力法对称性

合集下载

结构力学-力法中对称性的利用

结构力学-力法中对称性的利用

对弯矩X1,一对轴力X2和对剪力X3。X1和X2是正
对称的,X3是反对称的。
X2 X1
X3 X1 X2
EI1
对 称

EI2
EI2
(a)
图8-17
X3 (b)基本结构
绘出基本结构的各单位弯矩力(图解-18),可以看出 M1图和M2图是正对称的,而M3是反对称的。
X1=1
X2=1
X3=1
M1图
M2图
M3图
+ 1P=0 22Y2+ 2P=0
当对称结构承爱一般非对称荷载时,我们还可以将荷
载分解为正,反对称的两组,将它们分别作用于结构上求 解,然后将计算叠加(图8-24)。显然,若取对称的基本 结构计算,则在正对称荷载作用下只有正对称的多余未知 力,反对称荷载作用下只有反对称的多余未知力。
P
q
P/2 q/2 P/2
P/2
+ q/2
q/2 P/2
图8-24
转到下一节
是这样的例子。为了使副系数为零,可以采取未知力分组
的方法。
AP
BP
(a)
X1
X2 X1
(b) 基本体系
(c)
(d)
X2
这就是将原有在对称们置上的两个多个未知力X1和X2分 解为新的两组未知力:一组为两个成正对称的未知力Y1, 另一驵为两个成反对称 的未知力Y2(图8-23a)。新的未 知力与原未知力之间具有如下关系:
可知副系数 13 =31=0, 23 =32 =0 于是方程可以简
化为
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
33 X 3 3P 0

结构力学 (1)

结构力学 (1)
X1 3EI 3 l
基本结构已 为何为 0 无支座位移
5. 内力计算(静定结构)
M M1 X1 M P
内力全部由多余未知力引 起
31
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
M M 1 X 1 (
3EI ) x; 0 x l 3 l
3EI 3EI ) 3 2 l l
对于支座位移
A B

1. 超静定结构支座移动、温度改变使结构产生变形,同时产生内力。
C

C
A
B
C’
FyC
静定结构 无内力和支座反力
超静定结构 有内力和支座反力
23
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
对于温度变化
A
t t
B
C
A
t t
B
C
C’
FyC
静定结构 无内力和支座反力
X2
X3
X1
a 0 11 X 1 12 X 2 13 X 3 1C 0 2 C b 0 21 X 1 22 X 2 23 X 3 0 X X X 0 3C 31 1 32 2 33 3 0
1 P 1C 0 11 X 1 12 X 2 13 X 3 P 基本结构由支座 2P X X X 0 位移引起的 21 1 22 2 23 3 22 CP X X X 0 3P i 方向位移 3 P 31 1 32 2 33 3 3 C
29
§6.6 支座位移、温度变化等作用下时的超静定结构的计算
基本结构(II)

结构力学-力法-对称性应用-去一半计算

结构力学-力法-对称性应用-去一半计算

例8-5 试计算如图示圆环的内力。EI=常数。 P
R
o
取1/4
基本体系
P 解:这是一个三次超静定。有两个对称轴,故取四分之一结构,
则为一次超静定。
M1 =1,
Mp=-PRsin/2
X1=1
P
R
o M1图
R
PR/2
o
Mp图
PR(-2)/2
PR/
P M图
如图示,则系数和自由项为:
11=M12ds/EI=1/EI0/2Rd=R/2EI 1P=M1Mpds/EI=1/EI/2(-PRsin)rd=-PR2/2EI
转到下一节
M图(a)
1
C
K
B
a/4
A
MK图(d)
若取(d)的基本结构则有:
Ky=-1/EI1(a/2a/4)1/23pa/88=-3pa3/1408EI1 综上所述,计算超静定结构的步骤是:
(1) 解算超静定结构,求出最后内力,此为实际状态。 (2) 任选一种基本结构,加上单位力求出虚拟状态的内力。 (3) 按位移计算公式或图乘法计算所求位移。
Ky

1 EI1
1 2
a 2
a 2
5 3 Pa 6 88
1 2EI1
1 2


3 88
Pa
15 Paa 88
a 2
1 2
Pa a 4
a 2
3Pa3 1408EI1
3pa/88
B
C I1
p
15pa/88
2I1
A
于是得:
X1=- 1P/11=PR/
最后弯矩为:M=M1X1+MP=PR/-Prsin=PR(1/-sin/2)

结构力学第20次课 结构的对称性 2012- 5-17

结构力学第20次课 结构的对称性 2012- 5-17

结构力学第20次课 力法6-5 位移法7-6结构的对称性 foxscarlet12012-5-17 《结构力学》第20次课 第6章力法6-5P225与第7章位移法7-6P302内容6-5 7-6 对称性利用1 对称性(1)结构的对称性:对称结构是指几何形状、支座情况、刚度都关于某轴对称。

(2)荷载的对称性: 对称荷载 反对称荷载 任何荷载都可以分解成对称荷载+反对称荷载两部分。

2 取对称的基本体系计算: 不论在何种外因作用下,对称结构应考虑采用对称的基本体系计算。

沿对称轴将梁切开,三对多余未知力中,弯矩X 1和轴力X 2是 未知力,剪力X 3是 未知力。

对称未知力产生的单位弯矩图和变形图是对称的;反对称未知力产生的单位弯矩图和变形图是反对称的。

如果荷载对称,M P 对称,Δ3P =0,X 3=0, 未知力为零;如果荷载反对称,M P 反对称,Δ1P =0, Δ2P =0, X 1= X 2 =0, 未知力为零。

3 取等代结构计算对称结构的变形特点,针对切开对称轴处是刚结点。

注意,如果对称轴上是铰结点有所不同。

(1)对称结构在对称荷载作用下位于对称轴上的截面,水平位移和转角为零,只有竖向位移。

(2)对称结构在反对称荷载作用下位于对称轴上的截面,竖向位移为零,水平位移和转角不为零。

① 奇数跨(无中柱)对称结构在对称荷载作用下的等代结构 §7-6 对称结构的计算奇数跨刚架受对称荷载A. 奇数跨结构(无中柱对称结构)F PF P(1) 对称荷载F P半边结构对称轴截面内力结构与荷载3 取等代结构计算1扩展练习 奇数跨结构受对称荷载作用llqllAB例2. 图示结构EI = 常数。

对称性只有竖向荷载作用1X 3=3X 2X 1X 2=【例题】利用对称性计算图示结构,绘制弯矩图。

(EI=常l↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ql/2l/2l/2l/2(a )ldbFPFP4 无弯矩状态判定对称结构正对称荷载。

结构力学复习要点

结构力学复习要点

近几年交大结力真题分析~ (个人总结)一:平面体系的几何组成分析,经常及桁架一起出题,顺便求其内力二:已知受力,绘制弯矩剪力图三:静定结构位移计算,一般加有弹簧或者移动支座四:力法,一般都是对称的图形,让你利用对称性五:位移法,还是对称,一般都有条黑线(EI无限大),难点就在于刚体只能平动和转动,而转动的时候会引起转角……还得靠你自己去练习,掌握了一点都不难。

六:影响线,不多说了,送分题七:直接画出某超静定结构的内力图,表面上是画图,其实是多次利用力矩分配法,对刚结点的弯矩多次分配,画出简图,看似容易的题,其实是得分率最低的题,因此,大家必须多练习,熟练掌握力矩分配法!好多欲考丄建的研友都纠结及结构力学该如何复习,下而我将自己的经历写下来,希望对土建人有所帮助,尤其是跨考土建的同学。

一、谈谈跨考土建。

我是跨考上建,而且跨度较大,之前只学过材料力学。

我想考的专业要求是结构力学, 对于这个没接触过的学科頁•的有些发烘,但是我觉得这不是问题,各位应该有同样的感觉吧—本科课程都是一周就可以突击考试,上课也不听,所以自学完全可以达到预期效果,只是付岀要多一些。

二、结构力学的学习接触一门从未有印象的学科,克服心理上的障碍最重要,当时把指立书目(李廉規版)结构力学认真学了一遍,发现什么都不会,例题勉强看的僮,课后习题干脆都不会,我也想过是否继续,为了心仪的专业,就豁岀去了。

第一遍学校课本用了2个月,期间困难很大,到本校的土木学院找老师帮忙,结构力学老师居然退休了。

我靠,整个学校没有结构力学老师,我日!没办法,硬头皮自学。

6月份时发生了一个转折点,那就是选到了一遍优秀的练习册。

我当时想买一本练习册, 看中了当当上一本很厚的练习册(于玲玲版),买回来后直接研究它,课本的课后题不会就不做了。

就这样边研究练习册边在书上查找概念就行消化,最痛苦的两个月结束了,我把练习册做了一遍,好多问题没有明白,一本好的练习册可以肖省你的时间,为你归纳好了概念等,如力法,它将各种题型分布展开,里而都是各大名校的真题,做到淸华、同济、哈工大的真题确实有难度。

第8章超静定结构的计算方法

第8章超静定结构的计算方法
约束。
三次超静定拱
X1
X2
X3
e)
上一页 下一页 返回
3)撤除一 个固定铰支 座或撤除一 个内部单铰, 相当于解除 两个多余约 束。
二次超静定刚架
X1 X2X2来自X1X1X2二次超静定刚架
上一页 下一页 返回
4)撤除一 个固定端支 座或切断一 个刚性连接, 相当于解除 三个多余约 束。
三次超静定刚架
F
超静定梁,画出内力图。已知梁的抗弯
刚度EI为常数。 解2 (1) 属于一次超静定梁,得 到基本结构如图所示。 (2)建立力法典型方程。 A
A
l/2
C l/2 F
B
C
X1 M1图
B
11 X1+1F=0
(3)求系数和自由项
1 l l 2 l3 11 l EI 2 3 3EI
l Fl/2 M F图
处沿Xi方向的位移。
上一页 下一页 返回
c)
C
X1
f) B
C
X1=1
21
11
A d) B
11
X1倍
d) B
A
C
C
22
12
A
X2
X2=1 X2倍
12
A
ij=ij Xj
22
上一页 下一页 返回
21
B
1=11+12+1F= 0 2=21+22+2F= 0
ij 为多余约束力Xj=1时,基本结构在Xj 单独作用
上一页 下一页
返回
1)撤除 一根支 承链杆 二次超静定梁
一次超静定桁架
X1
X1
a)
或切断
一根结 构内部

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件
根据对称结构的受力特征,在对称或反对称荷载作用下,可以取半结构 计算,另外半结构的内力可通过对称或反对称镜像得到。
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11

144 EI
,
1 p

1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向

13X 3 23X 3

1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0

力法习题课及对称性的利用

力法习题课及对称性的利用
C
P
C P
等代结构
P
P
P 等代结构
21
b)奇数跨对称结构的等代结构是将对称轴上的截面设置成支杆。 2、对称结构在反对称荷载作用下,内力、变形及位移是反对称的。 a)位于对称轴上的截面的位移 vc=0 , 内力 NC=0,MC=0
C EI P EI EI P P
QC NC MC NC
计算单位荷载下的内力图 计算支座反力:
1 4 1 3
1
1
代入位移计算公式得:
N s


5 12
Mds R k ck 0
1
5 1 1 1 1 0.001 1 2 3 1 0.002 0.003 4 12 200 2 3
1 2 0.005 m
9m
4m »
20o C
5o C
解: (1)选择基本体系 (2)列典型方程
5o C
q 15 kN m
X2
X1
151.875 4m
5o C 20o C
2 1
5o C
11 X 1 12 X 2 1P 1t 1c 0 21 X 1 22 X 2 2 P 2t 2c 0
»
. 5.05 X 1 0.03 X 2 5119 0 . 0.03 X 1 5.7 X 2 11143 0
X 1 10.02 kN X 2 19.5 kN
(3)绘制弯矩图
M X1 M 1 X 2 M 2 M P
10.02 A B 34.98 4m
19.5 C 4m 35.25 3m 3m
5o C

结构力学第五章力法

结构力学第五章力法

12kN/m
EI
2
2 M1 基本体系
24
2EI
2EI
4m
MP
6 216
6
d11 =
D1 P =
1 6 6 2 6 1 1 2 2 2 2 224 2 = 2 EI 2 3 EI 2 EI 2 3 3EI
M
1 6 216 3 6 2 EI 3 4 1 2 24 3 2 984 1 = 4 EI EI 2 EI 3
(A)
由上述,力法计算步骤可归纳如下: 1)确定超静定次数,选取力法基本体系; 2)按照位移条件,列出力法典型方程; 3)画单位弯矩图、荷载弯矩图,用(A)式求系数和自由项; 4)解方程,求多余未知力; 5)叠加最后弯矩图。 M = M i X i M P
q=23kN/m
q=23kN/m
6m
=
撤除约束时需要注意的几个问题: (1)同一结构可用不同的方式撤除多余约束但其超静定次数相同。
(2)撤除一个支座约束用一个多余未知力代替, 撤除一个内部约束用一对作用力和反作用力代替。 (3)内外多余约束都要撤除。
(4)不要把原结构撤成几何可变或几何瞬变体系
4 5 1 2 外部一次,内部六次 撤除支杆1后体系成为瞬变 不能作为多余约束的是杆 1、2、 5 共七次超静定 1 3
力法基本体系的合理选择
1 1 2 1 1 1 21 aa qa2 21= 2a = d a = qa3 d12P = d 21 = D1d 11力法基本体系有多种选择,但必须是几何不变体系。同时应 == = ,22 D 2 P = 0 EI 3 3 624 EI EI EI2 28 32 3EI EI 尽量使较多的副系数、自由项为零或便于计算。所选基本体系应 含较多的基本部分,使Mi,MP尽可能分布局部。 qa 2 用力法解图示连续梁, 2kN/m ↓↓↓↓↓↓↓↓ 15 各跨EI=常数,跨度为a. 2kN/m ↓↓↓↓↓↓↓↓ 2kN/m 2a X1 qa 2 X2 d 11 = = d 22 ↓↓↓↓↓↓↓↓ 3EI 60 a d 12 = d 21 = X1=1 M1 6 EI qa3 D1P = , D2P = 0 1 24 EI X2=1 M 2

力法

力法

33 x 3 3 p 0
二: 取半边结构进行计算
1 正对称荷载作用下 (1)奇数跨正对称结构
C 截面有轴力、弯矩,无剪力;有竖直位移,无水平位 移和转角;简化为定向支座
(2)偶数跨正对称结构
C C
C截面 有轴力、弯矩,无剪力;无竖直位移,无水平位移 和转角;简化为固定端
2 反对称荷载作用下 (1)奇数跨正对称结构
FP 2
C截面 有剪力,无轴力和弯矩;有水平位移和转角,无竖直 位移;简化为滑动支座
(2)偶数跨正对称结构
FP
FP
FP
FP
FP
F P FQC
FQC
FP
C截面只有剪力,无轴力和弯矩;无竖直位 移,有水平位移和转角;简化为刚接点
这对剪力只使两柱 分别产生等值反向 轴力,而不使其它 杆件产生内力;又 因原结构中间柱的 内力等于该两柱内 力之代数和,故该 剪力对原结构的内 力无影响,可略去
图A
图B
(3)作单位弯矩图和荷载弯矩图
M
计算:
1
M
p
11
1 66 26 1 1 22 22 224 2 2 3 2 EI 2 3 3 EI EI 2 EI
1 2 EI 6 216 3 6 3 4 1 2 24 3 2 984 1 2 EI 3 4 EI EI
A B l 基本结构(一)
X1
11 x 1 A
原结构
A L 1 基本结构(二) B X1
11 x 1 1 C 0
单位荷载法与力法的联系
(1)核心思想:变形体虚功原理
we
=
wi
单位荷载法是应用变形体虚功原理求未 知位移,力法是应用变形体虚功原理求 未知力

对称及反对称性质的利用

对称及反对称性质的利用

31 X 1 3n2 X 2 33 X 3 3 p 0
11 X1 12 X 2 1p 0 21 X1 22 X 2 2 p 0 33 x3 3 p 0
3p 0
X3=0
对称荷载在对称结构中只引起 对称的反力、内力和变形。
力法方程为:
11 X 1 12 X 2 13 X 3 1p 0
一、选取对称的基本结构
力法方程为:
11 X 1 12 X 2 13 X 3 1p 0
21 X 1 22 X 2 23 X 3 2 p 0
31 X 1 3n2 X 2 33 X 3 3 p 0
11 X1 12 X 2 1p 0 21 X1 22 X 2 2 p 0 33 x3 3 p 0
X1=0 和 X2=0
反对称荷载在对称结构中只引起
反对称的反力、内力和变形。
•当对称结构上作用任意荷载时
例 利用对称性计算图示刚架,并绘弯矩图。
解:1)选取对称的基本结构
2)力法方程
11X1 1p 0
3)计算系数和自由项
绘单位弯矩图和荷载弯矩图
11
2 EI
(1 22 2
22 3
2 4 2)
1 EI
(1 2
l 2
l 2
2 3
l 2
l 2
l
l) 2
7l 3 24 EI
1 p
1 EI
(1 2
pl 2
l
l) 2
Pl 3 8EI
将系数和自由项代入力法方程,得
Pl3
X1
1Hale Waihona Puke p 118EI 7l 33P 7
24EI 绘内力图。
对称力 -- 对称轴两边的力大小相等,将结构绕对称轴对折后其作用 位置和方向均相同的力;

力法 位移法

力法 位移法
对称性利用的要点:
1、任意荷载可分解为对称荷载和反对称荷载;
2、选取对称的基本体系,并取对称力和反对称力作为基本未知量; 3、对称荷载作用下,只算对称力; 4、反对称荷载作用下,只算反对称力。
如果我们看到对称结构,无论什么荷载都转化为 对称和反对称。
例6-5:
P
I2
I1
P/2
P/2 P/2
P/2
I1 =
一般杆件
M AB 4i A 2i B 6i l (1) M BA 2i A 4i B 6i l 6i 6i 12i FQBA A B 2 (2) l l l
FQAB
FQAB FQBA
1 M AB M BA l
M CB M CD M 0
C
1、基本未知量的选取
1、结点角位移数: 结构上可动刚结点数即为位移法计算的结点角位移数。
2、结构独立线位移:
C
D
标准矩形框架 = 结 构 的 层 数
A
B
2 1
非标准矩形框架= 铰结体系的自由度
直接刚度法计算步骤可归纳如下:
1)确定基本未知量; 2)由转角位移方程(及表7-1),写出各杆端力表达式; 3)在结点角位移处,建立结点的力矩平衡方程, 在结点线位移处,建立截面的剪力平衡方程, 得到位移法方程; 4)解方程,求基本未知量; 5) 将已知的结点位移代入各杆端力表达式,得到 杆端力; 6)按杆端力作弯矩图。
FQAB FQBA 6i 6i 12i A B 2 l l l 6i 6i 12i A B 2 l l l
F F
F QAB F QBA
小 结
1、有几个未知结点位移就应建立几个平衡方程; 2、单元分析、建立单元刚度方程是基础; 3、当结点作用有集中外力矩时,结点平衡方程式中应包括 外力矩。 q A B M MCB MCD P M C q D

结构力学第六章力法

结构力学第六章力法

例 求图示刚架M图。
q
B
C
E1I1 l
E2I2 l A
E1I1 k E2 I 2
原结构
q
X1
B
C
φA=0
X2
ΔφB=0
A 基本体系
1. 力法方程
11X1 12 X2 1P B 0 21X1 22 X 2 2P A 0
2. 方程求解
q
B
C
ql 2 8
A
MP图
1P
1 E1I1
2 3
1 ql2 14CΒιβλιοθήκη B 5 ql256
B
C
1 ql2 8
A
1 ql2 28
a) M图
A
b) M图
3)当k=∞,即E1I1很大或E2I2很小。由于柱AB抗 弯刚度趋近于零,只提供轴向支撑,故梁BC相当
于简支梁,M图见图b)。
结论:
在荷载作用下,超静定结构的内力只与各杆 抗弯刚度EI的比值k 有关,而与杆件抗弯刚度 EI的绝对值无关。若荷载不变,只要 k 不变, 结构内力也不变。
(变形协调条件)。
Δ1=δ11X1 + Δ1P=0
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B

RB
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B 当ΔB=Δ1=0
X1 =><RB

δ11
+
×X1 X1=1
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
Δ1P
二、ii q力法↓M↓E↓↓I的i↓2↓↓d↓典s 型0,方ik程
MiMk ↓↓E↓↓I↓↓↓↓
11 X1 12 X 2 13 X 3 1P 0 21 X1 22 X 2 23 X 3 2P 0 P 31 X1 32 X 2 33 X 3 3P 0

结构力学——力法对称性的利用26页文档

结构力学——力法对称性的利用26页文档
Thank you
结构力学——力法对称性的 利用
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿

结构力学——力法对称性的利用

结构力学——力法对称性的利用

结构力学——力法对称性的利用力法对称性是结构力学中常用的一种方法,可以有效简化结构分析的复杂性。

它基于结构的几何和物理特性,通过利用结构的对称性来减少需要考虑的自由度,从而简化结构力学问题。

力法对称性的利用可以在两个方面发挥作用:减少计算自由度和简化载荷分析。

首先,力法对称性可以减少计算自由度。

结构力学问题的求解通常需要计算结构的内力和变形。

结构的自由度越多,计算所需的计算量就越大,求解也就越复杂。

通过利用结构的对称性,我们可以将结构分为若干对称部分,仅对其中一个部分进行力学分析,然后通过对称性来得到其他部分的结果。

这样可以大大减少计算自由度,简化结构力学问题的求解过程。

具体来说,力法对称性可以应用于不同的结构部分,如杆件、板和壳体等。

例如,在杆件问题中,结构的对称性可以体现为几何对称性,如轴对称、平面对称等。

通过建立合适的坐标系和选择适当的参考点,可以简化结构的力学分析。

力法对称性还可以应用于简化载荷分析。

结构在受力时,通常存在很多不同的载荷情况,如重力、集中力、分布力等。

利用力法对称性可以简化对这些载荷的分析。

通过找到适当的对称轴或对称面,可以使得一些载荷分布具有对称性,从而简化分析。

通过减少载荷分布的复杂程度,可以更方便地计算结构的内力和变形。

需要注意的是,力法对称性在实际应用中需要满足一定的条件。

首先,结构必须存在对称性,即具有一定的几何和物理特性。

其次,结构的对称性必须与载荷情况相匹配。

如果对称性不满足这些条件,力法对称性可能无法有效地简化结构力学问题。

总之,力法对称性在结构力学中的应用可以大大简化力学分析的困难。

通过减少计算自由度和简化载荷分析,可以提高结构力学问题的求解效率。

利用力法对称性,结构工程师可以更加方便地进行结构设计和分析,提高工作效率和设计质量。

力法—对称性的利用(建筑力学)

力法—对称性的利用(建筑力学)
选取图c所示的基本体系。
(2) 建立力法典型方程
11 X 1 1 0
(3) 求系数和自由项
11
1 l
l


1

1

2



EI 2
EI

1 ql 2 l 1 1 ql 2 l
ql 3
1P
1
1
EI 8 2 EI 3 8 2
称的基本结构,其基本体系如图a所示。其中多余未知力
1 、 2 为正对称未知力, 3 为反对称未知力。
根据切口处两侧截面的相对位移为零的条件,可建立力
法典型方程如下:
力法
11 X 1 12 X 2 13 X 3 1 0
21 X 1 22 X 2 23 X 3 2 0
力法
11 X 1 12 X 2 1 0
21 X 1 22 X 2 2 0
33 X 3 3 0
结论:对于对称结构,如选取对称的基本结构,只要多
余未知力都是正对称力或反对称力,则力法典型方程必然分
解成独立的两组,一组只包含对称未知力,另一组只包含反
力法
(1)反对称荷载
反对称
11 X 1 12 X 2 1 0
21 X 1 22 X 2 2 0
33 X 3 3 0
1 0
X1 0
2 0
X2 0
对称结构在反对称荷载作用下,只有反对称的多余未知
力存在,而正对称的多余未知力必为零。
当按上述方法取出半结构后,即可按解超静定结构的方法
绘出其内力图,然后再根据对称关系绘出另外半边结构的内
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构对称性的概念
(1)对称结构:几何尺寸、支承情况、刚度分布对称的结构。

(2)荷载的对称性,如图1
正对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。

反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向反对称的荷载。

(3)对称结构在正对称、反对称荷载作用下的内力和变形,如图2
基本受力特点:
正对称荷载作用下,结构的内力和变形都是正对称的;
反对称荷载作用下,结构的内力和变形都是反对称的。

(4)特殊截面——对称轴通过的截面,如图3
对称结构,正对称荷载下,对称轴处切开,反对称的剪力为0,内力与位移分布均正对称;
对称结构,反对称荷载下,对称轴处切开,正对称的弯矩与轴力为0,内力与位移分布均反对称。

要使半结构能等效代替原结构的受力和变形状态。

关键在于被截开处应按原结构上的位移条件及相应的静力条件设置相应合适的支撑
例:用力法计算图示结构。

EI=常数。

图1
图2
图3。

相关文档
最新文档