6.4 半参数模型-高级应用计量经济学课件

合集下载

计量经济学课件全

计量经济学课件全
• 计量经济的方法和统计方法一样,本质上 是归纳法,是将实事归纳成理论的一个有 效的辅助工具。计量经济学可以结合实际 观测数据对经济理论进行验证,检验理论 的正确性,提供进一步改进理论的方向。
11
数据
• 观测数据:主要是指统计数据和各种调查 数据。是所考察的经济对象的客观反映和 信息载体,是计量经济工作处理的主要现 实素材。
6
一、什么是计量经济学
• 计量经济学是利用经济理论、数学、统计推断 等工具对经济现象进行分析的一门社会科学。
• 计量经济学运用数理统计知识分析经济数据, 对构建于数理经济学基础之上的数学模型提供 经验支持,并得出数量结果。
• 计量经济学是以经济理论为前提,利用数学、 数理统计方法与计算技术,根据实际观测资料 来研究带有随机影响的经济数量关系和规律的 一门学科。
• 萨缪尔森:“经济计量学的定义为:在 理论与观测协调发展的基础上,运用相 应的推理方法,对实际经济现象进行数 量分析。”
5
一、什么是计量经济学
• 兰格:“经济计量学是经济理论和经济 统计学的结合,并运用数学和统计方法 对经济学理论所确定的一般规律给予具 体的和数量上的表示。”
• 克莱茵:“经济计量学是数学方法、统 计技术和经济分析的综合。就其字义来 讲,经济计量学不仅是指对经济现象加 以测量,而且包含根据一定的经济理论 进行计算的意思。”
GNP 10201.4 11954.5 14922.3 16917.8 18598.4 21662.5 26651.9 34560.5 46670 57494.9 66850.5 73142.7 76967.2
80579.36 88189.6
17
截面数据(cross-section data)

6.4 半参数模型解析

6.4 半参数模型解析
• 由于半参数模型估计的收敛速度慢于参数模型,必须有足 够多的样本才能实现半参数模型的估计。 • 半参数离散选择模型=关于解释变量的参数部分+关于随 机误差项的非
• 建议不作为课堂教学内容。
§6.4半参数计量经济学模型
一、半参数线性回归模型 二、半参数二元离散选择模型
说明
• 从模型设定的角度,在实际应用研究中,一部分解释变量 与被解释变量的关系是可以设定的,而一部分难于设定, 提出了半参数模型问题。 • 从技术角度,完全非参数模型估计的收敛速度随着解释变 量的增加而越来越慢,存在“维数诅咒 ” ,提出了半参 数模型问题。 • 半参数模型在应用研究,特别在微观经济等领域具有广泛 应用 。因为对于微观计量经济学模型,一般需要比较多 的解释变量。 • 半参数模型与微观计量经济学模型结合,是一个方向。本 节以半参数离散选择模型为例。
• 最小二乘核估计不能估计出非参数部分函数的导 数,在具体应用中具有较大的局限性。
• 最小二乘局部线性估计可以估计出非参数部分函 数的导数,该估计方法在实际应用中被广泛使用。 • 半参数线性模型的最小二乘局部线性估计分三步 进行估计。
• 第一步:先设β已知,基于以下模型,得到g(x)的 局部线性估计,同时也可以获得其导数的估计。
一、半参数线性回归模型
1、半参数回归模型
Yi βZi g (Xi ) i , i 1, 2,
Zi (Z1i , , Z d0i )
,n
X i ( X1i ,, X d1i )
• 模型的参数部分作为主要部分,把握被解释变量的大势走 向,适于外延预测;非参数部分,可以对被解释变量作局 部调整,使模型更好地拟合样本观测值。 • 模型没有常数项。如果有了常数项,则模型不可识别。 • 随机误差序列均值为零,与所有解释变量不相关。

计量经济学课件PPT课件

计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)

计量经济学课件(庞浩版)

计量经济学课件(庞浩版)
劳动经济学
劳动经济学中经常运用联立方程模型来研究劳动力市场中 的各种问题,如工资决定、就业与失业、劳动力流动等。 例如,可以构建一个包含工资方程和就业方程的联立方程 模型,以分析最低工资制度对就业和工资水平的影响。
06
CATALOGUE
面板数据计量经济学模型
面板数据基本概念与特点
面板数据定义
面板数据是指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样 本数据。
面板数据模型估计方法及应用举例
估计方法
面板数据模型的估计方法主要有最小二乘法 、广义最小二乘法和极大似然法等。
应用举例
面板数据模型在经济学、金融学、社会学等 领域有广泛的应用,如经济增长、劳动力市 场、金融市场、环境经济学等问题的研究。 例如,可以利用面板数据模型研究不同国家 经济增长的影响因素,或者分析某个政策对 不同地区或不同群体的影响效果。
模型设定
多元线性回归模型是描述多个自变量与一 个因变量之间线性关系的模型,形式为 Y=β0+β1X1+β2X2+...+βkXk+u。
假设ห้องสมุดไป่ตู้验
对各个自变量的回归系数进行假设检验, 判断其是否显著不为零。
参数估计
通过最小二乘法等方法对模型中的参数进 行估计,得到各个自变量的回归系数估计 值。
多重共线性问题
采用逐步回归法、岭回归法、主成分分析法等方法对多重 共线性进行修正,同时也可以通过增加样本容量或收集更 多信息来缓解多重共线性的影响。
04
CATALOGUE
时间序列计量经济学模型
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。

计量经济学课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案教学课件汇总完整版电子教案

计量经济学课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案教学课件汇总完整版电子教案

假设样本回归直线已做出,设它为
yˆi ˆ ˆ xi
(2.2.3)
其中ˆ 是α的估计量, ˆ 是β的估计量,这样
就可以用样本回归直线(2.2.3)估计总体回归直线
(2.2.2)。
设给定的样本观测值(xi,yi),i =1,2,…,n, 在直角坐标系里,做出它们的对应点(xi,yi), i =1,2,…,n,构成散点图,如图2.2.1
COV(ui,xj) = 0 (i,j =1,2,3,…,n )
显然,如果x是非随机变量,则假定5将自动满足。 以上假定通常也叫高斯—马尔可夫 (Gauss Markov) 假定,也称古典假定。满足以上古典假定的线性回 归模型,也称为古典线性模型或经典线性模型。
根据假定2,对(2.1.1)式两边同时取期望值,则有
E(ui)= 0 (i =1,2,3,…,n)
假定3 每个ui( i = 1,2,3,…,n )的方差均为同一个
常数,即V(ui)
=
E( ui2)=
2 u
=常数
称之同方差假定或等方差性。
假定4 与自变量不同观察值xi相对应的随机项ui彼 此独立,即COV(ui,uj) = 0 (i≠j) 这个假定称为非自相关假定。 假定5 随机项ui与自变量的任一观察值xj不相关,即
2003年诺贝尔经济学奖再次垂青计量经济学家美 国的罗伯特F.恩格尔(Robert F.Engle)和英国的克 莱夫W.J. 格兰杰(Clive W.J.Granger)是因为他们 在时间序列数据研究方法方面的重要贡献,这再 一次向世人证明计量经济学是经济学中最重要的 学科之一。 另一方面,绝大多数诺贝尔经济学奖获得者即使 其主要贡献不在计量经济学领域,也都普遍应用 了计量经济学方法。

计量经济学课件很详细共99页

计量经济学课件很详细共99页
计量经济学课件很详细
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
43、重复别人所说的话,只需要教育; 而Байду номын сангаас挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国

《高级计量经济学》幻灯片

《高级计量经济学》幻灯片
京:中国统计出版社
• 高雪梅主编(2005).?计量经济分析方法与建模:
EVIEWS应用及实例?.北京:清华大学出版社.
4
△ 初、中、高级计量经济学
• 初级以计量经济学的数理统计学根底知识和经
典的线性单方程模型理论与方法为主要内容;
• 中级以用矩阵描述的经典的线性单方程模型理
论与方法、经典的线性联立方程模型理论与方 法,以及传统的应用模型为主要内容;
概率论根底
• 克莱因成为其理论与应用的集大成者
6
• 经典计量经济学在理论方法方面特征是: • ⑴ 模型类型—随机模型; • ⑵ 模型导向—理论导向; • ⑶ 模型构造—线性或者可以化为线性,因
果分析,解释变量具有同等地位,模型具有明 确的形式和参数;
• ⑷ 数据类型—以时间序列数据或者截面数
据为样本,被解释变量为服从正态分布的连续 随机变量;
2
参考书目 7.William H. Greene?计量经济学分析?,中国社会 科学出版社。 清华大学出版社出了该书的英文影印本 8. Michael Intriligator, Ronald Bodkin and Cheng Hsiao.?Econometric models, techniques, and applications?, Prentice Hall Inc. 9.Robert S. Pindyck and Daniel L. Rubinfeld?计 量经济学模型与经济预测?,机械工业出版社。 10.Ramu Ramanathan.?应用经济计量学?,机械 工业出版社。
11
• 宏观计量经济学名称由来已久,但是它的主要
内容和研究方向发生了变化。
• 经典宏观计量经济学:利用计量经济学理论方

2024版计量经济学(很好用的完整)ppt课件

2024版计量经济学(很好用的完整)ppt课件

贝叶斯计量经济学的定义
基于贝叶斯定理和概率分布理论进行计量分析的经济学分支。
贝叶斯先验分布的设定
根据历史数据、专家经验等因素设定参数的先验分布,作为后续推 断的基础。
贝叶斯计量模型的估计方法
包括马尔科夫链蒙特卡罗方法、变分贝叶斯方法等,用于估计模型 参数和进行统计推断。
机器学习在计量经济学中应用
机器学习算法在计量经济学中的应用场景
广义线性模型介绍
1
定义
广义线性模型是一类用于回归分析的统计 模型,它扩展了线性模型的框架,允许响 应变量遵循非正态分布,并且可以通过一 个链接函数与解释变量建立线性关系。
2
组成
广义线性模型由三部分组成——随机成分、 系统成分和链接函数。随机成分指定响应 变量的分布类型和参数,系统成分描述解 释变量与响应变量之间的线性关系,链接 函数则将随机成分和系统成分连接起来。
06
计量经济学软件应用
EViews软件介绍及操作指南
01
EViews软件概述
EViews是一款功能强大的计量 经济学软件,广泛应用于数据 分析、模型估计和预测等领域。
02
数据导入与预处理
介绍如何在EViews中导入数据、 进行数据清洗和预处理等操作。
03
模型估计与检验
详细讲解EViews中线性回归模 型、时间序列模型等模型的估 计方法,以及模型的检验和诊 断。
THANKS
包括变量选择、模型诊断、预测等。
监督学习在计量经济学中的应用
通过训练数据集学习模型,然后利用测试数据集评估模型性能。
非监督学习在计量经济学中的应用
通过聚类、降维等技术发现数据中的潜在结构和模式。
深度学习在计量经济学中的应用

计量经济学课件(全)

计量经济学课件(全)

计量经济学第一章绪论目前,在经济学、管理学以及一些相关学科的研究中,定量分析用得越来越多。

所谓定量分析,即揭示经济活动中客观存在的数量关系。

定量分析方法统计分析方法:一元多元经济计量分析方法:以模型为基础时间序列分析方法:动态时间序列§1.1 计量经济学及其模型概述一、计量经济学计量经济学的诞生计量经济学“Econometrics”一词最早是由挪威经济学家弗里希(R.Frish)于1926年仿照“Biometrics”(生物计量学)提出来的,这标志着计量经济学的诞生。

弗里希将计量经济学定义为经济学、统计学和数学三者的结合。

计量经济学的定义计量经济学是以经济理论为指导,以经济事实为依据,以数学、统计学为方法,以计算机为手段;主要从事经济活动的数量规律研究,并以建立、检验和运用计量经济学模型为核心的一门经济学学科。

二、计量经济学模型模型,是对现实的描述和模拟。

模型分类语义模型:语言文字。

物理模型:简化的实物。

几何模型:几何图形。

数学模型:数学公式。

计算机模拟模型:计算机模拟技术。

计量经济学模型属于经济数学模型,即用数学公式来描述经济活动。

例:生产函数经济数学模型是建立在经济理论的基础之上的。

生产理论:“在供给不足的条件下,产出由资本、劳动、技术等投入要素决定,随着各投入要素的增加,产出也随之增加,但要素的边际产出递减。

” 建立初始模型初始模型的特点模型描述了经济变量之间的理论关系;通过模型可以分析经济活动中各因素之间的相互影响,从而为控制经济活动提供理论指导;认为这种关系是准确实现的;模型并没有揭示各因素之间的定量关系,因为参数未知。

模型的改进以1964-1984年我国工业生产活动的数据作为样本,估计得到:改进模型的特点1.用随机性的数学方程描述现实的经济活动与经济关系。

2.揭示了经济活动中各因素之间的定量关系。

3.可用于对研究对象进行深入的研究,如结构分析、生产预测等。

初始模型——数理经济学模型数理经济学模型:由确定性的数学方程所构 成,用以揭示经济活动中各因素间的理论关系。

6.4 半参数模型

6.4 半参数模型

Yi βZi g ( Xi ) ui
• 第二步:基于以下参数模型,得到β的最小二乘 估计。
ˆ Yi βZi g ( Xi , β) i
ˆ ( Z T Z) 1 Z T Y β
• 第三步:得到g(x)的最终估计,以及其导数的最 终估计。
ˆ ˆ ˆ g ( x) g ( x, β)
2、最小二乘核估计
• 第一步:假设β已知,对非参数部分进行核估计。
g ( X i ) E (Yi | X i ) β E ( Zi | X i )
ˆ E (Yi | X i ) ˆ E ( Zi | X i )
ˆ ˆ ˆ g ( x, β ) E (Yi | X i ) β E ( Zi | X i )
• 第二步:估计 β。采用OLS估计模型:
ˆ ˆ Yi E (Yi | X i ) ( Zi E ( Zi | X i )) vi
• 第三步:得到最终估计。
ˆ ˆ ˆ ˆ g ( x ) E (Yi | X i ) β E ( Zi | X i )
3、最小二乘局部线性估计
• 由于半参数模型估计的收敛速度慢于参数模型,必须有足 够多的样本才能实现半参数模型的估计。 • 半参数离散选择模型=关于解释变量的参数部分+关于随 机误差项的非参数部分。
2、半参数二元离散选择模型的估计
• 建议不作为课堂教学内容。
ˆ ˆ g (x) ST (x)(Y βZ)
二、半参数二元离散选择模型
1、半参数二元离散选择模型的含义
• 为了估计二元离散选择参数模型,必须基于效用模型的随 机误差项分布已知的假定。 • 但是,在现实中该假定不一定成立,错误的分布设定必然 导致错误的推断。

计量经济学ppt课件(完整版)

计量经济学ppt课件(完整版)
注意事项
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。

高级经济计量学课件(绪论——第三章)

高级经济计量学课件(绪论——第三章)
参数“线性”,变量”非线
变量“线性”,参数”非线
24
随机扰动项ui
◆概念 各个 Yi 值与条件均值 E(Yi X i ) 的偏差 u i 代表排除在模型以外的 所有因素对Y的影响。
Y


u
Xi
X
◆性质: u i 是期望为0有一定分布的随机变量 重要性:随机扰动项的性质决定着计量经济方法的选择
25
◆引入随机扰动项的原因

13
高级计量经济学——本课程核心 第4部分 时间序列计量模型


第10章 第11章 第12章 第13章
时间序列模型 协整与误差修正模型 向量自回归模型 时间序列条件异方差模型
14
高级计量经济学——本课程核心 第5部分 回归分析的深入议题



第14章 面板数据计量模型 ——固定效应与随机效应模型 第15章 二元因变量模型 ——probit与logit回归模型 第16章 计量经济模型的建立 ——传统与现代计量经济学方法论
i
31
第二节 一元线性回归模型的参数估计
1、普通最小二乘法OLS
◆OLS的基本思想: ●不同的估计方法可得到不同的样本回归参 ˆ ˆ ˆ 数 1和 2 ,所估计的 Yi 也不同。 ˆ ●理想的估计方法应使 Yi 与 Yi 的差即剩余 ei 越小越好 ●因 ei 可正可负,所以可以取 ei 2 最小 即 ^ ^ 2 2 min ei min (Yi 1 2 X i )
三、一元线性回归模型
一元线性回归模型形式如下
Yi 0 1 X i ui
上式表示变量Yi和Xi之间的真实关系。其中Yi 称被解释变量(因变量),Xi称解释变量(自变 量),ui称随机误差项,0称常数项,1称回归系 数(通常未知)。 上述模型可以分为两部分。 (1)回归函数部分,E(Yi) = 0 + 1 Xi, (2)随机部分, ui 。

计量经济学课件全完整版

计量经济学课件全完整版
ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。

非参数计量经济学模型概述ppt课件

非参数计量经济学模型概述ppt课件
61非参数计量经济学模型概述62非参数模型局部逼近估计方法63非参数模型全局逼近估计方法简介64半参数计量经济学模型一非参数计量经济学模型的发展二非参数计量经济学模型的主要类型1概念经典的线性或非线性计量经济模型首先根据对研究对象行为的分析建立包含变量参数和描述它们之间关系的理论模型然后利用变量的样本观测值采用适当的方法估计参数故称为参数模型
第6章 非参数计量经济学模型
6.1非参数计量经济学模型概述 6.2非参数模型局部逼近估计方法 6.3非参数模型全局逼近估计方法简介 6.4半参数计量经济学模型
§6.1非参数计量经济学模型概述
一、非参数计量经济学模型的发展 二、非参数计量经济学模型的主要类型
一、非参数计量经济学模型的发展
1、概念
– 如果一部分变量之间的关系是明确的,而另一部分变 量之间的关系是不明确的,称之为半参数模型 (Semiparametric Model)。
– 一般所说的“非参数计量经济学”,既包括非参数单 方程模型,也包括非参数联立方程模型;既包括完全 非参数模型,也包括半参数模型。
• 非参数模型(无参数模型)
• 参数模型和非参数模型
– 经典的线性或非线性计量经济模型,首先根据对研究 对象行为的分析,建立包含变量、参数和描述它们之 间关系的理论模型,然后利用变量的样本观测值,采 用适当的方法,估计参数,故称为参数模型。
– 在现实中,经济变量之间的关系并不是在所有样本点上 都是不变的,或者说不能事先确定某种线性关系或非 线性关系,而是要通过估计才能得到某种关系,而且随 着样本点的不同而不同。这就引出了非参数模型 (Nonparametric Econometric models) 。
模型假定一部分解释变量与被解释变量的关系为线性关 系,这部分解释变量为参数部分的解释变量;其它解释 变量与被解释变量的关系未知,这部分解释变量为非参 数部分的解释变量;

计量经济学(共11张PPT)

计量经济学(共11张PPT)

分析与模型应 用阶段
是否可用于决策? 应用
修改整理模型
结构分析
预测未来
模拟
检验发展理论
第五节 经济计量学和其它学科的关系
数理经济学是运用数学研究有关经济理论
数理统计学是运用数学研究统计问题 经济统计学是对经济现象的统计研究
经济计量学是经济学、统计学、数学三者结合在一起的交叉学科。
经济学
数理经济学
经济统计学
四、我国经济计量学的发展
70-80年代
80-90年代 1998年
开始介绍《经济计量学》的学科内 容和国外发展情况
1995年《经济计量学》的教学大纲 正式发表;全国许多高校相继开设 《经济计量学》课程。
将《经济计量学》列入经济类各专 业八门公共核心课程之一
五、经济计量学的内容体系
按照研究的方 法不同
《Econometrics》。
从30年代到今天,尤其是二次大战以后,计量经济学在西方各 国的影响迅速扩大。曾说:“二次世界大战以后的经济学是计量经 济学的时代”。1969年首届诺贝尔经济学奖授予弗里希和丁伯根。 自1996年设立诺贝尔经济学奖至1989年27为获奖者中有15位是计量 经济学家,其中10位是世界计量经济学会的会长。
(时间序列数据、截面数据)
二、参数估计
三、模型检验(拟合优度、t 检验、F 检验) 四、模型应用(预测、结构分析、 模拟)
第三节 经济计量学的特点
1.它是研究经济现象的,它不但给出质的解释,而且给出确切的量的 描述,从而使经济学成为一门精密的科学。 定性分析-定量分析(简单的数量对比-模型分析)
2.能综合考虑多种因素,通过描述客观经济现象中极为复杂的因果关系,对 影响某一经济现象的众多因素(哪些是主要、次要因素)给出一目了然的 回答。

《计量经济学》ppt课件

《计量经济学》ppt课件

04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型

计量经济学课件完整版

计量经济学课件完整版

计量经济学课件完整版计量经济学课件完整版一、课程简介计量经济学是经济学领域的一门重要学科,它利用数学、统计学和经济学等学科的知识和方法,对经济现象进行量化和分析。

本课程将系统地介绍计量经济学的基本概念、方法和应用,旨在帮助学生掌握计量经济学的理论和实践技能,为进一步学习和研究经济学打下坚实的基础。

二、课程内容本课程共分为八个单元,包括:1、回归分析基础2、模型选择与优化3、时间序列分析4、面板数据分析5、多元回归分析6、离散选择模型7、因子分析8、协整分析每个单元都包括理论讲解、案例分析、软件操作和习题等内容,让学生全面了解和掌握计量经济学的方法和技术。

三、课程安排本课程共36学时,安排如下:1、理论讲解(20学时)2、软件操作与实践(10学时)3、习题课与答疑(6学时)四、教学目的通过本课程的学习,学生将能够:1、掌握计量经济学的基本概念和方法;2、熟练运用常用的计量经济学软件进行数据分析;3、了解计量经济学在经济学领域的应用;4、提高解决实际问题的能力,为未来的学习和工作打下基础。

五、教学方法本课程采用多种教学方法,包括:1、课堂讲解:教师通过讲解和演示,帮助学生掌握计量经济学的基本理论和方法;2、案例分析:通过分析实际案例,让学生了解计量经济学在实践中的应用;3、小组讨论:学生分组进行讨论和交流,加深对课程内容的理解;4、实践操作:通过上机实践,让学生掌握计量经济学软件的操作技巧。

六、考核方式本课程的考核方式包括:1、平时作业:完成课程对应的练习题和思考题,占总成绩的30%;2、期中考试:进行期中考试,考核学生对课程内容的掌握情况,占总成绩的30%;3、期末考试:进行期末考试,全面考核学生对课程内容的理解和应用能力,占总成绩的40%。

七、参考资料本课程推荐以下参考书籍:1、《计量经济学基础》(作者:高铁梅);2、《计量经济学》(作者:斯托克);3、《应用计量经济学》(作者:詹姆斯·H·斯托克等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zi (Z1i , , Z d0i ) X i ( X 1i , , X d1i )
• 模型的参数部分作为主要部分,把握被解释变量的大势走 向,适于外延预测;非参数部分,可以对被解释变量作局 部调整,使模型更好地拟合样本观测值。
• 模型没有常数项。如果有了常数项,则模型不可识别。 • 随机误差序列均值为零,与所有解释变量不相关。
Yi Eˆ(Yi | Xi ) (Zi Eˆ(Zi | Xi )) vi
• 第三步:得到最终估计。
gˆ(x) Eˆ(Yi | Xi ) βˆEˆ(Zi | Xi )
3、最小二乘局部线性估计
• 最小二乘核估计不能估计出非参数部分函数的导 数,在具体应用中具有较大的局限性。
• 最小二乘局部线性估计可以估计出非参数部分函 数的导数,该估计方法在实际应用中被广泛使用。
2、最小二乘核估计
• 第一步:假设β已知,对非参数部分进行核估计。
g( Xi ) E(Yi | Xi ) βE(Zi | Xi )
Eˆ(Yi | Xi )
Eˆ (Zi | Xi )
gˆ(x, β) Eˆ(Yi | Xi ) βEˆ(Zi | Xi )
• 第二步:估计 β。采用OLS估计模型:
• 将随机误差项的分布作为待估计的未知函数,这样就可以 有效克服二元离散选择模型的应用缺陷。
• 由于半参数模型估计的收敛速度慢于参数模型,必须有足 够多的样本才能实现半参数模型的估计。
• 半参数离散选择模型=关于解释变量的参数部分+关于随 机误差项的非参数部分。
2、半参数二元离散选择模型的估计
• 建议不作为课堂教学内容。
• 半参数线性模型的最小二乘局部线性估计分三步 进行估计。
• 第一步:先设β已知,基于以下模型,得到g(x)的 局部线性估计,同时也可以获得其导数的估计。
Yi βZi g(Xi ) ui
• 第二步:基于以下参数模型,得到β的最小二乘 估计。
Yi βZi gˆ (Xi , β) i
βˆ (Z%TZ%)1 Z%TY%
• 第三步:得到g(x)的最终估计,以及其导数的最 终估计。
gˆ (x) gˆ (x, βˆ )
gˆ (x) ST (x)(Y βˆZ)
二、半参数二元离散选择模型
1、半参数二元离散选择模型的含义
• 为了估计二元离散选择参数模型,必须基于效用模型的随 机误差项分布已知的假定。
• 但是,在现实中该假定不一定成立,错误的分布设定必然 导致错误的推断。
• 半参数模型在应用研究,特别在微观经济等领域具有广泛 应用 。因为对于微观计量经济学模型,一般需要比较多 的解释变量。
• 半参数模型与微观计量经济学模型结合,是一个方向。本 节以半参数离散选择模型为例。
一、半参数线性回归模型
1、半参数回归模型
Yi βZi g(Xi ) i , i 1, 2,L , n
§6.4半参数计量经济学模型
一、半参数线性回归模型 二、半参数二元离散选择模型
说明
• 从模型设定的角度,在实际 提出了半参数模型问题。
• 从技术角度,完全非参数模型估计的收敛速度随着解释变 量的增加而越来越慢,存在“维数诅咒 ” ,提出了半参 数模型问题。
相关文档
最新文档