡+--++3222421k k k k k k k系统质量矩阵为:⎥⎦⎤⎢⎣⎡2100m m 系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--+++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00002132224212121x x k k k k k k k x xm m(2)当0431k k k k ===,022k k =时,运动微分方程用矩阵表示为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡003224002100002121x x k k k k x xm m 频率方程为:04)3)(4(20220210=---k m k m k ωω 08)43(202021421=++-k k m m m m ωω求得:)168943(22221212121021m m m m m m m m k +--+⋅=ω)168943(22221212121022m m m m m m m m k +-++⋅=ω(3)当k 0=1,m 1=8/9,m 2 =1时,系统质量阵:⎥⎥⎦⎤⎢⎢⎣⎡=10098M 系统刚度阵:⎥⎦⎤⎢⎣⎡--=3224K固有频率为:2321=ω,622=ω 主模态矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡-=112343Φ 主质量阵:⎥⎥⎦⎤⎢⎢⎣⎡==30023M ΦΦM Tp主刚度阵:⎥⎥⎦⎤⎢⎢⎣⎡==180049K ΦΦK Tp 模态空间初始条件:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-44)0()0()0()0(21121x x q q Φ, ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-00)0()0()0()0(21121xx q q Φ 模态响应:01211=+q q ω ,02222=+q q ω即:t t q 11cos 4)(ω=,t t q 22cos 4)(ω-=因此有:⎩⎨⎧-+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡t t t t t q t q t x t x 21212121cos 4cos 4cos 6cos 3)()()()(ωωωωΦ第四题(20分)一匀质杆质量为m ,长度为L ,两端用弹簧支承,弹簧的刚度系数为k 1和k 2。
杆质心C 上沿x 方向作用有简谐外部激励t ωsin 。
图示水平位置为静平衡位置。
(1)以x 和θ为广义坐标,采用影响系数方法建立系统的振动微分方程;(2)取参数值为m=12,L =1,k 1 =1,k 2 =3,求出系统固有频率;(2)系统参数仍取前值,试问当外部激励的频率ω为多少时,能够使得杆件只有θ方向的角振动,而无x 方向的振动? 解:(1)系统可以简化为二自由度振动系统,选x 、θ为广义坐标,x 为质心的纵向位移,θ 为刚杆的角位移,如图示。
当1=x 、0=θ时:2111k k k +=,2)(1221L k k k -= 当0=x 、1=θ时:2)(1211L k k k -=,4)(22122L k k k +=因此,刚度矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+=4)(2)(2)(221121221L k k Lk k L k k k k K 质量矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡=212100mL m M 系统动力学方程:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡0sin 4)(2)(2)(121002*********t x L k k L k k L k k k k x mL m ωθθ(2)当m=12,L =,k 1 =1,k 2 =3时,系统动力学方程为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0sin 111410012t x x ωθθ频率方程为:0111124202=--ωω即:0316122040=+-ωω求得:67420±=ω (3)令t x x ωθθsin ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡,代入上述动力学方程,有:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--0111112422θωωx 由第二行方程,解得21ωθ--=x,代入第一行的方程,有:21k ⋅⋅θ 1=1)124(122---=ωωx ,]1)124[(2---=ωθ 要使得杆件只有θ方向的角振动,而无x 方向的振动,则需0=x ,因此1=ω。
第五题(20分)如图所示等截面悬臂梁,梁长度为L ,弹性模量为E ,横截面对中性轴的惯性矩为I ,梁材料密度为ρ。
在梁的a 位置作用有集中载荷)(t F 。
已知梁的初始条件为:)()0,(1x f x y =,)()0,(2x f x y = 。
(1)推导梁的正交性条件;(2)写出求解梁的响应),(t x y 的详细过程。
(假定已知第i 阶固有频率为i ω,相应的模态函数为)(x i φ,∞=~1i )提示:梁的动力学方程为:),(]),([222222t x f ty S x t x y EI x =∂∂+∂∂∂∂ρ,其中)()(),(a x t F t x f -=δ,δ为δ函数。
解:(1)梁的弯曲振动的动力学方程为:0),(]),([222222=∂∂+∂∂∂∂tt x y S x t x y EI x ρ ),(t x y 可写为:)sin()()()(),(θωφφ+==t a x t q x t x y代入梁的动力学方程,有:φρωφS EI 2)(=''''设与i ω、j ω对应有i φ、j φ,有: i i i S EI φρωφ2)(=''''(1)j j j S EI φρωφ2)(=''''(2)式(1)两边乘以j φ并沿梁长对x 积分,有:⎰⎰=''''lj i i li j dx S dx EI 020)(φφρωφφ (3)利用分部积分,上式左边可写为:⎰⎰''''+'''-'''=''''l lj i l i j l i j i j dx EI EI EI dx EI 000)()()(φφφφφφφφ (4)由于在梁的简单边界上,总有挠度或剪力中的一个与转角或弯矩中的一个同时为零,所以,上式右边第一、第二项等于零,成为:⎰⎰''''=''''l lj i i j dx EI dx EI 0)(φφφφ 将上式代入(3)中,有:⎰⎰=''''llj i i j i dx S dx EI 02φφρωφφ(5)式(2)乘i φ并沿梁长对x 积分,同样可得到:⎰⎰=''''llji jji dx S dx EI 02φφρωφφ (6)由式(5)、(6)得:⎰=-lj i ji dx S 0220)(φφρωω(7)如果j i ≠时,j i ωω≠,则有:⎰=lji dx S 00φφρ 当j i ≠(8)上式即梁的主振型关于质量的正交性。