2019年河北省中考数学真题及答案

合集下载

2019河北省中考数学试卷(含解析)

2019河北省中考数学试卷(含解析)

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形为正多边形的是()A.B.C.D.2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4 B.5×10﹣5C.2×10﹣4D.2×10﹣5 9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.若7﹣2×7﹣1×70=7p,则p的值为.18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B 两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:n2﹣1 2n B直角三角形三边勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C 重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan ∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x ≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,---∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x 轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD 的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP =2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B (0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x 直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0;在二次函数y=﹣x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。

(完整版)2019年河北省中考数学试卷及答案

(完整版)2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A .B .C .D .2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C .﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x 的与x的和不超过5"可以表示为()A .+x≤5B .+x≥5C .≤5D .+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°16.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()2A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③ D.②→④→③→①12.(2分)如图,函数y =的图象所在坐标系的原点是( )3A.点M B.点N C.点P D.点Q13.(2分)如图,若x 为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根416.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x 为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;5(2)当y=﹣2时,n 的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分。

2019年河北省中考数学试卷(含解析版)

2019年河北省中考数学试卷(含解析版)

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B 勾股数组Ⅰ/8勾股数组Ⅱ35/22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE 与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=5【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.【点评】此题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解本题的关键.6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.7.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.00002=2×10﹣5.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【分析】由函数解析式可知函数关于y轴对称,即可求解;【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.【点评】此题主要考查了根的判别式,正确得出c的值是解题关键.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为﹣3.【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为1.【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;【点评】本题考查勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B勾股数组Ⅰ/817勾股数组Ⅱ35/37【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;37【点评】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.【点评】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题关键是将PD最大值转化为P A的最小值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×﹣=400;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为400m.【点评】考查行程问题中相遇、追及问题的数量关系的理解和应用,同时函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE 与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.【分析】(1)由三角函数定义知:Rt△PBC中,=tan∠PBC=tan∠DAB=,设CP =4k,BP=3k,由勾股定理可求得BP,根据“直径所对的圆周角是直角”可得PE⊥AD,由此可得PE⊥BC;(2)作CG⊥AB,运用勾股定理和三角函数可求CG和AG,再应用三角函数求∠CAP,应用弧长公式求劣弧长度,再比较它与AP长度的大小;(3)当⊙O与线段AD只有一个公共点时,⊙O与AD相切于点A,或⊙O与线段DA 的延长线相交于另一点,此时,BP只有最小值,即x≥18.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,。

2019年河北省中考数学试卷含答案

2019年河北省中考数学试卷含答案

2019 年河北省中考数学试卷一、选择题(本大题有16 个小题,共42 分,1-10 小题各3 分,11-16 小题各2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)下列图形为正多边形的是()A.B.C.D.2.(3 分)规定:(→2)表示向右移动2 记作+2,则(←3)表示向左移动3 记作()A.+3 B.﹣3 D.+3.(3 分)如图,从点C 观测点D 的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3 分)语句“x 的与x 的和不超过5”可以表示为()A.+x≤5 +x≥5 ≤5 +x=55.(3 分)如图,菱形ABCD 中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3 分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3 分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FECC.▲代表∠EFCB.@代表同位角D.※代表AB8.(3 分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4 B.5×10﹣5 C.2×10﹣4 D.2×10﹣59.(3 分)如图,在小正三角形组成的网格中,已有6 个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为()A.10 B.6 C.3 D.210.(3 分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2 分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②一④→③D.②→④→③→①12.(2 分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2 分)如图,若x 为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④ 14.(2 分)图2 是图1 中长方体的三视图,若用S 表示面积,S 主=x2+2x,S 左=x2+x,则S 俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x 15.(2 分)小刚在解关于x 的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2 分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x 为矩形的长与宽之和倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n 值对B.乙的思路和他的n 值都对C.甲和丙的n 值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3 个小题,共11 分,17 小题3 分:18~19 小题各有2 个空,每空2 分,把答案写在题中横线上)17.(3 分)若7﹣2×7﹣1×70=7p,则p 的值为.18.(4 分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m=;(2)当y=﹣2 时,n 的值为.19.(4 分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C 三地的坐标,数据如图(单位:km ).笔直铁路经过 A ,B 两地.(1)A ,B 间的距离为km ;(2)计划修一条从 C 到铁路 AB 的最短公路 l ,并在 l 上建一个维修站 D ,使 D 到 A ,C的距离相等,则 C ,D 间的距离为km .三、解答题(本大题有 7 个小题,共 67 分.解答应写出文字说明、证明过程或演算步骤) 20.(8 分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:1+2﹣6﹣9;(2)若 1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数. 21.(9 分)已知:整式 A =(n 2﹣1)2+(2n )2,整式 B >0.尝试 化简整式 A . 发现 A =B 2,求整式 B .联想 由上可知,B 2=(n 2﹣1)2+(2n )2,当 n >1 时,n 2﹣1,2n ,B 为直角三角形的三边长,如图.填写下表中 B 的值:22.(9 分)某球室有三种品牌的 4 个乒乓球,价格是 7,8,9(单位:元)三种.从中随机拿出一个球,已知 P (一次拿到 8 元球)= .直角三角形三边 n 2﹣1 2n B勾股数组Ⅰ / 8 勾股数组Ⅱ 35/(1)求这4 个球价格的众数;(2)若甲组已拿走一个7 元球训练,乙组准备从剩余3 个球中随机拿一个训练.①所剩的3 个球价格的中位数与原来4 个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8 元球的概率.23.(9 分)如图,△ABC 和△ADE 中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC 交于点P(不与点B,C 重合),点B,E 在AD 异侧,I 为△APC 的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x 的式子表示PD,并求PD 的最大值;(3)当AB⊥AC 时,∠AIC 的取值范围为m°<∠AIC<n°,分别直接写出m,n 的值.24.(10 分)长为300m 的春游队伍,以v(m/s)的速度向东行进,如图1 和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t(s),排头与O 的距离为S 头(m).又拿先拿(1)当v=2 时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S 甲(m),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.25.(10 分)如图1 和2,▱ABCD 中,AB=3,BC=15,tan∠DAB=.点P 为AB 延长线上一点,过点A 作⊙O 切CP 于点P,设BP=x.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E,直接指出PE 与BC 的位置关系;(2)当x=4 时,如图2,⊙O 与AC 交于点Q,求∠CAP 的度数,并通过计算比较弦AP 与劣长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,直接写出x 的取值范围.26.(12 分)如图,若b 是正数,直线l:y=b 与y 轴交于点A;直线a:y=x﹣b 与y 轴交于点B;抛物线L:y=﹣x2+bx 的顶点为C,且L 与x 轴右交点为D.(1)若AB=8,求 b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a 和L 上,且y3 是y1,y2 的平均数,求点(x0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019 和b=2019.5 时“美点”的个数.2019 年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16 个小题,共42 分,1-10 小题各3 分,11-16 小题各2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)下列图形为正多边形的是()A.B.C.D.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.(3 分)规定:(→2)表示向右移动2 记作+2,则(←3)表示向左移动3 记作()A.+3 B.﹣3 D.+【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2 记作+2,则(←3)表示向左移动3 记作﹣3.故选:B.3.(3 分)如图,从点C 观测点D 的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【解答】解:∵从点C 观测点D 的视线是CD,水平线是CE,∴从点C 观测点D 的仰角是∠DCE,故选:B.4.(3 分)语句“x 的与x 的和不超过5”可以表示为()A.+x≤5 +x≥5 ≤5 +x=5【解答】解:“x 与x 的和不超过5”用不等式表示x+x≤5.故选:A.5.(3 分)如图,菱形ABCD 中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【解答】解:∵四边形ABCD 是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.(3 分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4 【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.(3 分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【解答】证明:延长BE 交CD 于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.(3 分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4 B.5×10﹣5 C.2×10﹣4 D.2×10﹣5【解答】解=0.00002=2×10﹣5.故选:D.9.(3 分)如图,在小正三角形组成的网格中,已有6 个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为()A.10 B.6 C.3 D.2【解答】解:如图所示,n 的最小值为3,故选:C.10.(3 分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.(2 分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②一④→③D.②→④→③→①【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.(2 分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【解答】解:由已知可知函数y=关于y 轴对称,所以点M 是原点;故选:A.13.(2 分)如图,若x 为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【解答】解∵==1﹣=又∵x 为正整数,∴≤x<1故表示的值的点落在②故选:B.14.(2 分)图2 是图1 中长方体的三视图,若用S 表示面积,S 主=x2+2x,S 左=x2+x,则S 俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x【解答】解:∵S 主=x2+2x=x(x+2),S 左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S 俯=(x+2)(x+1)=x2+3x+2,故选:A.15.(2 分)小刚在解关于x 的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根【解答】解:∵小刚在解关于x 的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.(2 分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x 为矩形的长与宽之和倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n 值对B.乙的思路和他的n 值都对C.甲和丙的n 值都对D.甲、乙的思路都错,而丙的思路对【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3 个小题,共11 分,17 小题3 分:18~19 小题各有2 个空,每空2分,把答案写在题中横线上)17.(3 分)若7﹣2×7﹣1×70=7p,则p 的值为﹣3 .【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.(4 分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m=3x ;(2)当y=﹣2 时,n 的值为 1 .【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2 时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.(4 分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C 三地的坐标,数据如图(单位:km).笔直铁路经过A,B 两地.(1)A,B 间的距离为20 km;(2)计划修一条从C 到铁路AB 的最短公路l,并在l 上建一个维修站D,使D 到A,C的距离相等,则C,D 间的距离为13 km.【解答】解:(1)由A、B 两点的纵坐标相同可知:AB∥x 轴,∴AB=12﹣(﹣8)=20;(2)过点C 作l⊥AB 于点E,连接AC,作AC 的垂直平分线交直线l 于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7 个小题,共67 分.解答应写出文字说明、证明过程或演算步骤)20.(8 分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6 的结果是负数即可,∴1□2□6 的最小值是1﹣2×6=﹣11,∴1□2□6﹣9 的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.(9 分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1 时,n2﹣1,2n,B 为直角三角形的三边长,如图.填写下表中 B 的值:【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8 时,n=4,∴n2+1=42+1=17;当n2﹣1=35 时,n2+1=37.直角三角形三边n2﹣1 2n B 勾股数组Ⅰ/ 8 17勾股数组Ⅱ35 / 37故答案为:17;3722.(9 分)某球室有三种品牌的4 个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8 元球.(1)求这4 个球价格的众数;(2)若甲组已拿走一个7 元球训练,乙组准备从剩余3 个球中随机拿一个训练.①所剩的3 个球价格的中位数与原来4 个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8 元球的概率.【解答】解:(1)∵P(一次拿到8 元球,∴8 元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4 个球价格的众数为8 元;(2)①所剩的3 个球价格的中位数与原来4 个球价格的中位数相同;理由如下:原来4 个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4 个球价格的中位数为=8(元),所剩的3 个球价格为8,8,9,∴所剩的3 个球价格的中位数为8 元,∴所剩的3 个球价格的中位数与原来4 个球价格的中位数相同;②列表如图所示:共有9 个等可能的结果,乙组两次都拿到8 元球的结果有4 个,又拿先拿∴乙组两次都拿到8 元球的概率为.23.(9 分)如图,△ABC 和△ADE 中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC 交于点P(不与点B,C 重合),点B,E 在AD 异侧,I 为△APC 的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x 的式子表示PD,并求PD 的最大值;(3)当AB⊥AC 时,∠AIC 的取值范围为m°<∠AIC<n°,分别直接写出m,n 的值.【解答】解:(1)在△ABC 和△ADE 中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC 时AB=3 最小,即PD=6﹣3=3 为PD 的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I 为△APC 的内心∴AI、CI 分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.(10 分)长为300m 的春游队伍,以v(m/s)的速度向东行进,如图1 和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t(s),排头与O 的距离为S 头(m).(1)当v=2 时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S 甲(m),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.【解答】解:(1)①排尾从位置O 开始行进的时间为t(s),则排头也离开原排头t (s),∴S 头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S 头=2t+300=600 m甲返回时间为:(t﹣150)s∴S 甲=S 头﹣S 甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S 头与t 的函数关系式为S 头=2t+300,当甲赶到排头位置时,求S 的值为600m,在甲从排头返回到排尾过程中,S 甲与t 的函数关系式为S 甲=﹣4t+1200.(2)T=t 追及+t 返回+=,在甲这次往返队伍的过程中队伍行进的路程为﹣=400;因此T 与v 的函数关系式为,此时队伍在此过程中行进的路程为400m.25.(10 分)如图1 和2,▱ABCD 中,AB=3,BC=15,tan∠DAB=.点P 为AB 延长线上一点,过点A 作⊙O 切CP 于点P,设BP=x.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E,直接指出PE 与BC 的位置关系;(2)当x=4 时,如图2,⊙O 与AC 交于点Q,求∠CAP 的度数,并通过计算比较弦AP 与劣长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,直接写出x 的取值范围.【解答】解:(1)如图1,AP 经过圆心O,∵CP 与⊙O 相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9 时,圆心O 落在AP 上;∵AP 是⊙O 的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C 作CG⊥AP 于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O 作OH⊥AP 于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG 中,==13,∵CP 是⊙O 的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即×13=12OP,∴OP=∴劣弧长度=,∵<2π<7∴弦AP 的长度>劣长度.(3)如图3,⊙O 与线段AD 只有一个公共点,即圆心O 位于直线AB 下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB 时,此时BP 取得最小值,过点C 作CM⊥AB 于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.(12 分)如图,若b 是正数,直线l:y=b 与y 轴交于点A;直线a:y=x﹣b 与y 轴交于点B;抛物线L:y=﹣x2+bx 的顶点为C,且L 与x 轴右交点为D.(1)若AB=8,求 b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a 和L 上,且y3 是y1,y2 的平均数,求点(x0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019 和b=2019.5 时“美点”的个数.0 0【解答】解:(1)当 x =0 吋,y =x ﹣b =﹣b ,∴B (0,﹣b ),∵AB =8,而 A (0,b ),∴b ﹣(﹣b )=8,∴b =4.∴L :y =﹣x 2+4x ,∴L 的对称轴 x =2,当 x =2 吋,y =x ﹣4=﹣2,∴L 的对称轴与 a 的交点为(2,﹣2 );(2)y =﹣(x ﹣, ∴L 的顶点 C ()∵点 C 在 l 下方,∴C 与 l 的距离 =﹣(b ﹣2)2+1≤1, ∴点 C 与 1 距离的最大值为 1;(3)由題意,即 y 1+y 2=2y 3,得 b +x 0﹣b =2(﹣x 2+bx )解得 x 0=0 或 .但 x 0#0,取 ,对于 L ,当 y =0 吋,0=﹣x 2+bx ,即 0=﹣x (x ﹣b ),解得 x 1=0,x 2=b ,∵b >0,∴右交点 D (b ,0).∴点(x0,0)与点D 间的距离b﹣(b﹣)=(4)①当b=2019 时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x 的值都对应的一个整数y 值,且﹣1 和2019 之间(包括﹣1 和﹣2019)共有2021 个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021 个整数点∴总计4042 个点,∵这两段图象交点有2 个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5 时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x 取整数时,在一次函数y=x﹣2019.5 上,y 取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x 图象上,当x 为偶数时,函数值y 可取整数,可知﹣1 到2019.5 之间有1009 个偶数,并且在﹣1 和2019.5 之间还有整数0,验证后可知0 也符合条件,因此“美点”共有1010 个.故b=2019 时“美点”的个数为4040 个,b=2019.5 时“美点”的个数为1010 个.。

2019年河北省中考真题数学试题(附答案解析)

2019年河北省中考真题数学试题(附答案解析)

2019年河北省中考数学试题考试时间:120分钟满分:120分(附详细答案解析)一、选择题:本大题共16小题,1-10题每小题3分,11-16题每小题2分,合计42分.1.(2019年河北)下列图形为正多边形的是()AB C D2.(2019年河北)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作的个数为()A .+3B .-3C .13-D .+133.(2019年河北)如图1,从点C 观测点D 的仰角是()A .∠DABB .∠DCEC .∠DCAD .∠ADC4.(2019年河北)语句“x 的18与x 的和不超过5”可以表示为()A .8x+x ≤5B .8x+x ≥5C .8+5x +x ≤5D .8x+x =55.(2019年河北)如图2,菱形ABCD 中,∠D =150°,则∠1=()A .30︒B .25︒C .20︒D .15︒6.(2019年河北)小明总结了以下结论:①a(b+c)=ab+ac ;②a(b–c)=ab–ac ;③(b–c)÷a =b÷a–c÷a (a≠0);④a÷(b+c)=a÷b+a÷c (a≠0).其中一定成立的个数是()A .1B .2C .3D .47.(2019年河北)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容已知:如图,∠BEC=∠B+∠C求证:AB∥CD.证明:延长BE交※于点F,则∠BEC=◎+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=▲,故AB∥CD(@相等,两直线平行).则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(2019年河北)一次抽奖活动特等奖的中奖率为15000,把15000用科学记数法表示为()A.5×10–4B.5×10–5C.2×10–4D.2×10–59.(2019年河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(2019年河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A B C D11.(2019年河北)某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的各类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个各类所占的百分比;④整理借阅图书记录并绘制频数分布表.正确统计步骤的顺序是()。

2019年河北省中考数学试题(含答案)

2019年河北省中考数学试题(含答案)

2012年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A .0 B. C. D. 2-1122.计算的结果是( )3()ab A . B. C. D. 3ab 3a b 33a b 3ab 3.图1中几何体的主视图是( )4.下列各数中,为不等式组解的是( )23040x x ->⎧⎨-<⎩A . B.0C.2 D.41-5.如图2,是的直径,是弦(不是直径),于点,则下列结论正CD O ⊙AB AB CD ⊥E 确的是( )A . B. C. D.AE BE >A A AD BC =12D AEC =∠∠ADECBE△∽△6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上C .必有5次正面向上 D .不可能有10次正面向上7.如图3,点在的边上,用尺规作出了,作图痕迹中,是C AOB ∠OB CN OA ∥A FG( )A .以点为圆心,为半径的弧 B.以点为圆心,为半径弧C OD C DM C.以点为圆心,为半径的弧 D.以点为圆心,为半径的E OD E DM 8.用配方法解方程,配方后的方程是( )2410x x ++=A . B.2(2)3x +=2(2)3x -=C. D.2(2)5x -=2(2)5x +=9.如图4,在中,将折叠,使点分别落在点、ABCD A 70A ∠=︒,ABCD A D C 、F 处(点都在所在的直线上),折痕为,则等于( )E ,F E AB MN AMF ∠A . B. C. D.70 40 30 2010.化简的结果是( )22111x x ÷--A . B. C. D.21x -321x -21x +2(1)x +11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为,,a b ()a b >则等于( )()a b -A .7 B.6 C.5 D.412.如图6,抛物线与交于点,过点作轴21(2)3y a x =+-221(3)12y x =-+(13)A ,A x 的平行线,分别交两条抛物线于点.则以下结论:B C ,①无论取何值,的值总是正数.x 2y ②.1a =③当时,.0x =214y y -=④.23AB AC =其中正确结论是( )A .①② B.②③ C.③④ D.①④2012年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共9 0分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.的相反数是 .5-14.如图7,相交于点,于点,若,则等于 AB CD ,O AC CD ⊥C BOD∠=38A ∠.15.已知,则的值为 .1y x =-2()()1x y y x -+-+16.在的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第12⨯三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报,第2位同学报111⎛⎫+ ⎪⎝⎭,第3位同学报……这样得到的20个数的积为 .112⎛⎫+ ⎪⎝⎭113⎛⎫+ ⎪⎝⎭18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图,用个全等的正六边形按这种方式拼接,如图91-n ,若围成一圈后中间也形成一个正多边形,则的值为 .92-n三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)计算:.021153)6(1)32⎛⎫--+⨯-+-⎪⎝⎭20.(本小题满分8分)如图10,某市两地之间有两条公路,一条是市区公路,另一条是外环公路A B ,AB .这两条公路转成等腰梯形,其中AD DC CB --ABCD DC AB AB AD DC∥,::.=10:5:2(1)求外环公路总长和市区公路长的比;(2)某人驾车从地出发,沿市区公路去地,平均速度是40km/h ,返回时沿外环公A B 路行驶,平均速度是80km/h ,结果比去时少用了h ,求市区公路的长.11021.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).(1)___________,=__________;a x 乙(2)请完成图11中表示乙成绩变化情况的折线;(3)①观察图11,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(本小题满分8分)如图12,四边形是平行四边形,点.反比例函数ABCD (10)(31)(33)A B C ,,,,,的图象经过点,点是一次函数的图象与该(0)my x x=>D P 33(0)y kx k k =+-≠反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数的图象一定过点;33(0)y kx k k =+-≠C (3)对于一次函数,当的增大而增大时,确定点横坐33(0)y kx k k =+-≠y x 随P 标的取值范围(不必写出过程).23.(本小题满分9分)如图,点是线段的中点,分别以为直角顶点的131-E BC B C ,均是等腰直角三角形,且在的同侧.EAB EDC △和△BC(1)的数量关系为___________,AE ED 和的位置关系为___________;AE ED 和(2)在图中,以点为位似中心,作与位似,点是所131-E EGF △EAB △H BC 在直线上的一点,连接,分别得到了图和图;GH HD ,132-133- ①在图中,点在上,的相似比是,是132-F BE EGFEAB △与△1:2H 的中点.求证:EC .GH HD GH HD =⊥,②在图中,点在的延长线上,的相似比是,133-F BE EGFEAB △与△k :1若,请直接写出的长为多少时,恰好使得(用含的2BC =CH GH HD GH HD =⊥且k 代数式表示).24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:)2cm 成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长之间满足的函数关系式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线的顶点坐标是.2(0)y ax bx c a =++≠2424b ac b a a ⎛⎫-- ⎪⎝⎭,25.(本小题满分10分)如图14,点在轴的正半轴上,,,(50)(30).A B --,,,C y CBO∠=45CD AB ∥.点从点出发,沿轴向左以每秒1个单位长的速度运动,运90CDA = ∠P (40)Q ,x 动时间为秒.t (1)求点的坐标;C (2)当时,求的值;15BCP =∠t (3)以点为圆心,为半径的随点的运动而变化,当与四边形P PC P ⊙P P ⊙的边(或边所在的直线)相切时,求的值.ABCD t26.(本小题满分12分)如图和图,在中,151-152-ABC △51314cos .13AB BC ABC ===,,∠探究在如图,于点,则_______,_______, 的151-AH BC ⊥H AH =AC =ABC △面积=___________.ABC S △拓展如图,点在上(可与点重合),分别过点作直线的垂线,152-D AC A C ,A C ,BD 垂足为.设(当点与点重合时,我们认为=0.E F ,.BD x AE mCF n ===,,D A ABC S △(1)用含或的代数式表示及;x m ,n ABD S △CBD S △(2)求与的函数关系式,并求的最大值和最小值.()m n +x ()m n +(3)对给定的一个值,有时只能确定唯一的点,指出这样的的取值范围.x D x 发现请你确定一条直线,使得三点到这条直线的距离之和最小(不必写出过程),A B C ,,并写出这个最小值.2012年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题(1~6小题,每小题2分;7~12小题,每小题3发,共30分)题号123456789101112答案BCACDBDABCAD二、填空题(每小题3分,满分18分)13.5 14.52 15.1 16. 17.21 18.634三、解答题(本大题共8小题,共72分)19.解:021153)6(1)32⎛⎫---+⨯-+- ⎪⎝⎭=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分51(23)1-+-+=4.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分20.解:(1)设km ,则km ,km .10AB x =5AD x =2CD x =四边形是等腰梯形,,ABCD DC AB ∥5.BC AD x ∴==12.AD DC CB x ∴++=外环公路总长和市区公路长的比为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分∴12x x :10=6:5(2)由(1)可知,市区公路物长为km ,外环公路的总长为km .10x 12x 由题意,得.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分10121408010x x =+解这个方程,得.1x =.1010x ∴=答:市区公路的长为10km.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分21.解:(1)4,6∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分(2)如图1∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(3)①乙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分=1.6.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分2222221[(76)(56)(76)(46)(76)]5S =-+-+-+-+-乙由于,所以上述判断正确.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分22S S <乙甲②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.∙∙∙∙∙∙∙∙8分22.解:(1)由题意,,故点的坐标为(1,2).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分2AD BC ==D 反比例函数的图象经过点, mx(12)D ,2. 2.1mm ∴=∴=反比例函数的解析式为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分∴2.y x=(2)当时,3x =333 3.y k k =+-=一次函数的图象一定过点.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分∴33(0)y kx k k =+-≠C (3)设点的横坐标为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分P 23.3a a <<,(注:对(3)中的取值范围,其他正确写法,均相应给分)23.解:(1).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分AE ED AE ED =⊥,(2)①证明:由题意,90.B C AB BE EC DC =====∠∠,位似且相似比是,EGF EAB △与△1:21190.22GFE B GF AB EF EB ∴==== ∠∠,,.GFE C ∴=∠∠12EH HC EC == ,111.222GF HC FH FE EH EB EC BC EC CD ∴==+=+===,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分HGFDHC ∴△≌△.GH HD GHF HDC ∴==,∠∠又.9090HDC DHC GHF DHC +=∴+=∠∠,∠∠.GHD ∴∠=90.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分GH HD ∴⊥②的长为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分CH k24.解:(1)设一张薄板的边长为cm ,它的出厂价为元,基础价为元,浮动价为x y n 元,则.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分kx y kx n =+由表格中的数据,得 解得50207030.k n k n =+⎧⎨=+⎩,210.k n =⎧⎨=⎩,所以∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分210.y x =+(2)①设一张薄板的利润为元,它的成本价为元,由题意,得P 2mx ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分22210.P y mx x mx =-=+-将代入中,得.4026x P ==,2210P x mx =+-2262401040m =⨯+-⨯解得1.25m =所以∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分21210.25P x x =-++②因为,所以,当(在5~50之间)时,1025a =-<22512225b x a =-=-=⎛⎫⨯- ⎪⎝⎭221410242535.14425ac b P a ⎛⎫⨯-⨯- ⎪-⎝⎭===⎛⎫⨯- ⎪⎝⎭最大值即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分(注:边长的取值范围不作为扣分点)25.解:(1),45BCO CBO == ∠∠3.OC OB ∴==又点在轴的正半轴上,C y 点的坐标为(0,3)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分∴C(2)当点在点右侧时,如图2.P B 若,得.15BCP = ∠30PCO = ∠故,此时∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分tan 30OP OC == 4t =当点在点左侧时,如图3,由,P B 15BCP = ∠得,故.60PCO = ∠tan 60PO OC ==此时.4t =+的值为或∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分t ∴4+4+(3)由题意知,若与四边形的边相切,有以下三种情况:P ⊙ABCD ①当与相切于点时,有,从而得到.P ⊙BC C 90BCP = ∠45OCP =∠3OP =此时.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分1t =②当与相切于点时,有,即点与点重合,P ⊙CD C PC CD ⊥P O 此时.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分4t =③当与相切时,由题意,,P ⊙AD 90DAO = ∠点为切点,如图4..∴A 22222(9)(4)PC PA t PO t ==-=-,于是.解处.222(9)(4)3t t -=-+ 5.6t =的值为1或4或5.6.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分t ∴26.解:探究:12,15,84∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分拓展:(1)由三角形面积公式,得.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分ABD CBD S mx S nx △△11=,=22(2)由(1)得,22ABD CBD S S m n x x==△△.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分22168ABD CBD S S m n x x x∴+=+=△△由于边上的高为,AC 22845615155ABC S ⨯==△的取值范围是.x ∴56145x ≤≤随的增大而减小,()m n + x 当时,的最大值为15.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分∴565x =()m n +当时,的最小值为12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分14x =()m n +(3)的取值范围是或.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分x 565x =13x <≤14发现:所在的直线,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11分AC 最小值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分565。

2019年河北省中考数学试题(含答案)

2019年河北省中考数学试题(含答案)
A.
在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.
一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.
暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.
掷一个质地均匀的正六面体骰子,向上的面点数是4
考点:
利用频率估计概率;折线统计图.
分析:
根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.
解答:
解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,
∴∠A=∠A′,∠B=∠B′,
∴△ABC∽△A′B′C′,
∴甲说法正确;
乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,
∴ , ,
∴ ,
∴新矩形与原矩形不相似.
河北省2019年中考数学试卷
一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2分)(2019•河北)﹣2是2的( )
A.
倒数
B.
相反数
C.
绝对值
D.
平方根
考点:
相反数.
分析:
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
A.
2,3
B.
3,2
C.
3,4
D.
6,8
考点:
估算无理数的大小.
分析:
根据 ,可得答案.
解答:
解: ,
故选:A.
点评:

2019年河北省中考数学试卷含答案解析(word版)

2019年河北省中考数学试卷含答案解析(word版)

2019年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2019年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

(完整版)2019年河北省中考数学试题(Word版-含答案)

(完整版)2019年河北省中考数学试题(Word版-含答案)

2019年省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x =﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,形有一长为12、宽为6的矩形,它可以在形的部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求形边长的最小整数n.”甲、乙、丙作了自认为边长最小的形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□的符号;(3)在“1□2□6﹣9”的□填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P (不与点B,C重合),点B ,E在AD异侧,I为△APC的心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S 头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b=2019.5时“美点”的个数.2019年省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=°,∴∠BAD=°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n =14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=°﹣(∠IAC+∠ICA)=°﹣(∠PAC+∠PCA)=°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11—16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是( )A .B .C .D .2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C .﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x 的与x的和不超过5”可以表示为( )A .+x≤5B .+x≥5C .≤5D .+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=( )A.30°B.25°C.20°D.15°16.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是( )A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是( )A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为() A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()2A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A .B .C .D .11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③ D.②→④→③→①12.(2分)如图,函数y =的图象所在坐标系的原点是()3A.点M B.点N C.点P D.点Q13.(2分)如图,若x 为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=( )A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根416.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x 为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p 的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;5(2)当y=﹣2时,n 的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9"中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.6联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿723.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)8(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB =.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC 的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点",分别直接写出b=2019和b=2019。

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A .B .C .D .2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C .﹣D.+3.(3分)如图,从点C观测点D的仰角是( )A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x 的与x的和不超过5”可以表示为()A .+x≤5B .+x≥5C .≤5D .+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°16.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是( )A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为() A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为( )2A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③ D.②→④→③→①12.(2分)如图,函数y =的图象所在坐标系的原点是()3A.点M B.点N C.点P D.点Q13.(2分)如图,若x 为正整数,则表示﹣的值的点落在( )A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根416.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x 为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p 的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;5(2)当y=﹣2时,n 的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分。

2019年河北省中考数学试题(含答案)

2019年河北省中考数学试题(含答案)

河北省 2019 年中考数学试卷 一、选择题(共 16 小题,1~6 小题,每小题 2 分;7~16 小题,每小题 2 分,共 42 分,在每小题给出的四 个选项中,只有一项是符合题目要求的)1.(2 分)(2019•河北)﹣2 是 2 的( ) A 倒数 .B 相反数 .C 绝对值 .D 平方根 .考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答: 解:﹣2 是 2 的相反数,故选:B. 点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.(2 分)(2019•河北)如图,△ABC 中,D,E 分别是边 AB,AC 的中点.若 DE=2,则 BC=( ) A 2 .B3 .C4 .D5 .考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得 BC=2DE.解答:解:∵D,E 分别是边 AB,AC 的中点, ∴DE 是△ABC 的中位线, ∴BC=2DE=2×2=4. 故选 C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题 的关键. 3.(2 分)(2019•河北)计算:852﹣152=( ) A 70 .B 700 .C 4900 .D 7000 .考点:因式分解-运用公式法.分析:直接利用平方差进行分解,再计算即可.解答: 解:原式=(85+15)(85﹣15)=100×70 =7000. 故选:D. 点评: 此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b). 4.(2 分)(2019•河北)如图,平面上直线 a,b 分别过线段 OK 两端点(数据如图),则 a,b 相交所成的 锐角是( ) A 20° .B 30° .C 70° .D 80° .考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: 解:a,b 相交所成的锐角=100°﹣70°=30°.故选 B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 5.(2 分)(2019•河北)a,b 是两个连续整数,若 a< <b,则 a,b 分别是( ) A 2,3B 3,2C 3,4D 6,8....考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键. 6.(2 分)(2019•河北)如图,直线 l 经过第二、三、四象限,l 的解析式是 y=(m﹣2)x+n,则 m 的取值 范围在数轴上表示为( ) ABCD....考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析: 根据一次函数图象与系数的关系得到 m﹣2<0 且 n<0,解得 m<2,然后根据数轴表示不等式的方法进行判断. 解答:解:∵直线 y=(m﹣2)x+n 经过第二、三、四象限,∴m﹣2<0 且 n<0,∴m<2 且 n<0. 故选 C. 点评:本题考查了一次函数图象与系数的关系:一次函数 y=kx+b(k、b 为常数,k≠0)是 一条直线,当 k>0,图象经过第一、三象限,y 随 x 的增大而增大;当 k<0,图象 经过第二、四象限,y 随 x 的增大而减小;图象与 y 轴的交点坐标为(0,b).也考 查了在数轴上表示不等式的解集. 7.(3 分)(2019•河北)化简: ﹣ =( ) A 0B1CxD....考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选 C 点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 8.(3 分)(2019•河北)如图,将长为 2、宽为 1 的矩形纸片分割成 n 个三角形后,拼成面积为 2 的正方 形,则 n≠( ) A 2 .B3 .C4 .D5 .考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为 2、宽为 1 的矩形纸片分割成 n 个三角形后,拼成面积为 2 的 正方形, 则 n 可以为:3,4,5, 故 n≠2. 故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键. 9.(3 分)(2019•河北)某种正方形合金板材的成本 y(元)与它的面积成正比,设边长为 x 厘米.当 x=3时,y=18,那么当成本为 72 元时,边长为( ) A 6 厘米B 12 厘米C 24 厘米D 36 厘米....考点:一次函数的应用.分析:设 y 与 x 之间的函数关系式为 y=kx2,由待定系数法就可以求出解析式,当 y=72 时 代入函数解析式就可以求出结论.解答:解:设 y 与 x 之间的函数关系式为 y=kx2,由题意,得 18=9k, 解得:k=2, ∴y=2x2, 当 y=72 时,72=2x2, ∴x=6. 故选 A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值 的运用,解答时求出函数的解析式是关键. 10.(3 分)(2019•河北)如图 1 是边长为 1 的六个小正方形组成的图形,它可以围成图 2 的正方体,则图 1 中小正方形顶点 A,B 围成的正方体上的距离是( ) A 0B1CD....考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB 是正方体的边长, AB=1, 故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键. 11.(3 分)(2019•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图 的折线统计图,则符合这一结果的实验最有可能的是( ) A 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” . B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 C.暗箱中有 1 个红球和 2 个黄球,它们只有颜色上的区别,从中任取一球是黄球 D 掷一个质地均匀的正六面体骰子,向上的面点数是 4 .考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在 0.17 附近波动,即其概率 P≈0.17,计算四个选项的概 率,约为 0.17 者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为 ,故此选 项错误; B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是: = ;故此选项错误; C、暗箱中有 1 个红球和 2 个黄球,它们只有颜色上的区别,从中任取一球是黄球的 概率为 ,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是 4 的概率为 ≈0.17,故此选项 正确. 故选:D. 点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点 为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式. 12.(3 分)(2019•河北)如图,已知△ABC(AC<BC),用尺规在 BC 上确定一点 P,使 PA+PC=BC,则 符合要求的作图痕迹是( ) AB....C.D.考点:作图—复杂作图分析:要使 PA+PC=BC,必有 PA=PB,所以选项中只有作 AB 的中垂线才能满足这个条件, 故 D 正确.解答:解:D 选项中作的是 AB 的中垂线, ∴PA=PB, ∵PB+PC=BC, ∴PA+PC=BC 故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出 PA=PB. 13.(3 分)(2019•河北)在研究相似问题时,甲、乙同学的观点如下: 甲:将边长为 3、4、5 的三角形按图 1 的方式向外扩张,得到新三角形,它们的对应边间距为 1,则新三 角形与原三角形相似. 乙:将邻边为 3 和 5 的矩形按图 2 的方式向外扩张,得到新的矩形,它们的对应边间距均为 1,则新矩形 与原矩形不相似. 对于两人的观点,下列说法正确的是( ) A 两人都对 .B 两人都不对 .C 甲对,乙不对 .D 甲不对,乙对 .考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可 得△ABC∽△A′B′C′; 乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似. 解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′, ∴△ABC∽△A′B′C′, ∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则 A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似. ∴乙说法正确. 故选 A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合 思想的应用. 14.(3 分)(2019•河北)定义新运算:a⊕b=y=2⊕x(x≠0)的图象大致是( ) ABC...例如:4⊕5= ,4⊕(﹣5)= .则函数D .考点:反比例函数的图象 专题:新定义. 分析:根据题意可得 y=2⊕x=在象限和形状,进而得到答案. 解答:解:由题意得:y=2⊕x=,再根据反比例函数的性质可得函数图象所 ,当 x>0 时,反比例函数 y= 在第一象限,当 x<0 时,反比例函数 y=﹣ 在第二象限, 又因为反比例函数图象是双曲线,因此 D 选项符合, 故选:D. 点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线. 15.(3 分)(2019•河北)如图,边长为 a 的正六边形内有两个三角形(数据如图),则=( ) A 3 .B4 .C5 .D6 .考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图, ∵三角形的斜边长为 a,∴两条直角边长为 a, a,∴S 空白= a• a= a2, ∵AB=a, ∴OC= a,∴S 正六边形=6× a• a= a2,∴S 阴影=S 正六边形﹣S 空白=a2﹣ a2=a2,∴=故选 C.=5,点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算. 16.(3 分)(2019•河北)五名学生投篮球,规定每人投 20 次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是 6.唯一众数是 7,则他们投中次数的总和可能是( ) A 20B 28C 30D 31....考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数 为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最 大的三个数的和是:6+7+7=20,两个较小的数一定是小于 5 的非负整数,且不相等, 则可求得五个数的和的范围,进而判断.解答:解:中位数是 6.唯一众数是 7, 则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于 5 的非负整数,且不 相等, 则五个数的和一定大于 20 且小于 29. 故选 B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这 个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要 先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中 间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2019•河北)计算:= 2 .考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2019•河北)若实数m,n 满足|m﹣2|+(n﹣2019)2=0,则m﹣1+n0= .考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2019)2=0,m﹣2=0,n﹣2019=0,m=2,n=2019.m﹣1+n0=2﹣1+20190=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2019•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形= 4 cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2019•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6 .考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2019•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第 四 步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是 x= .用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2019•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34363840他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2019•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2019•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2019•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是 1 ,当BP经过点O时,∠ABA′= 60 °;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2019•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出y1,y2(米)与t(分)的函数关系式,再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时,在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长,而成2号车到A出口的距离大于3个边长,进而得出结论;(2)分类讨论,若步行比乘1号车的用时少,就有,得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意,得情况一需要时间为:=16﹣,情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类讨论思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.。

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x =﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.23.(9分)如图,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心. (1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AIC <n °,分别直接写出m ,n 的值.24.(10分)长为300m 的春游队伍,以v (m /s )的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m /s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头与O 的距离为S 头(m ).(1)当v =2时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S 甲(m ),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。

2019年河北省中考数学试卷含答案解析

2019年河北省中考数学试卷含答案解析

2019年河北省中考数学试卷含答案解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由; ②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.23.(9分)如图,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心.(1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AIC <n °,分别直接写出m ,n 的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.【考点】L1:多边形.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+【考点】11:正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=5【考点】C8:由实际问题抽象出一元一次不等式.【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【考点】L8:菱形的性质.【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.【点评】此题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解本题的关键.6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.4【考点】4A:单项式乘多项式.【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.7.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【考点】J9:平行线的判定.【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.00002=2×10﹣5.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2【考点】P8:利用轴对称设计图案.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【考点】MA:三角形的外接圆与外心;N2:作图—基本作图.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【考点】V1:调查收集数据的过程与方法;V7:频数(率)分布表;VB:扇形统计图.【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【考点】G2:反比例函数的图象.【分析】由函数解析式可知函数关于y轴对称,即可求解;【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【考点】6B:分式的加减法.【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x【考点】I4:几何体的表面积;U3:由三视图判断几何体.【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根【考点】A7:解一元二次方程﹣公式法;AA:根的判别式.【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.【点评】此题主要考查了根的判别式,正确得出c的值是解题关键.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【考点】LB:矩形的性质;LE:正方形的性质;Q2:平移的性质;R2:旋转的性质.【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为﹣3.【考点】6E:零指数幂;6F:负整数指数幂.【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为1.【考点】32:列代数式;33:代数式求值.【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【考点】KU:勾股定理的应用.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;【点评】本题考查勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【考点】1G:有理数的混合运算.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:【考点】47:幂的乘方与积的乘方;KT:勾股数.【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;37【点评】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.【考点】B7:分式方程的应用;W4:中位数;W5:众数;X4:概率公式;X6:列表法与树状图法.【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【考点】KY:三角形综合题.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.【点评】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题关键是将PD最大值转化为P A的最小值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【考点】GA:反比例函数的应用.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×=400;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为400m.【点评】考查行程问题中相遇、追及问题的数量关系的理解和应用,同时函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.。

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷及答案

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1—10小题各3分,11—16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A .B .C .D .2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C .﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x 的与x的和不超过5”可以表示为()A .+x≤5B .+x≥5C .≤5D .+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°16.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是( )A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()2A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③ D.②→④→③→①12.(2分)如图,函数y =的图象所在坐标系的原点是( )3A.点M B.点N C.点P D.点Q13.(2分)如图,若x 为正整数,则表示﹣的值的点落在( )A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是() A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根416.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n."甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x 为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p 的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;5(2)当y=﹣2时,n 的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.6联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿723.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)8(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB =.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC 的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点",分别直接写出b=2019和b=2019。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年河北省中考数学真题及答案一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P (不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A 作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.参考答案:一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n =14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。

相关文档
最新文档