第03章化学反应系统热力学习题及答案物理化学讲解学习
物理化学03章_热力学第二定律
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。
大学物理化学 第三章 多组分系统热力学习指导及习题解答
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
物理化学-课后答案-热力学第二定律
物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
无机答案第3章 化学热力学基础
kJ·mol-1.
计算反应
4NH3(g)
+
3O2(g)
→
2N2(g)
+
6H2O(g)的
Δ
r
H
O m
.
1
11.已知下列键能数据
键 N N N-C1 N-H C1-C1 C1-H H-H
EA-B ⁄ (kJ·mol-1) 945
201
389
243
431 436
(1)求反应
2 NH3(g)+3Cl2(g)= N2(g)+ 6HCl(g)
答(1)是 (2)以铜为体系:是;以铜和氧气为体系:不是
3-2 一体系由 A 态到 B 态,沿途径 I 放热 100J,对体系作功 50J。问 (1) 由 A 态沿途径 II 到 B 态,体系作功 80J,其 Q 值为多少? (2) 如体系再由 B 态沿途径 III 回到 A 态得到 50 J 的功,体系吸热还是放热?Q 值为 多少?
3.下列过程中,带点部分为系统,写出功和热的正负号。 (1)将水.和.水.蒸.气.贮于一恒容金属箱中,将其放在炉火上加热,温度、压力都升高; (2)一恒容绝热箱中,H2 和 O2 混.合.气.体.通电火花使其化合(电火花能量不计); (3)H2 和 O2 混.合.气.体.在大量水中成一气泡,通电火花使其化合(电火花能量不计)。
17.已知 2H2O(g)→2H2(g)+O2(g)
Δ
r
H
O m
= 483.6 kJ·mol-1,下列热化学方程式中正确的是
(A) 2H2(g) +O2(g) →2H2O(g)
Δ
r
H
O m
= 483.6 kJ·mol-1;
物理化学03章_热力学第二定律(二)
Ssys = 19.14 J K
Ssur = 0
1
(系统未吸热,也未做功)
Siso = Ssys + Ssur = 19.14 J K 1 > 0
(2)为不可逆过程.
例2:在273 K时,将一个 22.4 dm3 的盒子用隔板一分为二,
0.5 mol 0.5 mol O2 (g) N2 (g)
p1 V1 p2 V2 T2 p2 V2 ∵ = ∴ = T1 T2 T1 p1V1
V2 p2V2 ∴ S = nR ln + nCV ,m ln V1 p1V1
V2 p2 V2 = nR ln + nC V ,m ln + nC V ,m ln V1 p1 V1
p2 V2 ∴ S = nCV ,m ln + nC p ,m ln p1 V1
因为在可逆相变中压力恒定,所以可逆热即为相 因为在可逆相变中压力恒定, 变焓.又由于温度一定,所以, 变焓.又由于温度一定,所以,物质 B 由 α 相态 转化为 β 相态
p ,T B (α ) → B ( β )
的相变熵为: 的相变熵为:
β α H β α S = T
用上式,可计算正常熔点下的熔化熵, 用上式,可计算正常熔点下的熔化熵,正常 沸点下的蒸发熵等等. 沸点下的蒸发熵等等.
= TC S > 0
Q W
热源
R2
TC
1
W2
Q W2
TB热源做功能力低于TA
TB热源做功能力低于TA
其原因是经过了一个不可逆的热传导过程 功变为热是无条件的,而热不能无条件 地全变为功. 热和功即使数量相同,但"质量"不等, 功是"高质量"的能量. 高温热源的热与低温热源的热即使数量相 同,但"质量"也不等,高温热源的热"质量" 较高,做功能力强. 从高"质量"的能贬值为低"质量"的能 是自发过程.
物理化学答案――第三章_多组分系统热力学及其在溶液中的应用习.
第三章多组分系统热力学及其在溶液中的应用一、基本公式和内容提要1. 偏摩尔量定义:其中X为多组分系统的任一种容量性质,如V﹑U﹑S......全微分式:总和:偏摩尔量的集合公式:2. 化学势定义物质的化学势是决定物质传递方向和限度的强度因素,是决定物质变化方向和限度的函数的总称,偏摩尔吉布斯函数只是其中的一种形式。
3. 单相多组分系统的热力学公式4. 化学势判据等温等压、只做体积功的条件下将化学势判据用于多相平衡和化学平衡中,得多组分系统多相平衡的条件为:化学平衡的条件为:5.化学势与温度、压力的关系(1)化学势与压力的关系(2)化学势与温度的关系6.气体的化学势(1)纯组分理想气体的化学势理想气体压力为(标准压力)时的状态称为标准态,称为标准态化学势,它仅是温度的函数。
(2)混合理想气体的化学势式中:为物质B的分压;为物质B的标准态化学势;是理想气体混合物中B组分的摩尔分数;是B纯气体在指定T,p时的化学势,p是总压。
(3)实际气体的化学势式中:为实际气体或其混合物中物质B的化学势;为B的标准态化学势,其对应状态是B在温度T、压力、且假想具有理想气体行为时的状态,这个状态称为实际气体B的标准态;分别为物质B的逸度系数和逸度。
7. 稀溶液中的两个经验定律(1)拉乌尔定律一定温度时,溶液中溶剂的蒸气压与溶剂在溶液中的物质的量分数成正比,其比例系数是纯溶剂在该温度时的蒸气压。
用公式表示为。
对二组分溶液来说,,故拉乌尔定律又可表示为即溶剂蒸气压的降低值与纯溶剂蒸气压之比等于溶质的摩尔分数。
(2)亨利定律一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比。
用公式表示。
式中:为溶质的浓度分别为摩尔分数、质量摩尔浓度和物质的量浓度表示时的亨利系数,单位分别为Pa、和。
使用亨利定律时应注意:①是溶质在液面上的分压;②溶质在气体和在溶液中的状态必须是相同的。
8.溶液的化学势(1)理想液态混合物中物质的化学势①定义:在一定的温度和压力下,液态混合物中任意一种物质在任意浓度均遵守拉乌尔定律的液态混合物称为理想液态混合物。
物理化学 课后答案-热力学第二定律
第三章热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】(1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否;G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
物理化学习题及答案
物理化学习题及答案第一章热力学第一定律选择题1.热力学第一定律ΔU=Q+W 只适用于(A) 单纯状态变化(B) 相变化(C) 化学变化(D) 封闭物系的任何变化答案:D2.关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上 (B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B2.关于焓的性质, 下列说法中正确的是(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关答案:D。
因焓是状态函数。
3.涉及焓的下列说法中正确的是(A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。
因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。
4.下列哪个封闭体系的内能和焓仅是温度的函数(A) 理想溶液 (B) 稀溶液 (C) 所有气体 (D) 理想气体答案:D5.与物质的生成热有关的下列表述中不正确的是(A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。
按规定,标准态下最稳定单质的生成热为零。
6.dU=CvdT及dUm=Cv,mdT适用的条件完整地说应当是 (A) 等容过程(B)无化学反应和相变的等容过程(C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D7.下列过程中, 系统内能变化不为零的是(A) 不可逆循环过程(B) 可逆循环过程 (C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程答案:D。
第五版物理化学第三章习题答案
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源汲取的热及向低温热源放出的热。
解:卡诺热机的效率为依据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不行逆热机与卡诺机结合操作时,若令卡诺热机得到的功r W 等于不行逆热机作出的功-W 。
假设不行逆热机的热机效率大于卡诺热机效率,其结果必定是有热量从低温热源流向高温热源,而违背势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不行逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不行逆热机从高温热源汲取的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热干脆从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种状况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不行逆热机效率。
(3)不行逆热机效率。
解:设热机向低温热源放热,依据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学 第03章习题(含答案)
第三章 化学平衡测试练习题选择题:1、化学反应若严格遵循体系的“摩尔吉布斯函数—反应进度”曲线进行,则该反应在( A )[A].曲线的最低点[B].最低点与起点或终点之间的某一侧[C].曲线上的每一点[D].曲线以外某点进行着热力学可逆过程.2、有一理想气体反应A+B=2C ,在某一定温度下进行,按下列条件之一可以用θm r G ∆直接判断反应方向和限度:( C )[A].任意压力和组成[B].总压101.325kPa ,物质的量分数31===C B A x x x [C].总压303.975kPa ,31===C B A x x x [D].总压405.300kPa ,41==B A x x ,21=C x 3、298K 的理想气体化学反应AB=A+B ,当温度不变,降低总压时,反应的转化率( A )[A].增大 [B].减小 [C].不变 [D].不能确定4、已知气相反应)()(3)(126266g H C g H g H C =+在373K 时的143.192-⋅-=∆mol kJ H mr θ,当反应达平衡时,可采用下列哪组条件,使平衡向右移动( C )[A].升温与加压 [B].升温与减压[C].降温与加压 [D].降温与减压5、化学反应的平衡状态随下列因素当中的哪一个面改变? ( A )[A].体系组成 [B].标准态 [C].浓度标度[D].化学反应式中的计量系数νB6、在相同条件下有反应式(1)C B A 2=+,(θ1,m r G ∆);(2) C B A =+2121,(θ2,m r G ∆)则对应于(1),(2)两式的标准摩尔吉不斯函数变化以及平衡常数之间的关系为:( B )[A].θθ2,1,2m r m r G G ∆=∆,θθ21K K =[B].θθ2,1,2m r m r G G ∆=∆,221)(θθK K =[C].θθ2,1,m r m r G G ∆=∆,221)(θθK K =[D].θθ2,1,m r m r G G ∆=∆,θθ21K K = 7、反应)()()()(222g H g CO g O H g CO +=+,在600℃、100 kPa 下达到平衡后,将压力增大到5000kPa ,这时各气体的逸度系数为09.12=CO γ,10.12=H γ,23.1=CO γ,77.02=O H γ。
第五版物理化学第三章习题答案
第三章热力学第二定律卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ 的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学第五版第三章答案
物理化学第五版第三章答案3.22 绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。
一侧容积50 dm3,内有200 K的N2(g) 2 mol;另一侧容积为75 dm3, 内有500 K的N2(g) 4 mol;N2(g)可认为理想气体。
今将容器中的绝热隔板撤去,使系统达到平衡态。
求过程的。
解:过程图示如下同上题,末态温度T确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较。
3.23 甲醇()在101.325KPa下的沸点(正常沸点)为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时。
解:3.24 常压下冰的熔点为0℃,比熔化焓,水的比定压热熔。
在一绝热容器中有1 kg,25℃的水,现向容器中加入0.5 kg,0℃的冰,这是系统的始态。
求系统达到平衡后,过程的。
解:过程图示如下将过程看作恒压绝热过程。
由于1 kg,25℃的水降温至0℃为只能导致克冰融化,因此3.27 已知常压下冰的熔点为0℃,摩尔熔化焓,苯的熔点为5.5 1℃,摩尔熔化焓。
液态水和固态苯的摩尔定压热容分别为及。
今有两个用绝热层包围的容器,一容器中为0℃的8 mol H2O(s)与2 mol H2O(l)成平衡,另一容器中为5.510℃的5 mol C6H6(l)与5 mol C6H6(s)成平衡。
现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。
求过程的。
解:粗略估算表明,5 mol C6H6(l) 完全凝固将使8 mol H2O(s)完全熔化,因此,过程图示如下总的过程为恒压绝热过程,,忽略液态乙醚的体积3.30. 容积为20 dm3的密闭容器中共有2 mol H2O成气液平衡。
已知80℃,100℃下水的饱和蒸气压分别为及,25 ℃水的摩尔蒸发焓;水和水蒸气在25 ~ 100 ℃间的平均定压摩尔热容分别为和。
今将系统从80℃的平衡态恒容加热到100℃。
物理化学习题详细答案
葛华才等编.《物理化学》(多媒体版)配套部分章节的计算题解.高等教育出版社第一章热力学第一定律第二章热力学第二定律第三章多组分系统第四章化学平衡第五章相平衡第六章化学动力学第七章电化学第八章界面现象第九章胶体化学第十章统计热力学第一章热力学第一定律计算题1. 两个体积均为V 的密封烧瓶之间有细管相连,管内放有氮气。
将两烧瓶均放入100℃的沸水时,管内压力为50kPa。
若一只烧瓶仍浸在100℃的沸水中,将另一只放在0℃的冰水中,试求瓶内气体的压力。
解:设瓶内压力为p′,根据物质的量守恒建立如下关系:(p′V/373.15)+ (p′V/273.15)= 2(pV/373.15)即p′=2×50 kPa/(1+373.15/273.15)=42.26 kPa2. 两个容器A 和B 用旋塞连接,体积分别为1dm3 和3dm3,各自盛有N2 和O2(二者可视为理想气体),温度均为25℃,压力分别为100kPa 和50kPa。
打开旋塞后,两气体混合后的温度不变,试求混合后气体总压及N2 和O2的分压与分体积。
解:根据物质的量守恒建立关系式p 总(V A+V B)/ 298.15=( p A V A /298.15)+ (p B V B /298.15)得p 总= ( p A V A+ p B V B)/ (V A+V B) = (100×1+50×3) kPa/(1+3)=62.5 kPan(N2)= p A V A /RT A= {100000×0.001/(8.315×298.15)}mol = 0.04034 moln(O2)= p B V B /RT B= {50000×0.003/(8.315×298.15)}mol = 0.06051 mol葛华才编.《物理化学》(多媒体版)配套部分章节的计算题解.高等教育出版社-3 y (N 2)= n (N 2)/{ n (N 2)+ n (O 2)}= 0.04034/(0.04034+0.06051)=0.4y (O 2)=1- y (N 2)=1-0.4=0.6分压p (N 2)= y (N 2) p 总 = 0.4×62.5 kPa= 25 kPap (O 2)= y (O 2) p 总 = 0.6×62.5 kPa= 37.5 kPa分体积 V (N 2)= y (N 2) V 总 = 0.4×4 dm 3 = 1.6 dm 3V (O 2)= y (O 2) V 总 = 0.6×4 dm 3 = 2.4 dm 33. 在 25℃,101325Pa 下,采用排水集气法收集氧气,得到 1dm 3 气体。
物理化学第三章课后答案完整版
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
第03章化学反应系统热力学习题及答案物理化学
第三章 化学反应系统热力学习题及答案§ 标准热化学数据(P126)1. 所有单质的 Om f G ∆ (T )皆为零为什么试举例说明答:所有处于标准态的稳定单质的O m f G ∆ (T ) 皆为零,因为由稳定单质生成稳定单质的状态未发生改变。
如:单质碳有石墨和金刚石两种,O m f G ∆ ,石墨)=0,而O m f G ∆ ,金刚石)= kJ·mol -1 (课本522页),从石墨到金刚石状态要发生改变,即要发生相变,所以O m f G ∆ ,金刚石)不等于零。
2. 化合物的标准生成热(焓)定义成:“由稳定单质在和100KPa 下反应生成1mol 化合物的反应热”是否准确为什么答:标准生成热(焓)的定义应为:单独处于各自标准态下,温度为T 的稳定单质生成单独处于标准态下、温度为T 的1mol 化合物B 过程的焓变。
此定义中(1)强调压力为一个标准大气压,而不强调温度;(2)变化前后都单独处于标准态。
3. 一定温度、压力下,发生单位化学反应过程中系统与环境交换的热Q p 与化学反应摩尔焓变r m H ∆是否相同为什么答: 等压不作其他功时(W’=0),数值上Q p =n r H ∆。
但Q p 是过程量,与具体的过程有关;而r m H ∆是状态函数,与过程无关,对一定的化学反应有固定的数值。
如将一个化学反应至于一个绝热系统中,Q p 为零,但r m H ∆有确定的数值。
§ 化学反应热力学函数改变值的计算(P131)1. O m r G ∆(T )、m r G ∆(T )、O m f G ∆(B,相态,T )各自的含义是什么答:Om r G ∆(T ): 温度为T ,压力为P θ,发生单位反应的ΔG;m r G ∆(T ):温度为T ,压力为P ,发生单位反应的ΔG;Omf G ∆(B,相态,T ):温度为T ,压力为P θ,由各自处于标准状态下的稳定单质,生成处于标准态1mol 化合物反应的ΔG。
物理化学03章_热力学第二定律-1
V 任意可逆循环
证明如下:
p
(1)在任意可逆循环的曲
线上取很靠近的PQ过程
R
T
V
PO Q
W
(2)通过P,Q点分别作RS和
X N
TU两条可逆绝热膨胀线, (3)在P,Q之间通过O点作 等温可逆膨胀线VW
M O' Y
S
U
V
任意可逆循环
使两个三角形PVO和OWQ的面积相等,
这样使PQ过程与PVOWQ过程所作的功相同。
设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B A
(
Q T
)R
或
S
对微小变化
i
(
Qi Ti
)R
S
dS
Q ( T )R
i
(
Qi Ti
)R
0
这几个熵变的计算式习惯上称为熵的定义式,
即熵的变化值可用可逆过程的热温商值来衡量。
§3.4 熵的概念 Entropy
从Carnot循环得到的结论: 即Carnot循环中,热效应与温度商值的加和等于零。
Qc Qh 0 Tc Th
对于任意的可逆循环,都可以分解为若干个 小Carnot循环。
先以P,Q两点为例
任意可逆循环的热温商
p
R
T
V PO
PVO = OWQ
Q
W MXO’ = O’YN
X N
M O' Y
S
U
T1
T2
T3
T4
i
(
Qi
Ti
)R
0
δ Q
T
R
物理化学第二、三章习题及答案
主要计算公式
总结
1. 热力学第一定律的数学表达式 :
dU Q W 或 U Q W
适用于封闭体系中的单纯PVT变化、相变化、化学变化
2. 恒容热和恒压热
Qv U
Qp H
适用于dV=0,W’=0条件下的三类反应
适用于dP=0,W’=0条件下的三类反应
3. 摩尔定压热容和摩尔定容热容之间的关系:
n= 1 mol T1=300.15K P1=101.32 KPa V1
dT 0 n= 1 mol T2=300.15K P2 V2
习题
n= 1 mol T3=370.15K P3=250.00 KPa V3 = V2
dV 0
因为V2=V3,则p2/T2=p3/T3, p2=p3T2/T3=250.00×300.15/370.15 kPa=202.72 kPa nRT p 1 W2=0 W p (V V ) nRT p nRT ( 2 1)
vap H m 1 1 p2 ( ) 克-克方程 ln p1 R T2 T1
可用来计算不同温度下的蒸气压或摩尔蒸发热。
热力学第一定律
习题
1、 1 mol 某理想气体于27oC ,101.325 kPa 的始态下,先受 某恒定外压恒温压缩至平衡态,再恒容升温至97oC , 250.00 kPa。求过程的W,Q, △U, △H。已知气体的
热力学第一定律
n= 5 mol T1=300 P1=200 KPa
dTV 0 n= 5 mol T2=300K P2=50 KPa
习题
T3 P3=200 KPa
Qr 0 n= 5 mol
整个过程由于第二步为 绝热过程,计算热是方 便的,而第一步 为恒温可逆过程,则: U1 0 Q1 W1 , Q1 -W1 V2 p1 Q Q1 Q2 W1 0 nRT ln nRT ln V1 p2 (5 8.314 300 ln 200/ 50) J 17.29kJ W U Q (15.15 17.29)kJ 2.14kJ
万洪文《物理化学》教材习题解答
万洪文《物理化学》教材习题解答第一篇化学热力学第一章热力学基本定律.1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。
试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 , ΔH = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为p?,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1·mol-1。
)解:理想气体等压升温(n变)。
Q=nC p,m△T=(1000p?)/(8.314×290)×C p,m△T=1.2×107J 1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH。
(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1), 因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K。
ΔU=W=nCV,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为p?,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知C p,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。
物理化学热力学部分习题及解答.ppt
将373K 及50663Pa 的水蒸气100dm3 恒温可逆 作业 101325Pa 下部分 压缩到101325Pa,再继续在 液化到体积为10dm3 为止(此时气液平衡共存 )。试计算此过程的Q、W、ΔU 和ΔH。假定 凝结水的体积可忽略不计,水蒸气可视作理想 气体。已知水的气化热为2259kJ· Kg-1。 甲苯正常沸点(383K)下气化热为3619J•g-1, 现将1mol 甲苯在383K 等温等压完全气化,求 该过程Q,W;并求甲苯的△Um,△Hm, △Sm,△Am,△Gm。若甲苯向真空气化(终 态同上),上述各量又是什么?(甲苯的分子 量为92)
选择题
2.“压强”,即物理化学中通常称为“压力”的物理量,其 量纲应该是什么? (A)动量/(面积·时间) (B)力/(面积·时间) (C)动能/(面积·时间) (D)加速度/(面积·时间) 3.对于理想气体的内能有下述四种理解,其中正确的是? (A)状态一定,内能也一定; (B)对应于某一状态的内能是可以直接测定的; (C)对应于某一状态,内能只有一个数值,不可能有两个或 两个以上的数值; (D)状态改变时,内能一定跟着改变。
材料物理化学
——热力学部分习题及解答 武汉科技大学材控系
熊九郎
2009年9月
选择题
1.下列陈述中,正确的是:
(A)虽然Q和W是过是状态函数,所以QV和Qp是状态函 数。 (B)热量是由于温度差而传递的能量,它总是倾向 于从含热量较多的高温物体流向含热量较少的低温 物体。 (C)封闭系统与环境之间交换能量的形式非功即热 。 (D)两物体之间只有存在温差,才可传递能量,反 过来系统与环境间发生热量传递后,必然要引起系 统温度变化。
选择题
6.理想气体绝热向真空膨胀,则 (A)ΔS=0,W=0 (B) ΔH=0, ΔU=0 (C)ΔG=0,ΔH=0 (D) ΔU=0, ΔG=0 7.求任一不可逆绝热过程的熵变,可以通过 以下哪个途径求得? (A)始终态相同的可逆绝热过程, (B)始终态相同的可逆等温过程, (C)始终态相同的可逆非绝热过程, (D) (B)和(C)均可
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 化学反应系统热力学习题及答案§3.1 标准热化学数据(P126)1. 所有单质的 O m f G ∆ (T )皆为零?为什么?试举例说明?答:所有处于标准态的稳定单质的O m f G ∆ (T ) 皆为零,因为由稳定单质生成稳定单质的状态未发生改变。
如:单质碳有石墨和金刚石两种,O m f G ∆ (298.15K,石墨)=0,而O m f G ∆(298.15K,金刚石)=2.9 kJ·mol -1 (课本522页),从石墨到金刚石状态要发生改变,即要发生相变,所以O m f G ∆ (298.15K,金刚石)不等于零。
2. 化合物的标准生成热(焓)定义成:“由稳定单质在298.15K 和100KPa 下反应生成1mol 化合物的反应热”是否准确?为什么?答:标准生成热(焓)的定义应为:单独处于各自标准态下,温度为T 的稳定单质生成单独处于标准态下、温度为T 的1mol 化合物B 过程的焓变。
此定义中(1)强调压力为一个标准大气压,而不强调温度;(2)变化前后都单独处于标准态。
3. 一定温度、压力下,发生单位化学反应过程中系统与环境交换的热Q p 与化学反应摩尔焓变r m H ∆是否相同?为什么?答: 等压不作其他功时(W’=0),数值上Q p =n r H ∆。
但Q p 是过程量,与具体的过程有关;而r m H ∆是状态函数,与过程无关,对一定的化学反应有固定的数值。
如将一个化学反应至于一个绝热系统中,Q p 为零,但r m H ∆有确定的数值。
§3.2 化学反应热力学函数改变值的计算(P131) 1.O mr G ∆(T )、m r G ∆(T )、Om f G ∆(B,相态,T )各自的含义是什么? 答:Om r G ∆(T ): 温度为T ,压力为P θ,发生单位反应的ΔG ;m r G ∆(T ):温度为T ,压力为P ,发生单位反应的ΔG ;Omf G ∆(B,相态,T ):温度为T ,压力为P θ,由各自处于标准状态下的稳定单质,生成处于标准态1mol 化合物反应的ΔG 。
2. 25℃时,H 2O(l)及H 2O(g)的标准摩尔生成焓分别为-285.838 kJ mol -1及-241.825 kJ mol -1。
计算水在25℃时的气化焓。
解:g l ∆H m =Δf H m θ(H 2O,g)- Δf H m θ(H 2O,l)=-241.825-(-285.838)=44.01 kJ·mol -13.用热化学数据计算下列单位反应的热效应Om r H ∆(298.15K)。
(1) 2CaO(s)+5C(s,石墨)→2CaC 2(s)+CO 2(g) (2) C 2H 2(g)+H 2O(l)→CH 3CHO(g)(3) CH 3OH(l)+21O 2(g)→HCHO(g)+H 2O(l)解: (1) 2CaO(s)+5C(s,石墨)→2CaC 2(s)+CO 2(g) Δf H m θ(kJ·mol -1): -635.09 0 59.8 -393.509Δr H m θ(298.15K)=2Δf H m θ(CaC 2(s)) + Δf H m θ(CO 2(g)) - 2Δf H m θ(CaO(s)) - 5Δf H m θ(C(s))=[2×(-59.8)+(-393.509)] - 2×(-635.09) - 0=757.07 kJ·mol -1(2) C 2H 2(g)+H 2O(l)→CH 3CHO(g)Δc H m θ(kJ·mol -1): -1300 0 -1193Δr H m θ(298.15K)= Δc H m θ(C 2H 2(g))+ Δc H m θ(H 2O(l))- Δc H m θ(CH 3CHO(g))=-1300-(-1193)=-107 kJ·mol -1注:C 2H 2(g)和CH 3CHO(g)的Δc H m θ数值本书未给出,是从其它物理化学书中查到的。
(3) CH 3OH(l)+21O 2(g)→HCHO(g)+H 2O(l)Δf H m θ(298.15K): -238.66 0 -115.9 -285.83Δr H m θ(298.15K)=Δf H m θ(HCHO(g))+Δf H m θ(H 2O(l))-Δf H m θ(CH 3OH(l))-(1/2)Δf H m θ(O 2(g)) =-115.9+(-285.83)-(-238.66)= -163.16 kJmol -14.利用附录表中O m f H ∆ (B,相态,298.15 K)数据,计算下列反应的 O m r H ∆ (298.15K)及Or mU ∆ (298.15K)。
假定反应中各气体物质可视为理想气体。
(1) H 2S(g) + 3/2O 2(g) → H 2O(l) + SO 2(g)(2) CO(g) + 2H 2(g) → CH 3OH (l) (3) Fe 2O 3(s) + 2Al(s) →Al 2O 3(α) + 2Fe (s)解:O m r H ∆=Or m U ∆+ΣνB (g)RT 。
【因为H=U+PV ,ΔH=ΔU+Δ(PV)=ΔU+Δ(n g RT)= ΔU+RTΔn g ,对一定温度压力下的化学反应则有:O m r H ∆=O r m U ∆+ ΣνB (g)RT 】(1) H 2S(g) + 3/2 O 2(g) → H 2O (l) + SO 2(g)Omr H ∆=Δf H m θ(SO 2(g))+Δf H m θ(H 2O(l))- Δf H m θ(H 2S(g))-3/2Δf H m θ(O 2(g))=-296.83+(-285.83)-(-20.63)-0=-562.03 kJ·mol -1O mr H ∆=O r m U ∆+ ΣνB (g)RT Or mU ∆=O m r H ∆-ΣνB (g)RT= -562.03+(3/2)×8.314×298.15×10-3= -558.3 kJ·mol -l(2) CO(g)+2H 2(g)→CH 3OH(l),Omr H ∆=(-238.66)-(-110.525)=-128.14 kJ·mol -1,Or mU ∆=O m r H ∆-ΣνB (g)RT=(-128.14)-(-3) ×8.314×298.15×10-3= -120.7 kJ·mol -l(3) Fe 2O 3(s)+2Al(s)→Al 2O 3(α)+2Fe(s),Omr H ∆=(-1675.7)-(-824.2)= -851.5 kJ·mol -l ,Or mU ∆=O m r H ∆-ΣνB (g)RT=O m r H ∆= -851.5 kJ·mol -l5.计算在无限稀的溶液中发生下述单位反应的热效应。
已知标准摩尔生成焓数据(单位是kJ mol -1):H 2O(l),-285.83;AgCl(s),-127.07;Na +,-329.66;K +,-251.21;Ag +,-105.90;NO 3-,-206.56;Cl -,-167.46;OH -,-229.94;SO 42-,-907.51。
(1) NaCl(∞,aq)+KNO 3(∞,aq)→(2) NaOH(∞,aq)+HCl(∞,aq)→(3) 1/2Ag 2SO 4(∞,aq)+NaCl(∞,aq)→解:(1) 实质上是:Na ++Cl -+K ++NO 3-→Na ++Cl -+K ++NO 3-,没有化学反应,所以Om r H ∆=0(2) 实质上是:OH -(∞,aq)+H +(∞,aq)→H 2O(l),Omr H ∆=Δf H m θ(H 2O(l))- Δf H m θ(H +(∞,aq))- Δf H m θ(OH -(∞,aq ))=-285.83-0-(-229.94)=-55.89 kJ·mol -1 (3) 实质上是:Ag +(∞,aq)+Cl -(∞,aq)→AgCl(s), Omr H ∆=(-127.07)-(-105.9)-(-167.46)=146.29 kJ·mol -16.(1) CO(g) + H 2O(g) —→ CO 2(g) + H 2(g) Δϑm r H (298.15K)=-41.2 kJ ·mol –1(2)CH 4(g) + 2H 2O(g) —→CO 2(g) + 4H 2(g) Δϑm r H (298.15K)=165.0 kJ ·mol –1反应 CH 4(g) + H 2O(g) —→ CO(g) + 4H 2(g) 为 (2)-(1):则:Δϑm r H (298.15K) = 165.0-(-41.2) = 206.2 kJ ·mol –17.解:CH 4(g) + Cl 2(g) —→ CH 3Cl(g) + HCl(g)Δϑm r H (298.15K) = 4ε(C-H)+ε(Cl-Cl)-3ε(C-H)-ε(C-Cl)-ε(H-Cl)=414.63+242.7-328.4-430.95= -102.02 kJ ·mol –1 C 2H 6(g) —→ C 2H 4(g) + H 2(g)Δϑm r H (298.15K) = 6ε(C-H)+ε(C-C)-ε(H-H)-4ε(C-H)-ε(C=C)=2×414.63+347.7-435.97-606.7 = 134.29 kJ ·mol –18. 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。
已知:O m f H ∆[H(g)]=217.94 kJ mol -1,O m f H ∆[C(g)] =718.38 kJ mol -1,εC-C =344 kJ mol -1,εC-H = 414 kJ mol -1。
解:2,2,3,3四甲基丁烷的结构式如下:【含有7个C-C 键和18个C-H 键】9H 2(g)+8C(s,石墨)→C 8H 18, O m r H ∆=O m f H ∆(C 8H 18)【相当于9个H 2(g)变成18个H(g)原子,8个C(s,石墨)变成8个C(g)原子后(此时打开键需要吸收一定的能量),然后再组合成C 8H 18(放出一定的能量)。
】所以,O m f H ∆(C 8H 18)=O m r H ∆=18O m f H ∆[H(g)]+8O m f H ∆[C(g)] – (7εC-C +18εC-H )=18×217.94+8×718.38-7×344 -18×414= -190.04 kJ·mol -1C C CH 3CH 3CH 3CH 3CH 3CH 3石墨) C 8H 1818H(g)+8C(g)9. 将0.005kg 的正庚烷放入弹式量热计内通氧燃烧,反应的结果使量热计量温度上升2.94 K ,已知量热计总的热容量为8175.54 J K -1,开始时的平均温度为298.15 K 。