高中数学中对称性问题总结.doc

合集下载

高中数学总结归纳 抽象函数的对称性

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。

一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2对称。

证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b=+2的对称点为()A a b m n '+-,。

[]∵f a b m f b b m f m n ()()()+-=--==∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2对称。

二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2对称。

证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2的对称点为()A b a m n '--,。

∵f b b a m f a m n [()]()---=+=∴点A'在y f b x =-()的图象上反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2对称。

说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++⎛⎝ ⎫⎭⎪2与y f x a b =-++⎛⎝ ⎫⎭⎪2的图象关于直线x =0对称,由y f x a b =++⎛⎝ ⎫⎭⎪2的图象平移得到y f x b a a b f a x =--⎛⎝ ⎫⎭⎪++⎡⎣⎢⎤⎦⎥=+22()的图象,由y f x a b =-++⎛⎝ ⎫⎭⎪2的图象平移得到y f x b a a b f b x =---⎛⎝ ⎫⎭⎪++⎡⎣⎢⎤⎦⎥=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2对称。

高中数学《函数对称性》重要结论—优享文档

高中数学《函数对称性》重要结论—优享文档

高中数学《函数对称性》重要结论二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。

推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y =f(x)关于直线x =a 轴对称,则以下三个式子成立且等价:(1)f(a +x)=f(a -x) (2)f(2a -x)=f(x) (3)f(2a +x)=f(-x)性质2 若函数y =f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价:(1)f(a +x)=-f(a -x)(2)f(2a -x)=-f(x)(3)f(2a +x)=-f(-x)易知,y =f(x)为偶(或奇)函数分别为性质1(或2)当a =0时的特例。

高一数学对称性知识点总结

高一数学对称性知识点总结

高一数学对称性知识点总结引言:在高中数学中,对称性是一个重要的概念。

它不仅仅存在于几何图形中,还可以在函数、方程等数学对象中被应用。

对称性不仅是美的表现,还有许多实际应用。

在本文中,我们将对高一数学中的对称性知识点进行总结,以帮助学生更好地理解和运用这一概念。

一、轴对称与中心对称轴对称和中心对称是对称性的两个基本概念。

1. 轴对称:轴对称指的是具有一个轴可以使图形的一侧与另一侧对称重合。

我们常见的圆、正方形和矩形都具有轴对称。

轴对称的特点是,把图形沿着轴线折叠,两侧的形状完全重合。

2. 中心对称:中心对称指的是图形中存在一个点,将图形绕这个点旋转180度,使得旋转前后的图形完全重合。

例如,我们熟知的五角星和六角星就具有中心对称。

二、对称图形的性质对称图形有一些独特的性质,我们常常通过这些性质来解决与对称性相关的问题。

1. 对称轴的性质:对称轴将图形分为两个对称的部分,这两个部分是镜像关系。

对称轴上的任意点在折叠后仍然在同一位置。

2. 对称图形的面积性质:如果图形是轴对称的,那么图形的面积将是左半部分的面积的两倍。

例如,一个圆柱的底面是一个圆,它是轴对称的,其面积可以通过计算圆的面积并乘以2来得到。

三、应用例题对称性不仅仅是一个概念,还可以用于解决实际的问题。

下面是一些常见的例题,说明了对称性的应用。

1. 例题1:已知一个圆的半径为r,求圆的周长。

解析:由于圆具有中心对称性,我们可以通过计算圆的半径长度的两倍,即2r,得到圆的周长。

2. 例题2:一辆汽车以匀速行驶,此时速度计指示为60km/h。

当汽车通过一个路灯杆时,路灯杆对汽车的速度计指示是多少?解析:由于汽车行驶的速度是匀速的,所以汽车通过路灯杆时的速度与离开路灯杆时的速度相同。

因此,路灯杆对汽车的速度计指示也是60km/h。

结论:对称性在高一数学中是一个重要的概念,它不仅仅存在于几何图形中,还可以应用于函数、方程等数学对象。

了解和掌握对称性的基本概念和性质,对于解决相关的问题至关重要。

高三函数对称性知识点总结

高三函数对称性知识点总结

高三函数对称性知识点总结在高中数学的学习过程中,函数是一个非常重要的概念。

而函数的对称性是函数图像在坐标轴上的对称特性,它是一种具有很高抽象性的数学思维,对于理解和解决数学问题具有重要意义。

在高三数学学习中,函数的对称性是一个非常重要的知识点,也是数学建模和解题中常用的技巧之一。

下面将对高三函数对称性的知识点进行总结。

一、函数的对称性1. 关于x轴的对称性当函数图像与x轴对称时,称函数具有关于x轴的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(x, -y)也在函数图像上。

2. 关于y轴的对称性当函数图像与y轴对称时,称函数具有关于y轴的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(-x, y)也在函数图像上。

3. 关于原点的对称性当函数图像与原点对称时,称函数具有关于原点的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(-x, -y)也在函数图像上。

4. 奇函数如果函数f(-x) = -f(x),那么称函数f(x)为奇函数。

奇函数的图像关于原点对称,且通过原点。

5. 偶函数如果函数f(-x) = f(x),那么称函数f(x)为偶函数。

偶函数的图像关于y轴对称,且通过y 轴。

6. 周期函数如果函数f(x + T) = f(x),其中T为正实数,那么称函数f(x)为周期函数。

周期函数的图像在一个周期内具有对称性。

二、对称性在数学建模中的应用1. 对称性可以简化问题在数学建模中,对称性可以帮助我们简化问题,减少计算量和分析难度。

通过对称性的特点,我们可以找到函数图像上的对称点,从而减少求解方程的步骤。

2. 对称性可以加快求解过程利用函数的对称性,在求解函数的零点、极值点和拐点时,可以通过对称点的关系,快速地确定函数的特征点,从而加快求解过程。

3. 对称性可以提高模型的精度在数学建模中,对称性可以帮助我们合理地选择函数模型,提高模型的精度和可靠性。

三、对称性在解题中的应用举例1. 求函数图像与坐标轴的交点在函数图像与坐标轴相交的点的求解中,利用函数的对称性可以帮助我们简化求解过程。

高中数学-函数周期性奇偶性对称性

高中数学-函数周期性奇偶性对称性

课题:函数的周期性、奇偶性、对称性规律总结一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、 对称性定义(略),请用图形来理解。

3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

知识点:函数的对称性总结

知识点:函数的对称性总结

知识点:函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的根底。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个根本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分表达了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来讨论函数与对称有关的性质。

一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:〔必要性〕设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'〔2a-x,2b-y〕也在y = f (x)图像上, 2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

〔充分性〕设点P(x0,y0)是y = f (x)图像上任一点,那么y0 = f (x0)∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P'〔2a-x0,2b-y0〕也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。

推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) 〔证明留给读者〕推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①假设函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称〔ab〕,那么y = f (x)是周期函数,且2| a-b|是其一个周期。

高中数学函数对称性和周期性小结

高中数学函数对称性和周期性小结

高中数学函数对称性和周期性小结高中数学中,函数对称性和周期性是重要的概念。

它们在数学理论和实际应用中都扮演着重要的角色。

本文将对函数的对称性和周期性进行详细的介绍和总结。

首先,我们来讨论函数的对称性。

对称性是指函数在某种变换下具有保持不变的性质。

在数学中,常见的函数对称性有对称、反对称和轴对称等。

对称函数是一种在镜像变换下保持不变的函数。

对称函数的概念可以延伸到两种情况:关于y轴对称和关于原点对称。

关于y轴对称的函数满足 f(x) = f(-x),这意味着函数的图像在y轴上对称。

而关于原点对称的函数满足 f(x) = -f(-x),这意味着函数的图像在原点上对称。

常见的对称函数有偶函数和奇函数。

偶函数是指关于y轴对称的函数,即满足 f(x) = f(-x) 的函数。

这种函数的图像关于y轴对称,例如 y = x^2 就是一个典型的偶函数。

偶函数的特点是在定义域的对称位置的函数值相等。

对偶函数来说,如果f(x)在定义域内有定义,则f(-x)也在定义域内有定义。

偶函数的性质还包括:偶函数相加仍为偶函数,偶函数与任意常数先乘后加仍为偶函数,偶函数乘以奇函数得到奇函数。

奇函数是指关于原点对称的函数,即满足f(x) = -f(-x) 的函数。

这种函数的图像关于原点对称,例如 y = x^3 就是一个典型的奇函数。

奇函数的特点是在定义域的对称位置的函数值互为相反数。

对奇函数来说,如果f(x)在定义域内有定义,则f(-x)也在定义域内有定义。

奇函数的性质还包括:奇函数相加仍为奇函数,奇函数与偶函数相加得到一个新的函数,既不是偶函数也不是奇函数。

反对称函数是指既不关于y轴对称也不关于原点对称的函数,而是在镜像变换下呈现一种特殊的关系。

即满足 f(x) = -f(-x)的函数。

这种函数的图像在关于y轴和原点的对称位置的函数值互为相反数。

例如 y = x 就是一个典型的反对称函数。

其次,我们来讨论函数的周期性。

周期性是指函数在某个特定的区间内,满足一个特定的周期性关系。

高一数学《函数的对称性》知识点总结

高一数学《函数的对称性》知识点总结

高一数学《函数的对称性》知识点总结高一数学《函数的对称性》知识点总结一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P'(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。

(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。

故点P'(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P'关于点A(a,b)对称,充分性得征。

推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0 定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x)即f(x)=f(2a-x)(证明留给读者)推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)定理 3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2a-b是其一个周期。

②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2a-b是其一个周期。

③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4a-b是其一个周期。

①②的证明留给读者,以下给出③的证明:∵函数y=f(x)图像既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c,用2b-x代x得:f(2b-x)+f2a-(2b-x)]=2c………………(*)又∵函数y=f(x)图像直线x=b成轴对称,∴f(2b-x)=f(x)代入(*)得:f(x)=2c-f2(a-b)+x]…………(**),用2(a-b)-x代x得f2(a-b)+x]=2c-f4(a-b)+x]代入(**)得:f(x)=f4(a-b)+x],故y=f(x)是周期函数,且4a-b是其一个周期。

知识点:函数的对称性总结

知识点:函数的对称性总结

知识点:函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。

推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。

高中函数对称性的总结

高中函数对称性的总结

高中函数对称性的总结
什么是函数的对称性?对称可以被定义为当某一对象被某种对
称变换(包括旋转,移动等)后,依然能够得到完全相同的对象。

函数的对称性指的是在函数的几何图像上,经过某种变换,图形的形状仍然不变。

在函数的对称性中,常见的有偶函数和奇函数。

偶函数是指函数图形以y轴中点为中心对称,也就是说,把函数图形经过水平翻转得到的图形与原函数图形完全相同。

而奇函数是指函数图形以极点为中心对称,也就是说,把函数图形经过垂直翻转得到的图形与原函数图形完全相同。

此外,在函数的对称性中,还有可以定义为函数的X轴对称性和Y轴对称性。

X轴对称性是指函数图形以X轴中点为中心对称,也就是说,把函数图形经过垂直翻转得到的图形与原函数图形完全相同。

而Y轴对称性是指函数图形以Y轴中点为中心对称,也就是说,把函数图形经过水平翻转得到的图形与原函数图形完全相同。

除了以上这些,我们还可以从参数的角度来看函数的对称性,有时候我们会将函数的参数的取值范围改变,会发现函数的图形也会发生变化,比如函数形如y=f(x+a)的参数a的取值变化,会使得函数的图形发生水平移动的变化,当a的取值为负值时,可以使得函数的图形整体向左移动,当a的取值为正值时,可以使得函数图形整体向右移动。

综上所述,高中函数对称性主要有偶函数,奇函数,X轴对称函
数,Y轴对称函数,以及参数变换引起的函数对称性等。

这些函数的对称性都是高中函数的有趣的特点,并且这些特性也可以帮助我们更好地理解函数,从而更好地解决函数相关的数学问题。

函数对称性的总结

函数对称性的总结

函数对称性的总结1. 两个关于函数图象对称性的结论1.x=02.x=(a+b)/2.∵y=f(a+x)=f[(a+b)/2+(a-b)/2+x]=f[(a+b)/2+t],其中t=(a-b)/2+x,而y=f(b-x)=f[(a+b)/2-(a-b)/2-x]=f[(a+b)/2-((a-b)/2+x)]=f[(a+b )/2-t],所以:函数y=f(a+x)与函数y=f(b-x)的图象关于直线x=(a+b)/2对称。

楼主你好:2的答案就是x=(a+b)/2.不是x=(b-a)/2.若是后者,当a=b时对称轴就成x=0了,这明显错误。

其实当a=b时对称轴明显是x=a,与我这里的答案符合。

2. 函数对称性结论是怎样推出的周期函数是指函数值随自变量的变化而呈周期性变化,正弦、余弦函数都是周期函数.表达式是f(x+T)=f(x)(x取任意值),假如一个函数能找到满意这一条件的T,那么这个函数就叫做周期函数,周期为T.f(1+x)=f(1-x) (1+x)+(1-x)=2 也就是说在这个函数中假如两个自变量的平均值为1,则它们的函数值相等,也就是此函数关于x=1对称.同理,f(2+x)=f(2-x),(2+x)+(2-x)=4 也就是说在这个函数中假如两个自变量的平均值为2,则它们的函数值相等,也就是此函数关于x=2对称.假如一个函数同时具备两个对称轴,那么,相临的轴的间距就是函数的半个周期,你可以对比正弦、余弦函数的图像发觉这个规律.这样,本题的函数周期为2,那么函数必定还关于x=0对称,所以函数是偶函数.依据定义或者画图象,不过画图象比较麻烦,一般选择用定义3. 求真正有用的函数周期性对称性结论对于函数y=f(x)周期性1.关于x=a and x=b(a>b) 都对称函数周期2(a-b)2.关于(a,0) (b,0)都对称周期同上3.关于(a,0)和x=b 都对称周期是4(a-b)对称性1. f(a+x)=f(b-x) 那么y=f(x)的图像关于y=(a+b)/2对称2.f(a-x)=-f(b+x),那么y=f(x)的图像关于((a+b)/2 ,0 )对称…………许多可以搜一下,更具体的现在考得不多了我感觉开辟思路吧。

函数的对称性总结

函数的对称性总结

函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b。

(“若f (x) + f (2a-x) = 2b,则函数y = f (x)的图像关于点A (a ,b)对称”命题正确,且“若数y = f (x)的图像关于点A (a ,b)对称,则f (x) + f (2a-x) = 2b成立”逆命题也正确,则称“函数y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b”。

)证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。

推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) 。

高中数学对称知识点总结

高中数学对称知识点总结

一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。

④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。

⑤指数函数:既不是轴对称,也不是中心对称。

⑥对数函数:既不是轴对称,也不是中心对称。

⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。

⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。

⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。

⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心。

⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。

⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

(完整版)高中数学函数对称性和周期性小结

(完整版)高中数学函数对称性和周期性小结

高中数学函数对称性和周期性小结一、函数对称性:1.f(a+x) = f(a-x) ==> f(x) 关于x=a对称2.f(a+x) = f(b-x) ==> f(x) 关于x=(a+b)/2 对称3.f(a+x) = -f(a-x) ==> f(x) 关于点(a,0)对称4.f(a+x) = -f(a-x) + 2b ==> f(x) 关于点(a,b)对称5.f(a+x) = -f(b-x) + c ==> f(x) 关于点[(a+b)/2 ,c/2] 对称6.y = f(x) 与y = f(-x) 关于x=0 对称7.y = f(x) 与y = -f(x) 关于y=0 对称8.y =f(x) 与y= -f(-x) 关于点(0,0) 对称例1:证明函数y = f(a+x) 与y = f(b-x) 关于x=(b-a)/2 对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y = f(a+x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a+m) = f[ b – (2t – m)]∴b – 2t =a ,==> t = (b-a)/2 ,即证得对称轴为x=(b-a)/2 .例2:证明函数y = f(a - x) 与y = f(x – b) 关于x=(a + b)/2 对称。

证明:假设任意一点P(m,n)在函数y = f(a - x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a-m) = f[ (2t – m) – b]∴2t - b =a ,==> t = (a + b)/2 ,即证得对称轴为x=(a + b)/2 .二、函数的周期性令a , b 均不为零,若:1.函数y = f(x) 存在f(x)=f(x + a) ==> 函数最小正周期T=|a|2.函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期T=|b-a|3.函数y = f(x) 存在f(x) = -f(x + a) ==> 函数最小正周期T=|2a|4.函数y = f(x) 存在f(x + a) =1/f(x) ==> 函数最小正周期T=|2a|5.函数y = f(x) 存在f(x + a) = [f(x) + 1]/[1 – f(x)] ==> 函数最小正周期T=|4a|这里只对第2~5点进行解析。

高中数学总复习 函数的对称性

高中数学总复习 函数的对称性
√D.f(-1)<f(2)<f(1)
因为f(x+1)是偶函数,所以其对称轴为直线x=0, 所以f(x)的对称轴为直线x=1, 又二次函数f(x)=-x2+bx+c的开口向下, 根据自变量与对称轴的距离可得f(-1)<f(2)<f(1).
(2)(2023·银川模拟)已知函数f(x)(x∈R)满足f(4+x)=f(-x),若函数y=
对任意x∈R恒成立,则
√A.f(-1)<f(3)
C.f(-1)=f(3)
B.f(0)>f(3) D.f(0)=f(3)

因为f(x+2)=f(2-x), 所以f(x)的图象关于直线x=2对称,所以f(3)=f(1), 由于f(x)在(-∞,2)上单调递增, 所以f(-1)<f(1)=f(3),f(0)<f(1)=f(3).
思维升华
函数y=f(x)的图象关于点(a,b)对称⇔f(a+x)+f(a-x)=2b⇔2b-f(x)= f(2a-x);若函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点 a+2 b,2c 成中心对称.
跟踪训练2 (1)(2023·扬州模拟)已知定义域为R的函数f(x)在[1,+∞)上 单调递减,且f(x+1)为奇函数,则使得不等式f(x2-x)<f(2-2x)成立的实 数x的取值范围是 A.(-1,2) B.(-∞,-1)∪(2,+∞) C.(-2,1)
对于B,因为f(2x-1)为奇函数,所以f(2x-1)=-f(-2x-1),所以 f(x-1)=-f(-x-1),
所以f(x)=-f(-x-2),所以函数f(x)关于点(-1,0)中心对称,B正确; 对于C,函数y=f(x)的图象向右平移1个单位,再向上平移1个单位得 到函数y=f(x-1)+1的图象,由于y=f(x)过定点(0,1),故函数y=f(x -1)+1过定点(1,2),C正确; 对于 D,函数 y=xx--1b=x-bx-+bb-1=1+bx--b1的图象关于点(3,c) 中心对称,

函数对称知识点高中总结

函数对称知识点高中总结

函数对称知识点高中总结一、函数对称的定义1. 函数对称轴函数对称轴是指当函数关于某个直线对称时,这条直线就是函数的对称轴。

对称轴可以是x轴、y轴,也可以是直线y=x或y=-x等。

2. 函数对称关系当函数关于某个直线对称时,函数图象在这条直线上的对应点互相关于对称轴对称。

具体地说,设函数为y=f(x),对称轴为直线x=a,若对于任意点(x,y),都有a-x对称点也在函数图象上,即有f(a-x)=f(x)。

3. 偶函数若函数f(x)满足f(x)=f(-x),即对于任意x,有f(x)=f(-x),则称f(x)为偶函数。

偶函数的图象关于y轴对称。

4. 奇函数若函数f(x)满足f(x)=-f(-x),即对于任意x,有f(x)=-f(-x),则称f(x)为奇函数。

奇函数的图象关于原点对称。

二、函数对称的性质1. 对称关系的性质(1)关于y轴对称的函数f(x)满足f(x)=f(-x),即f(x)为偶函数;(2)关于原点对称的函数f(x)满足f(-x)=-f(x),即f(x)为奇函数。

2. 函数对称轴的性质(1)当函数对称于y轴时,其对称轴为y轴,表现为f(x)=f(-x);(2)当函数对称于x轴时,其对称轴为x轴,表现为f(x)=-f(-x);(3)当函数对称于直线y=x时,其对称轴为y=x,表现为f(y)=f(x);(4)当函数对称于直线y=-x时,其对称轴为y=-x,表现为f(-y)=f(-x)。

3. 对称函数的图象(1)偶函数的图象关于y轴对称;(2)奇函数的图象关于原点对称。

三、函数对称的分类1. 偶函数与奇函数(1)偶函数:满足f(x)=f(-x)的函数称为偶函数。

例如,y=x^2、y=cosx等都是偶函数。

(2)奇函数:满足f(x)=-f(-x)的函数称为奇函数。

例如,y=x^3、y=sinx等都是奇函数。

2. 关于坐标轴的对称函数(1)关于y轴对称:函数图象关于y轴对称,即f(x)=f(-x)的函数。

【最新】高中函数对称性总结

【最新】高中函数对称性总结

【最新】高中函数对称性总结高中函数的对称性是一个重要的数学概念,对于理解和运用函数有着重要的意义。

在高中数学的教学中,对称性是一个常见的考点和解题方法。

本文将对高中函数的对称性进行总结,包括函数关于x轴对称、关于y轴对称、关于原点对称以及关于直线对称等四种对称性。

一、函数关于x轴对称函数关于x轴对称是指当函数图象关于x轴对称时,函数具有关于x轴对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点(x, -y)也在图象中。

函数关于x轴对称的特点包括:1. 函数的解析式中只包含偶次幂的项,如x²、x⁴等;2. 函数的图象关于x轴对称;3. 函数的奇偶性为偶函数,即f(-x) = f(x)。

二、函数关于y轴对称函数关于y轴对称是指当函数图象关于y轴对称时,函数具有关于y轴对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点(-x, y)也在图象中。

函数关于y轴对称的特点包括:1. 函数的解析式中只包含偶次幂的项,如x²、x⁴等;2. 函数的图象关于y轴对称;3. 函数的奇偶性为偶函数,即f(-x) = f(x)。

三、函数关于原点对称函数关于原点对称是指当函数图象关于原点对称时,函数具有关于原点对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点(-x, -y)也在图象中。

函数关于原点对称的特点包括:1. 函数的解析式中只包含偶次幂的项,如x²、x⁴等;2. 函数的图象关于原点对称;3. 函数的奇偶性为偶函数,即f(-x) = f(x)。

四、函数关于直线对称函数关于直线对称是指当函数图象关于一条直线对称时,函数具有关于直线对称的性质。

具体表现为当函数中的每一个点(x, y)在图象中时,其对称点关于直线的对称点也在图象中。

函数关于直线对称的特点包括:1. 函数的图象关于直线对称;2. 函数的解析式中可能包含奇次幂的项,如x³、x⁵等;3. 函数的奇偶性为奇函数,即f(-x) = -f(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称性与周期性函数对称性、周期性的判断1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如()()a x b x a b ++-=+),则()f x 的图像关于2a bx +=轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称;2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =;3. 函数()y f x =的图像关于点(,)P a b 对称⇔()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称⇔ ()=(2) f x f a x --( ()=())f a x f a x +--或;4. 奇函数()y f x =的图像关于点(,0)P a 对称⇔()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称⇔()y f x =是周期函数,且4T a =是函数的一个周期;5. 奇函数()y f x =的图像关于直线x a =对称⇔()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称⇔()y f x =是周期函数,且2T a =是函数的一个周期;6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称⇔函数()y f x =是周期函数,且2()T a b =-是函数的一个周期;7. 函数()y f x =的图像关于直线x a =和直线x b =对称⇔函数()y f x =是周期函数,且2()T a b =-是函数的一个周期。

关系图像特征 ()()f x f x =- 关于y 轴对称 ()()f x f x =-- 关于原点对称 ()()f a x f x a -=-关于y 轴对称 ()()f a x f a x +=-,或()(2)f x f a x =-关于直线x a =对称()()f x f a x =- 关于直线2ax =轴对称 ()()f a x f b x +=- 关于直线2a bx +=对称()()f x f x a =+周期函数,周期为a(,)P a b :0l Ax By C ++= :(,)0C f x y = 原点(0,0)(,)a b --()()0A x B y C -+-+= (,)0f x y --= 00(,)M x y00(2,2)x a y b -- 00(2)(2)0A x x B y y C -+-+=00(2,2)0f x x y y --=x 轴(,)a b - ()0Ax B y C +-+= (,)0f x y -= y 轴 (,)a b - ()0A x By C -++= (,)0f x y -= 直线x y = (,)b a 0Bx Ay C ++= (,)0f x y = 直线x y =- (,)b a -- ()()0B x A y C -+-+= (,)0f y x --= 0x y m ++= (,)b m a m ---- ()()0A y m B x m C --+--+= (,)0f y m x m ----= 0x y m -+= (,)b m a m --()()0A y m B x m C -+-+=(,)0f y m x m --=⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩于的中心()直于的曲于的于直的()直于直的曲于直的点关点对称对称问题点对称问题线关点对称线关点对称对称问题点关线对称轴对称问题线对称问题线关线对称线关线对称一、 点对称(1) 点关于点的对称点问题若点A 11(,)x y , B 22(,)x y , 则线段AB 中点M 的坐标是(1212,22x x y y ++);据此可以解求点与点的点 、直 线 对 称点 ( 直 线 ) 对称 轴 ( 对 称 中 )心中心对称,即求点M 00(,)x y 关于点P (,)a b 的对称点'M 的坐标(,)x y ,利用中点坐标公式可得00, 22x x y ya b ++==,解算的'M 的坐标为00(2, 2)a x b y --。

例如点M(6,-3)关于点P(1,-2)的对称点'M 的坐标是(4,1)--.① 点M 00(,)x y 关于点P (,)a b 的对称点'M 的坐标00(2, 2)a xb y --;② 点M 00(,)x y 关于原点的对称点'M 的坐标0000(2, 2)=(, ) a x b y x y ----.(2) 直线关于点对称① 直线L :0Ax By C ++=关于原点的对称直线设所求直线上一点为(,)M x y ,则它关于原点的对称点为'(,)M x y --,因为'M 点在直线L 上,故有()()0A x B y C -+-+=,即0Ax By C +-=;② 直线1l :0Ax By C ++=关于某一点(,)P a b 的对称直线2l 它的求法分两种情况:1)、当(,)P a b 在1l 上时,它的对称直线为过P 点的任一条直线。

2)、当P 点不在1l 上时,对称直线的求法为: 解法(一):在直线2l 上任取一点(,)M x y ,则它关于P 的对称点为'(2,2)M a x b y --,因为'M 点在1l 上,把'M 点坐标代入直线在1l 中,便得到2l 的方程即为(2)(2)0A a x B b y C -+-+=,简化为:220Ax By C aA bB +---=.解法(二):在1l 上取一点11(,)M x y ,求出M 关于P 点的对称点'11(2,2)M a x b y --的坐标。

再由12l l AK K B==-,可求出直线2l 的方程。

解法(三):由12l l K K =,可设1:0l Ax By C ++=关于点(,)P a b 的对称直线为'0Ax By C ++=且2222'Aa Bb C Aa Bb C A BA B++++=++求设'C 从而可求的及对称直线方程。

(3) 曲线关于点对称曲线1:(,)0C f x y =关于(,)P a b 的对称曲线的求法:设(,)M x y 是所求曲线的任一点,则M 点关于(,)P a b 的对称点为(2,2)a x b y --在曲线(,)0f x y =上。

故对称曲线方程为(2,2)0f a x b y --=。

二、 直线的对称(1) 点关于直线的对称1) 点(,)P a b 关于x 轴的对称点为'(,)P a b - 2) 点(,)P a b 关于y 轴的对称点为'(,)P a b - 3) 关于直线x m =的对称点是'(2,)P m a b - 4) 关于直线y n =的对称点是'(,2)P a n b - 5) 点(,)P a b 关于直线y x =的对称点为'(,)P b a 6) 点(,)P a b 关于直线y x =-的对称点为'(,)P b a --7) 点(,)P a b 关于某直线:0L Ax By C ++=的对称点'P 的坐标解法(一):由'PP ⊥L 知,'PP B K A =⇒直线'PP 的方程→()B y b x a A -=-,由0()Ax By C By b x a A++=⎧⎪⎨-=-⎪⎩可求得交点坐标,再由中点坐标公式求得对称点'P 的坐标。

解法(二):设对称点为'(,)P x y ,由中点坐标公式求得中点坐标为(,)22a xb y ++把中点坐标代入L 中得到022a x b y A B C ++⋅+⋅+=①;再由'PP B K A =得b y Ba x A-=-②,联立①、②可得到'P 点坐标。

解法(三):设对称点为'(,)P x y ,由点到直线的距离公式有2222Aa Bb C Ax By C A BA B++++=++①,再由'PP B K A =得b y B a x A-=-②,由①、②可得到'P 点坐标。

(2) 直线1l 关于直线l 的对称直线2l设直线:0l Ax By C ++=,则l关于x 轴对称的直线是()0Ax B y C +-+= 关于y 轴对称的直线是()0A x By C -++= 关于y x =对称的直线是0Bx Ay C ++= 关于y x=-对称的直线是()()0A y B x C -+-+=1) 当1l 与l 不相交时,则1l ∥l ∥2l在1l 上取一点00(,)M x y 求出它关于l 的对称点'M 的坐标。

再利用12l l K K =可求出2l 的方程。

2) 当1l 与l 相交时,1l 、l 、2l 三线交于一点。

解法(一):先解1l 与l 组成的方程组,求出交点A 的坐标。

则交点必在对称直线2l 上。

再在1l 上找一点B ,点B 的对称点'B 也在2l 上,由A 、'B 两点可求出直线2l 的方程。

解法(二):在1l 上任取一点11(,)P x y ,则P 点关于直线l 的对称点Q 在直线2l 上,再由PQ ⊥l ,1PQ L K K =-。

又PQ 的中点在l 上,由此解得11(,),(,)x f x y y g x y ==,把点11(,)x y 代入直线1l 的方程中可求出2l 的方程。

解法(三):设1l 关于l 的对称直线为2l ,则2l 必过1l 与l 的交点,且2l 到l 的角等于l 到1l 的角,从而求出2l 的斜率,进而求出2l 的方程。

例:求直线1:230l x y -+=关于直线:10l x y +-=对称的直线l 2的方程解:设(),M x y 为所求直线l 2上任意一点,则其关于l 对称的点()11',M x y 在直线l 1上.()1'1111 1 (MM',K =-1) 10 (MM')22MM l y y l x x x x y y l -⎧⋅-=-⊥⎪-⎪∴⎨++⎪+-=⎪⎩即K 的中在上⇒1111x y y x =-⎧⎨=-⎩ ()()1123021130x y y x -+=∴---+=又故所求直线方程为240x y -+= (3) 曲线关于直线对称曲线1C 关于直线l 的对称曲线2C 的方程,在2C 上任取一点(,)M x y ,可求出它关于l 的对称点坐标,再代入1C 中,就可求得2C 的方程。

相关文档
最新文档