SPSS-多因素方差分析..
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。
它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。
SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。
本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。
二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。
它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。
在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。
三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。
一般自变量为定类变量,而因变量可以是定量或定类变量。
2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。
接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。
点击“确定”后,SPSS会生成方差分析表。
3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。
此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。
4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。
SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。
5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。
SPSS重复测量的多因素方差分析
SPSS重复测量的多因素方差分析多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于一个或多个变量的影响。
在实验设计中,重复测量多因素方差分析常用于研究不同因素(比如治疗、时间、性别等)对同一测量结果的影响。
多因素方差分析假设各个因素之间相互独立,并将数据分为各个因素的组合。
例如,一个的实验可能包括两个因素:治疗和时间。
治疗可以有两个水平:A和B,时间可以有三个水平:T1、T2和T3、通过重复测量同一个变量,并结合不同的因素水平,可以得到一个完整的数据集。
进行多因素方差分析需要检验三个假设:主效应假设、交互效应假设和均等性假设。
主效应是指每个因素对于因变量的直接影响,交互效应是指多个因素之间相互作用的影响,均等性假设是指各组之间的方差是否相等。
首先,我们需要计算各组的平均值、总平均值、因素间平方和、误差平方和以及均方。
平均值是各组数据的均值,总平均值是所有数据的均值。
因素间平方和是各组均值与总平均值之差的平方和乘以每组的样本量。
误差平方和是各个样本与其对应组均值之差的平方和。
均方是因素间平方和和误差平方和除以对应的自由度。
接下来,我们需要计算F统计量,并进行假设检验来确定各个因素是否显著影响因变量。
F统计量是因素间均方和误差平方的比值。
根据假设检验的结果,如果得到的p值小于设定的显著性水平(通常为0.05),则我们拒绝原假设,即说明该因素对因变量有显著影响。
当我们观察到交互作用时,可以进行进一步的分析来确定具体哪些因素交互作用显著。
可以通过绘制交互作用图来进行可视化分析。
此外,还有很多其他的方法可以对多因素方差分析的结果进行进一步分析。
比如,事后检验(post-hoc analysis)常用于确定哪些因素水平之间存在显著差异。
Tukey's HSD、Bonferroni修正和Sidak校正是常用的事后检验方法之一总结起来,多因素方差分析是一种强大的统计方法,可以研究多个因素对一个或多个变量的影响。
SPSS-多因素方差分析
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
SPSS操作多因素方差分析
SPSS操作多因素方差分析
一、多因素方差分析简介
多因素方差分析(ANOVA)是一种统计学方法,利用它可以检验两个
或多个样本的总体均值是否相同。
它的基本假设是,多个样本取自同一总
体的正态分布,样本之间的差异是根据其中一种因素的变化而产生的,而
不是随机变化。
多因素方差分析一般用于检验不同变量的数据间的差异性。
二、多因素方差分析SPSS使用步骤
1、打开并登录SPSS:在Windows桌面找到SPSS图标,双击打开,
输入用户名和密码即可进入SPSS主界面。
2、导入数据:在SPSS主界面点击【文件】,再点击【导入数据】,
从计算机中找到需要导入的数据文件,打开,确定即可将数据文件导入到SPSS中。
3、运行多因素方差分析:在SPSS主界面点击【分析】,再点击【多
因素方差分析】,它会弹出一个多因素方差分析窗口,在窗口中配置多因
素方差分析的模型,一般情况下,前三步不需要修改,点击【下一步】;
第四步,需要在【变量】框中选择要分析的变量,点击【下一步】;第五步,需要在【因子】框中添加本次分析的因子,双击所选变量,添加到
【因子】框中,确定添加无误后,点击【下一步】;第六步,设定多因素
方差分析的显著性水平,点击【完成】,结束设置。
SPSS多因素方差分析(二类参照)
体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2.因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。
在大多数场合,交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
这里假设他们之间有交互作用。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于某个连续型变量的影响是否显著不同。
通常,研究者需要了解不同因素对于结果值的影响,并确定是否存在交互作用。
SPSS(统计软件包for社会科学)是一款常用的统计软件,它提供了丰富的功能和工具,可用于数据分析和建模。
本文将介绍如何使用SPSS软件进行多因素方差分析。
二、数据准备在进行多因素方差分析之前,需要先进行数据准备。
假设我们有一个研究目的是了解不同教育水平和不同工作经验对个人收入的影响。
我们收集了400位参与者的数据,包括个人收入(连续型变量),教育水平(分类变量:小学、初中、高中、本科、硕士、博士)和工作经验(分类变量:1-5年、6-10年、11-15年、16年及以上)。
三、数据导入首先,将数据导入SPSS软件。
打开SPSS软件后,选择“文件”-“读取数据”-“输入数据”。
在弹出的对话框中选择数据文件,并将其导入到SPSS软件中。
四、数据探索在进行多因素方差分析之前,我们首先需要对数据进行探索,查看教育水平、工作经验和收入之间的关系。
选择“描述统计”-“交叉表”菜单,将教育水平和工作经验作为行变量,将收入作为列变量。
点击“确定”按钮后,SPSS将生成一个交叉表,显示不同教育水平和工作经验对于收入的平均值和标准差等统计信息。
五、多因素方差分析在导入数据并进行数据探索后,我们可以开始进行多因素方差分析。
选择“分析”-“一般线性模型”-“多因素”菜单。
在弹出的对话框中,将个人收入作为因变量,将教育水平和工作经验作为因子变量。
点击“因子”按钮,将教育水平和工作经验拖动到因子变量框中。
然后,点击“选项”按钮,对方差分析的设置进行调整,如是否显示交互作用。
点击“确定”按钮,SPSS将自动生成多因素方差分析的结果报告。
在报告中,我们可以看到各个因素的显著性检验结果,以及不同因素对于个人收入的影响情况。
SPSS多因素方差分析
SPSS多因素方差分析多因素方差分析(ANOVA)是广泛应用于统计学中的一种技术,用于研究多个因素对一个或多个连续变量的影响。
这个方法可以帮助研究者确定哪些因素对所研究的问题有显著影响,以及不同因素之间的交互效应。
在SPSS中进行多因素方差分析的步骤如下:第一步是收集数据并导入SPSS中。
确保数据集中包含所有要研究的变量,包括一个或多个连续变量和一个或多个因素变量。
连续变量是要研究的主要变量,而因素变量是要考察其对结果变量的影响的自变量。
第二步是选择“分析”菜单中的“通用线性模型(GLM)”选项。
在该对话框中,将结果变量拖放到因变量窗口,并将因素变量拖放到因子1-因子n窗口中。
确保正确选择了想要研究的因素变量。
第三步是进行前提条件检验。
在多因素方差分析中,要检验因变量是否满足正态性假设和方差齐性假设。
在“通用线性模型(GLM)”对话框中,选择“图形”选项卡并勾选“残差统计”。
第四步是进行主要分析。
在“通用线性模型(GLM)”对话框中,选择“因子”选项卡。
在这里,可以选择添加交互项以考察不同因素之间的交互效应。
第五步是进行后续分析。
如果主要分析显示有显著的组间差异,则可以进行进一步的事后比较以确定哪些组之间有显著差异。
在“通用线性模型(GLM)”对话框中,选择“事后比较”选项卡,并选择适当的事后比较方法。
第六步是解释结果并报告分析结果。
通过主效应(主要因素的影响)和交互效应(不同因素之间的影响)来解读分析结果。
同时,也要包括各组之间的均值和差异的置信区间。
多因素方差分析在实际应用中有很多场景,比如在医学研究中,可以使用多因素方差分析来确定一些治疗对疾病的治疗效果;在教育研究中,可以使用多因素方差分析来确定不同教育方法对学生学习成绩的影响。
总之,SPSS提供了一个强大的工具来进行多因素方差分析。
通过遵循上述步骤,研究者可以在自己的数据集上进行多因素方差分析,并从中获取有关因素对结果变量的影响以及因素之间相互作用的重要信息。
多因素方差分析SPSS的具体操作步骤
多因素方差分析SPSS的具体操作步骤步骤1:导入数据首先,打开SPSS软件,并导入包含需要进行方差分析的数据集。
可以通过"File"菜单中的"Open"选项或者使用快捷键"Ctrl+O"来打开数据文件。
步骤2:选择菜单接下来,选择"Analyze"菜单,然后选择"General Linear Model"子菜单中的"Univariate"选项。
这将打开"Univariate"对话框。
步骤3:设置变量在"Univariate"对话框中,将需要分析的因变量(Dependent Variable)拖放到"Dependent Variable"框中。
然后,将需要分析的自变量(Independent Variables)拖放到"Fixed Factors"框中。
步骤4:设置因素在"Univariate"对话框的"Options"选项卡中,单击"Model"按钮,打开"Model"对话框。
在该对话框中,将自变量按照其因素分类拖放到"Between-Subjects Factors"框中。
步骤5:进行分析在"Univariate"对话框的"Options"选项卡中,可以对方差分析的多个选项进行设置。
比如,可以选择是否计算非标准化残差(Univariate Tests of Between-Subject Effects)、是否计算偏差(Tests of Within-Subject Effects)、是否计算构造对比(Contrasts)等。
设置完相关选项后,单击"OK"按钮进行方差分析。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析多因素方差分析(ANOVA)是一种常用的统计分析方法,用于研究多个独立与自变量对因变量的影响程度。
SPSS软件是一款强大的数据分析工具,提供了多种统计方法,包括多因素方差分析。
本文将重点介绍如何,以及如何解读分析结果。
一、数据准备与导入在进行多因素方差分析之前,我们首先需要准备好要进行分析的数据,并将其导入到SPSS软件中。
SPSS软件支持各种数据格式的导入,包括Excel、CSV等。
在导入数据之后,可以使用SPSS软件的数据编辑功能进行必要的数据清洗与整理。
二、选择分析方法在SPSS软件中,多因素方差分析有两种不同的方法:多因素方差分析(逐步)和多因素方差分析(GLM)。
前者适用于符合方差齐性和正态分布要求的数据,而后者则没有这些限制。
根据实际情况选择适合的方法进行分析。
三、设置因素在进行多因素方差分析之前,需要设置自变量(因素)和因变量。
SPSS软件允许用户添加多个因素,并可以对每个因素进行设置。
例如,设置因素的水平数目、因素名称、因素标签等。
四、进行多因素方差分析设置因素之后,即可进行多因素方差分析。
在SPSS软件中,选择“分析”-“一般线性模型”-“多因素”进行分析。
进入多因素方差分析的参数设置界面后,依次选择因变量和自变量,并根据实际情况选择交互作用。
五、解读结果多因素方差分析完成后,SPSS软件会生成一系列分析结果。
这些结果包括效应大小(主效应和交互作用)、显著性检验结果(F值和P值)以及不同因素水平之间的差异(均值和置信区间)。
用户应该重点关注显著性检验结果,以判断因素是否对因变量产生显著影响。
六、结果可视化除了结果解读之外,SPSS软件还提供了数据可视化功能,可帮助用户更直观地理解分析结果。
用户可以通过绘制柱状图、折线图等图表,展示因变量在不同自变量水平之间的差异。
七、结果报告最后,用户可以根据分析结果编写一份详细的结果报告,对分析结果进行综合、客观地描述和解释。
多因素方差分析SPSS的具体操作步骤
多因素方差分析对话框
多因素方差分析对话框
在左边的方框中选中因素后, 在左边的方框中选中因素后,点击右 三角,即可进入右边的方框,如图所示: 三角,即可进入右边的方框,如图所示:
2.多因素方差分析对话框
点击数据页中的Analyze,会出现General 点击数据页中的Analyze,会出现General Linear Model下拉菜单中的Univariate,点击 Model下拉菜单中的 下拉菜单中的Univariate, 后即出现下边的对话框。 后即出现下边的对话框 。 其中左边的方框里是 输入的变量名。中间的Dependent Variable表 输入的变量名。中间的Dependent Variable表 示因变量显示窗, Factor[s]表示固定变 示因变量显示窗,Fixed Factor[s]表示固定变 量 显 示 窗 , 通 常 是 指 自 变 量 。 Ramdom Factor[s]表示随机变量显示窗 Factor[s] 表示随机变量显示窗 。 Covariate[s] 表示随机变量显示窗。 表示协变量显示窗。 Weight表示权重变 表示协变量显示窗 。 WLS Weight 表示权重变 量 显 示 窗 。 右 边 一 般 我 们 需 要 选 择 的 是 Post Hoc和Opitions这几个按钮 其数据框如下: Hoc和Opitions这几个按钮。其数据框如下: 这几个按钮。
1.录入数据 1.录入数据
1.1.spss首页数据对话框。 其中横列是变 spss首页数据对话框 首页数据对话框。 量名,竖列是样本量。下放的Data 量名,竖列是样本量。下放的Data View 是填写数据的, 是填写数据的,Variable View 是用来填 写变量名的, 写变量名的,单击它即可转入填写变量名 对话框。事实上, 对话框。事实上,我们操作时的第一步应 该是填写变量名, 该是填写变量名,但是为了使读者了解进 入填写变量名对话框的途径, 入填写变量名对话框的途径,所以将填写 数据对话框放到了第一步。 数据对话框放到了第一步。
SPSS多因素方差分析
SPSS多因素方差分析一、问题对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?SPSS软件版本:18.0中文版。
二、统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。
数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。
2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。
点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。
3、结果解读这是一个所分析因素的取值情况列表。
变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。
SPSS操作多因素方差分析
SPSS操作多因素方差分析实验题目:多因素方差分析实验类型:基本操作实验目的:掌握方差分析的基本原理及方法实验内容:某种果汁在不同地区的销售数据,调查人员统计了易拉罐包装和玻璃包装的饮料在三个地区的销售金额,利用多因素方差分析,分析销售地区和包装方式对销售金额的影响。
(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。
(2)对数据进行多因素方差分析,分析不同包装的和地区下的效果是否相同,及交互作用的效应是否显著。
实验步骤:步骤一:打开数据集,选择“分析”—“一般线性模型”—“单变量”,将操作框打开;步骤二:将“销售额”选为“因变量”,“包装形式”和“购物地区”选为“固定因子”,然后选择“选项”,将“描述统计”和“方差齐性检验”勾选。
得到描述性统计量和Levene检验,和主体间效应的结果。
实验结果:(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。
描述性统计量因变量:销售额包装形式购物地区均值标准偏差Ndime nsion1 易拉罐dimensio n2地区A 413.0657 90.86574 35地区B 440.9647 98.23860 120地区C 407.7747 69.33334 30总计430.3043 93.47877 185 玻璃瓶dimensio n2地区A 343.9763 100.47207 35地区B 361.7205 90.46076 102地区C 405.7269 80.57058 29总计365.6671 92.64058 166 总计dimensio n2地区A 378.5210 101.25839 70地区B 404.5552 102.48440 222地区C 406.7681 74.42114 59总计399.7352 98.40821 351描述性统计量的分析结果:在只考虑包装形式的情况下:易拉罐:均值=430.3043 ,标准偏差=93.47877玻璃瓶:均值=365.6671,标准偏差=92.64058在只考虑地区差异的情况下:地区A:均值=378.5210,标准偏差=101.25839地区B:均值=404.5552,标准偏差=102.4844地区C:均值=406.7681,标准偏差=74.42114由结果可知,在只考虑包装形式的情况下,采用易拉罐的形式进行销售额会有明显较高的销售额,且两种形式之间的偏差值相差不大,即采用易拉罐的形式进行销售会更有利于销售;在只考虑地区差异的情况下,三个地区之间在地区B 和地区C进行销售的销售额很接近,但是地区C的标准偏差明显比另外两个地区要小,所以建议应该在地区C加大销售力度。
SPSS_第6单元_多因素方差分析
SPSS应用
(2)输出的结果文件中第二部分如下表所示
ห้องสมุดไป่ตู้
SPSS应用
(3)输出的结果文件中第三部分如下表所示
SPSS应用
(4)输出的结果文件中第四部分如下表所示
SPSS应用
(5)输出的结果文件中第五部分如下表所示。
SPSS应用
(6)输出的结果文件中第六部分如下表所示。
SPSS应用
(7) 输出结果的最后部分是控制变量之 间是否有交互影响的图形。
SPSS应用
第一因素的主效应:在平衡第二因素各水平之间效应的前提 下,因变量在第一因素各水平上的均值是否存在显著差异。
第二因素的主效应:在平衡第一因素各水平之间效应的前提 下,因变量在第二因素各水平上的均值是否存在显著差异。
两因素的交互效应:因变量在第一因素各水平上的均值差异 是否是第二因素各水平的变异函数,也就是说,在两个因素共 同作用下,因变量在因素各水平上的差异是否显著。 上述三类效应只要有一类显著,都需作事后检验。如果仅有 因素主效应显著而交互效应不显著,需要进行多重比较,以发 现具体差异发生在哪些水平之间。如果仅有交互效应显著,通 常不需要解释因素主效应,而应对交互效应作进一步检验。
SPSS应用
图5-11 “Univariate:Model”对话框
SPSS应用
图5-12 “Univariate:Profile Plots”对话框
SPSS应用
图5-13 “Univariate:Contrasts”对话框
SPSS应用
5.3.3 结果和讨论
(1)SPSS输出结果文件中的第一部分如 下两表所示。
SPSS应用
SPSS应用
SPSS应用
以上F统计量服从F分布。SPSS将自动计算 F值,并根据F分布表给出相应的相伴概率值。
spss-多因素方差分析例子
spss-多因素方差分析例子作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:因无法计算MM e rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
spss 方差分析(多因素方差分析)实验报告
大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。
二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。
销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
在SPSS输入数据。
(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。
1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。
(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。
F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。
如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例分析:为研究A、B、C三种饲料对猪的催肥效果。用每种 饲料喂养8头猪一段时间,测得每头猪的初始重量(X)和增重 (Y)数据如下表。试分析三种饲料对猪的催肥效果是否相同?
表 三种饲料喂养猪的初始重量与增重(单位:kg)
X:初始重量; Y:增重
18
如果不考虑初始重量对增重的影响,那么本例 就是一个典型的完全随机设计类型的方差分析。 三组的初始重量(X)均数不同,经采用两两 比较,P值均小于0.05。在没有扣除X对Y的影响 的情况下,提示猪的初始重量与饲料的效应混杂。 采用协方差分析,将三组的初始体重化为相 等,以扣除其影响,再比较三种饲料的增重是否 相同,即检验三组修正均数间的差别有无统计学 意义。
19
数据输入格式 及步骤
20
结果
X(初始重量)的组间差异有统计学意义。 F=88.813,P<0.01; Group(饲料间)的差异(在扣除了初始 体重后)有统计学意义,F=31.071, P<0.01.
21
在扣除了初始体重后得到的修正均数
22
三、两阶段交叉设计方差分析
设计特点 • 同一批受试对象,随机等分为两组,一组先 接受A处理,后再接受B处理;另外一批受试 对象先接受B处理而后再接受A处理。如此可 使A处理和B处理有同等的机会处于两个实验 阶段。 • 这种设计可分析三种变异,即两种处理间的 差异,两个阶段之间的差异受试对象之间的 差异。
析因设计的有关术语
单独效应(simple effects):其它因素的水平固定 为某一值时,某一因素不同水平间的效应差异。 主效应(main effects):某因素各单独效应的平 均效应。 交互作用(Interaction):某一因素效应随着另 一因素变化而变化的情况。(如一级交互作用 AB、 二级交互作用ABC…)。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随机 等分20组,观察指标是受试者的主观 热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
10
战士 主观 感觉 冷热 等级 评分
11
完全随机的三因素析因设计方差分析表
结果
13
二、协方差分析
完全随机设计的协方差分析 完全随机区组设计的协方差分析
14
一般地,均数间的比较可用t检验 或方差分析。要求比较组除了处理因 素不同外,其它对结果有影响的因素 要齐同或均衡。 当影响结果的某个因素没有得到 控制时,即对两组来说不齐同,这两 个均数就不能直接比较,需进行校正, 得到的修正均数,再比较。
多因素方差分析
1
一、析因设计资料的方差分析
两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor) (分类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
保存时间 1天 (a1)
保存温度
20℃(b1) 1320 1320 1330 1310 1300 37℃(b2) 1320
平均
保存温度
b2-b1
20℃
1330 1310 1330 1300源自131713182
1316
1340 1420 1420 1430 1410 1400 1336
3天 (a2)
1340 1350 1330 1320
15
基本概念
协变量(covariate):对反应变量有影 响的非处理因素。必须是数值变量。 例如,在研究降压药物的疗效时,病人的 初始血压水平对服药后血压下降值是有影响 的。如果不考虑病人初始血压水平的差异, 直接比较不同处理组病人的平均血压下降值, 是不恰当的。 这里,处理因素? 协变量因素是?
析因设计的优缺点
优点
用相对较小样本量,获取更 多的信息。可用来分析全部主 效应,单独效应以及因素间各 级的交互作用。 所需试验的次数很多,如2因 素,各3水平5次重复需要试验为 45次。
缺点
例1:某研究人员采用某法测定人血清C3(mg/L)值,问①不同保存温度 下该法对C3的测定值有无差异?不同保存时间下该法对C3的测定值有 无差异?②保存时间与温度对测定值无交互作用?
1376
1416
80 41
平均 a2-a1
1326 20
1367 98
1346 59
步骤
①选择Analyze→General Linear Model→Univariate,激活Univariate 对话框。 ②在Univariate对话框中,把变量“c3值”放入Dependent Variable, 变量“保存时间”和“保存温度”放入Fixed Factor(s)栏。单击 Plots…按钮,激活Profile Plots对话框。 ③在Profile Plots对话框中,把Factors栏中的变量“保存时间”放入 Horizontal Axis栏,变量“保存温度”放入Separate Lines栏,再 单击Add按钮,会使变量“a*b”自动进入Plots栏,单击Continue 按钮返回。 ④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保 存温度”、 和“保存时间*保存温度”放入Display Means for栏; 并在Display多选项中,选择Descriptive statistics,Estimates of effect size,Homogeneity tests。单击Model…,选择默认项,即 Full factorial项(全析因模型),单击Continue按钮返回。 ⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
16
基本思想:是将线性回归分析与方差分 析结合起来的一种统计分析方法。 观察协变量X对反应变量Y的影响是否存在线 性关系。可建立应变量 Y 随协变量 X 变化的线性 回归关系,利用这种回归关系,固定X值,得到 Y的修正均数,然后再比较修正均数间差异。
其实质就是从 Y 的总平方和中扣除协变量 X 对Y的回归平方和,对残差平方和作进一步分解 后再进行方差分析,以更好地评价各种处理的效 应。