2015年深圳市一模理科数学试题(含解析)精美word版

合集下载

2015年广东高考理科数学预测模拟试卷(一)带答案(深圳获奖原创)

2015年广东高考理科数学预测模拟试卷(一)带答案(深圳获奖原创)

2015年深圳市高中数学教师命题比赛(理科)第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合要求.1、设集合{}23x x M =-<<,{}121x x +N =≤,则()RMN =ð( )A .()3,+∞B .(]2,1--C .()1,3-D .[)1,3- 2、复数21i z i=+(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3、已知命题:p R x ∃∈,2lg x x ->,命题:q R x ∀∈,1xe >,则( )A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题 4、将函数()cos2f x x =的图象向右平移4π个单位后得到函数()g x ,则()g x 具有性质 A .最大值为1,图象关于直线2x π=对称 B .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为奇函数C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫ ⎪⎝⎭对称5、在学校的一次演讲比赛中,高一、高二、高三分别有1名、2名、3名同学获奖,将这 六名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有 A .6种 B .36种 C .72种 D .120种6、如图,矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈ 与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是A .712π B. 34π C . 56π D. 23π7、下列命题中正确命题的个数是( ) ①、若α⊥γ,且β⊥γ ,则α∥β;②、若a 是实数,则“24a ≠”是“2a ≠”的充分不必要条件;③、f (x )是(-∞,0)∪(0,+∞)上的奇函数,x >0时的解析式是f (x )=2x ,则x <0时的解析式为f (x )=-2-x ;④、若两个非零向量a b 、共线,则存在两个非零实数λμ、,使a b λμ+=0. A .1 B .2 C .3 D .48、给定区域:D 44420x y x y x y x +≥⎧⎪+≤⎪⎨+≥⎪⎪≥⎩,令点集000000{(,)|,,(,)T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点最多能确定三角形的个数为A .15B .25C .28D .32第II 卷(非选择题选择题共110 分)二、填空题: 本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9-13题)9、设随机变量X 服从正态分布()1,4N ,若()()125a a P X >+=P X <-,则a = . 10、一个几何体的三视图如图所示,则该几何体的表面积为 .11、图中的程序框图所描述的算法称为欧几里得展转相除法.若输入m=209 ,n=则输出 m= _________.12、设向量(1,3)a =-,(2,4)b =-,(1,5)c =,若表示向量a 、b 、2b c -、d 的有向线段依次首尾相接能构成四边形,则向量d 为 . 13、数列{}n a 的通项为()()121cos12nn n a n π=--⋅+,前n 项和为n S ,则60S = .选做题(14~15题,考生只能从中选做一题) 14、(坐标系与参数方程)在极坐标系中,求圆2cos ρθ=的圆心到直线2sin()13πρθ+= 的距离为__________.15、(几何证明选讲)如图,已知点P 为Rt ABC ∆的斜边AB 的 延长线上一点,且PC 与Rt ABC ∆的外接圆相切,过点C 作AB 的垂线,垂足为D ,若18PA =,6PC =,则线段CD =____CAB D P第15题图三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+. (1)求函数()f α的值域;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()f C =a =1c =,求b .17、(本题12分)某工厂生产A 、B 两种型号的玩具,其质量按测试指标划分为:指标大于或等于83为正品,小于83为次品,现随机取这两种玩具进行检测,检测结果统计如下: 测试指标 [70,76)[76,83) [83,88)[88,94)[94,100)玩具A (件) 8 12 40 32 8 玩具B (件)71840296(1)试分别估计玩具A 为正品的概率和玩具B 为正品的概率;(2)生产1件玩具A ,若是正品可盈利40元,若是次品则亏损5元;生产1件玩具B ,若是正品可盈利50元,若是次品则亏损10元,在(1)的前提下, (i )记ξ为生产1件玩具A 和1件玩具B 所得的总利润,求随机变量ξ的分布列和数学期望;(ii )求生产5件玩具B 所获得的利润不少于140元的概率. 18、(本小题满分14分)如图,在三棱锥S ABC -中, SA ⊥底面ABC ,2AC AB SA ===,AC ⊥AB , D ,E 分别是AC ,BC 的中点, F 在SE 上,且2SF FE =.(1)求证:AF ⊥平面SBC ;(2)在线段上DE 上是否存在点G ,使二面角G AF E --的大小为30︒?若存在,求出DG 的长;若不存在,请说明理由.ASBCEFD第16题图19、(本题满分14分)已知动圆Q 过定点()1,0-F ,且与直线1:=y l 相切,椭圆N 的对称轴为坐标轴,O 点为坐标原点,F 是其一个焦点,又点()2,0A 在椭圆N 上. (Ⅰ)、求动圆圆心Q 的轨迹M 的标准方程和椭圆N 的标准方程; (Ⅱ)、若过F 的动直线m 交椭圆N 于C B ,点, 交轨迹M 于E D ,两点,设1S 为ABC ∆的面积,2S 为ODE ∆的面积,令21S S Z =,试求Z 的最小值.20、(本题14分)在单调递增数列}{n a 中,12a =,24a =,且12212,,+-n n n a a a 成等差数列,22122,,++n n n a a a 成等比数列, ,3,2,1=n .(1)、求证:数列}{2n a 为等差数列; (2)、求数列}{n a 的通项公式. (3)、设数列}1{na 的前n 项和为n S ,证明:43(3)n n S n >+,*n ∈N .21、(本小题满分14分)已知函数()()(),g 2ln af x x x x m x=-=+, (I )、当0m =时,存在01,x e e ⎡⎤∈⎢⎥⎣⎦(e 为自然对数的底数),使()()000x f x g x ≥,求实数a 的取值范围;(II)、当1a m ==时,(1)、求最大正整数n,使得对任意1n +个实数()1,2,,1i x i n =+,当[]1,2i x e ∈-(e 为自然对数的底数)时,都有()()112015nin i f x g x +=<∑成立;(2)、设()()()H x xf x g x =+,在()H x 的图象上是否存在不同的两点第19题图()()1122,,,A x y B x y ()121x x >>-,使得()()()'1212122x x H x H x H x x +⎛⎫-=- ⎪⎝⎭.2015年普通高等学校招生全国统一考试(广东卷)理科数学命题细目表一、选择题(本大题共8小题,每小题5分,共40分.在每小题的4个选项中,只有一项是符合题目要求的)8、【解析】作出不等式组对应的平面区域如图中阴影部分所示,因为直线z x y=+与直线4x y+=,直线2x y+=平行,所以直线z x y=+过直线4x y+=上的整数点:(4,0),(3,1),(2,2),(1,3),(0,4)时,直线的纵截距最大,即z最大;直线z x y=+过直线2x y+=上的整数点:(0,2),(1,1)时,直线的纵截距最小,即z最小.所以满足条件的点共有7个,则T中的点最多能确定三角形的个数为3375351025C C-=-=(个).二、填空题:(本大题共6小题,每小题5分,共30分.)9、2 10、2+11、11 12、(6,4)-13、120 14、1215、245三、解答题:本大题共6小题,共80分,解答应写出必要的文字说明、证明过程或演算步骤.16、解:(1)由题意,得12sin,sin()cos2y yπααα==+=,…4分所以()sin cos)4fπαααα=+=+,……6分因为(0,)2πα∈,所以3(,)444πππα+∈,故()(1fα∈. ………………7分(2)因为()sin()4f C Cπ=+=(0,)2Cπ∈,所以4Cπ=,…9分在ABC∆中,由余弦定理得2222cosc a b ab C=+-,即2122b=+-,解得1b=. ………12分【命题意图】考察三角函数定义、三角函数值及解三角形中的余弦定理、两角和的正弦公式等知识,正向、逆向运用公式、定理的能力和转化化归思想。

2015.1罗湖一模考数学试卷(含答案)

2015.1罗湖一模考数学试卷(含答案)
x 2
18、解方程:
⑴ x2+3x-1=0
⑵ 3(x-1) =x(x-1)
2
A 函数图象关于原点对称,B 函数图象关于 X 轴对称 C.函数图象关于 Y 轴对称,D Y 的值随 x 值的增大而减小 2 9、将二次函数 y=x 的图象向上平移 1 个单位,所得抛物线的解析式是( △ ) 2 2 2 2 A y=x +1 B y=x -1 C (x+1) D y=(x-1) 10、下列命题是真命题的是(△) A 菱形的对角线相等 B 一组对边平行且另一组对边相等的四边形是平行四边形 C 矩形的对角线互相垂直 D 对角线互相垂直平分且相等的四边形是正方形 2 11、关于函数 y=x -2x-3 的叙述 ①当 x>1 时,y 的值随 x 的增大而增大 ②y 的最小值是-3 2 ③函数图象与 x 轴交点的横坐标是方程 x -2x-3=0 的根 ④函数图象与 y 轴交点的坐标是(0,-3) ⑤函数图象经过第一,二,三,四象限 其中正确的有( △ ) A 2个 B 3个 C 4个 D 5 个 12、在直角坐标系 xOy 中,一次函数 y=2x+1 的图象与二次函数 y=-x2+2 x + 1的图象交于点 A、B,则锐角∠
6
6
y A B O x
第 22 题
2014-2015 学年第一学期教学质量检测
九年级数学参考答案及评分说明
一、 题号 答案 选择题: (本题共 12 小题,每小题 3 分,共 36 分. ) 1 D 2 B 3 B 4 D 5 A 6 C 7 C 8 A 9 A 10 A 11 C 12 B
2 3
’ ’ ’
B
A

B C L1 L2 L3 C B A D E F

2015年广东省深圳市校联考中考数学一模试卷

2015年广东省深圳市校联考中考数学一模试卷

2015深圳市中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分).CD .3.小明从正面观察如图所示的物体,看到的是( ).C D .4.在同一平面直角坐标系中,函数y=﹣与函数y=x 的图象交点个数是( )5.如图,在△ABC 中,AB=AC ,∠A=30°,DE 垂直平分AC ,则∠BCD 的度数为( )第5题 第7题 第8题 第9题7.如图,在平行四边形ABCD中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为8.如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P 是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()9.如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是().C D.10.已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对二、填空题(共6小题,每小题5分,满分30分)11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为_________.12.在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为_________.13.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第_________象限.第12题第13题第14题14.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE 为_________米.15.关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是_________.16.(5分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_________.三、解答题(共7小题,满分0分)17.计算:.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.21.(2015•深圳一模)如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.2015年广东省深圳市校联考中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分).C D.,3.(4分)(2015•深圳一模)小明从正面观察如图所示的物体,看到的是().C D.4.(4分)(2008•长沙)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()的图象在第二、四象限内,但不过原点,的图象是双曲线,当5.(4分)(2008•德阳)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()6.(4分)(2006•辽宁)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角7.(4分)(2012•自贡)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()8.(4分)(2015•深圳一模)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()|k|中|k|9.(4分)(2007•南宁)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是().C D.AM=AB=AG=CG的面积为+﹣=因此图中的阴影部分的面积是10.(4分)(2007•绵阳)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①,对称轴为﹣=﹣二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2008•无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.y=12.(5分)(2007•泉州)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为12.×=1213.(5分)(2015•深圳一模)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第一象限.>14.(5分)(2008•沈阳)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为12米.BAE=15.(5分)(2009•鄂尔多斯)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是m≠2且m≠1.16.(5分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.是平行四边形,所以其概率为=三、解答题(共7小题,满分0分)17.(2015•深圳一模)计算:.)(××+2×+2.=18.(2009•钦州)小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.=.19.(2015•深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20.(2015•深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.21.(2015•深圳一模)如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)中,因为∴∴22.(2015•深圳一模)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.ME=AB MD=ABME=MD=AB=MA23.(2015•深圳一模)如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.∴x AC=,∴OP=(BP=,∴xAB=周长的最小值为:+参与本试卷答题和审题的老师有:438011;开心;CJX;未来;HJJ;zcx;haoyujun;csiya;zhjh;137-hui;mmll852;蓝月梦;733599;自由人;zhangCF;fuaisu;lf2-9;zhehe;张超。

深圳市2015届高三上学期第一次五校联考(理数)

深圳市2015届高三上学期第一次五校联考(理数)

深圳市2015届高三上学期第一次五校联考数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i + 2. 设集合{} 12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4, 4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 76. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。

2015年深圳一模理科数学试题答案及评分标准-(纯word版)

2015年深圳一模理科数学试题答案及评分标准-(纯word版)

2015年深圳市高三年级第一次调研考试数学(理科)试题一、选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合}5,1,0,2{=U ,集合}2,0{=A ,则A C U =( ) A.φ B 。

}2,0{ C 。

}5,1{ D 。

}5,1,0,2{ 2、已知复数z 满足1)1(=+i z (其中i 为虚数单位),则=z ( ) A.21i +- B 。

21i -- C 。

21i + D 。

21i- 3、若函数b a y x+=的部分图象如图1所示,则A.01,10<<-<<b a B 。

10,10<<<<b a C.01,1<<->b a D 。

10,1<<>b a4、已知实数y x ,满足不等式组300≤⎪⎩⎪⎨⎧≥≥+y x y x ,则y x +2的最大值为( )A.3 B 。

4 C 。

6 D 。

95、已知直线b a ,,平面βα,,且α⊥a ,β⊂b ,则“b a ⊥”是“βα//”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6、执行如图2所示的程序框图,则输出S 的值为( ) A. 16 B 。

25 C 。

36 D 。

497、在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(π B 。

]3,0(π C 。

],3[ππ D 。

),3(ππ8、如果自然数a 的各位数字之和等于8,我们称a 为“吉祥数”。

将所有“吉祥数”从小到大排成一列321,,a a a …,若2015=n a ,则=n ( )A. 83 B 。

82 C 。

39 D 。

37二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

【名师解析】广东省深圳市2015届高三上学期第一次五校联考数学理试题 Word版含解析

【名师解析】广东省深圳市2015届高三上学期第一次五校联考数学理试题 Word版含解析

2015届高三年级第一次五校联考理科数学试卷【试卷综析】试题比较平稳,基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,考查的知识涉及到函数、三角函数、数列、导数等几章知识,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移。

试卷的整体水准应该说可以看出编写者花费了一定的心血。

但是综合知识、创新题目的题考的有点少,试题以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能。

试题起到了引导高中数学向全面培养学生数学素质的方向发展的作用.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( ) A .54i - B .54i + C .34i - D .34i + 【知识点】复数.L4【答案解析】D 解析: 解:由题可知2,1a b ==()()22234a bi i i ∴+=+=+,所以D 正确.【思路点拨】根据复数的概念与运算法则可求出结果.2. 设集合{} 12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 【知识点】集合.A1 【答案解析】C解析:解:由题意可求出集合()(){}|13,|0|0x 3A x x B y y A B x =-<<=>∴⋂=<<,所以正确选项为C.【思路点拨】根据集合的概念先求出集合A,B.再求它们的交集. 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1,B .()1 2,C .()2 3,D .()3 4, 【知识点】函数的性质.B10【答案解析】C 解析:解:因为()()32ln 210,3ln 302f f =-<=->,函数为连续函数,所以函数的零点在()2,3之间.【思路点拨】可过特殊值验证函数值的正负来判定零点的区间.4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【知识点】向量,充要条件.A2,G9【答案解析】B 解析: 解:由共线的条件可知()//12021m n a a a a ⇒-+=∴==-或,所以“a =2”是“m //n ”的充分而不必要条件,所以B 正确.【思路点拨】根据向量共线的条件求出a 的值,然后再根据题意判定逻辑关系. 5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 7 【知识点】三视图.G2【答案解析】A 解析:解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:11232=2222111323V V -⨯⨯-⨯⨯⨯⨯⨯=正方体三棱锥.故选:A .【思路点拨】本题考查三视图求解几何体的体积,解题的关键是判断几何体的形状. 6. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。

广东省深圳市2015届高三数学上学期第一次五校联考试题 理

广东省深圳市2015届高三数学上学期第一次五校联考试题 理

2015届高三年级第一次五校联考理科数学试卷本试卷共4页,21小题,总分为150分.考试用时120分钟.须知事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2. 选择题每一小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。

考试完毕后,将试卷和答题卡一并交回.一、选择题〔本大题共8小题,每一小题5分,总分为40分.在每一小题给出的四个选项中,有且只有一项为哪一项符合题目要求的〕1. a b R ∈,,i 是虚数单位,假设a i -与2bi +互为共轭复数,如此()2a bi +=〔 〕A .54i -B .54i +C .34i -D .34i + 2.设集合{}12A x R x =∈-<,{}2,x B y R y x R =∈=∈,如此AB =〔 〕A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为〔 〕 A .()0 1, B .()1 2, C .()2 3, D .()3 4, 4. m (),2a =-,n ()1,1a =-,如此 “a =2〞是“m //n 〞的〔 〕 A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5. 一个多面体的三视图如右图所示,如此该多面体的体积为〔 〕A .233 B .223C .6D . 7 6. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃〞布置一项搜寻空投食物的任务. :①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。

2015年深圳市高三年级第一次调研考试.docx

2015年深圳市高三年级第一次调研考试.docx

2015年深圳市高三年级第一次调研考试数学理科)答案及评分标准说明: 一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的 主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容 和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后 续部分的解答有较严重的错误,就不再给分.三、 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、 只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.123 45678cD A C BCDA二、填空题:本大题每小题分,满分分.三、解答题16.(本小题满分12分)JT函数/(x ) = 2sin (^x + -) (Q >0)的最小正周期是兀・二。

=±2 ,TT由0>0,得0 = 2,即/(x) = 2sin(2x + -).八/5兀、小• 7ye r • /兀 、 r •兀 ?••• f (—) = 2 sin — = 2 sin(— + 兀)=一2 sin — = — 1 • 12 6 6 6(2)由sinx 010. 18;14. 211. 9; 15. 4.12. 4亦;解: (1)(2) (1)求/(詈)的值;若 sin X 。

二半,且砖(0冷),求心)的值.2兀v/(X )的周期T = n,即厂=兀,—得cos2x 0 = l-2sin 2 x 0Tl又 X ()G (0,—),・•・ 2x 0 G (0, 71),•・• 2 sin(2x 0 + —) = 2 sin 2x 0 cos y+ 2 cos 2x 0 sin —r 2V2 1 1 V3 2V2+V3= 2x —x- + 2x-x —= --------------------.3 2 3 2 3・• JOo) = 2 sin(2x 0 +y)= ?忑;卡【说明】木小题主要考查了三角函数/(兀)二Asin (饭+ 0)的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQ1)是泄量描述空气质量状况的指数,其数值越人说明空气污染 越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站•下表是某网站公布 的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市 AQI 数值 城市 AQI 数值 城市 AQI数值 城市 AQI数值 城市 AQI数值 城市 AQI数值 城市AQI 数值 广州 118 东莞 137 中山 95 江门 78 云浮 76 茂名 107 揭阳 80 深圳94珠海95湛江75 潮州 94 河源 124 肇庆 48 清远 47 佛山 160 惠州 113 汕头88汕尾74阳江112韶关68梅州84(1)请根据上表屮的数据,完成下列表格:空气质量 优质 良好 轻度污染 中度污染AQT 值范|韦|[0, 50)[50, 100)[100, 150)[150, 200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市屮采用分层抽样的方式抽取6个城市,省环保部门再从屮随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为§”,求纟的分布列和数学期望. 解:(1)根据数据,完成表格如下:空气质量优质良好轻度污染屮度污染AQI 值范围[0, 50) [50, 100) [100, 150)[150, 200)城市频数2 12 6 1(2)按分层抽样的方法,12分12从“良好”类城市屮抽取卩二 ---- x6 = 4个,............................. 3分12 + 6从“轻度污染”类城市屮抽取仏x6 = 2个,................................ 4分-12 + 6所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题的所有可能取值为:1, 2, 3 .C l C2 1 C2C' 3 c3C° 1•・・p(§=i)=恃p(§=2)=许二斗P(§=3)=符二* .............. ...... 8 分123P131555咖心叫+ “答:§的数学期望为2个. ..................................... 12分【说明】木题主要考察读图表、分层抽样、概率、随机变星分布列以及数学期望等基础知识, 考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18・(本小题满分14分)在三棱锥P —ABC中,己知平面PBC丄平\hi ABC , AB是底Lfn"A ABC最长的边.三梭锥P-ABC的三视图如图5所示,其屮侧视图和俯视图均为育角三角形.(1)请在图6屮,用斜二测画法,把三棱锥P — ABC的直观图补充完桀(其屮点P 在xOz平面内),并指出三棱锥P-ABC的哪些面是直角三角形;(2)求二血角B-PA-C的正切值;(3)求点C到面PAB的距离.侧视图— 2 —► |<—2 —->| 俯视图解:(1)三棱锥P-ABCK 观图如图1所示; 由三视图知\ABC 和△PCA 是直角三角形. (2)(法一):如图2,过P 作PH 丄BC 交BC 于点H, 由三视图知NPBC 为等腰三角形,vBC = 4, PH = 2*,:.PB = PC = BC = 4,取PC 的屮点E,过E 作EF 丄Q4且交PA 于点F,连接BE, BF,因为BE 丄PC,由三视图知AC 丄面PBC ,且B Eu 面PBC ,所以AC 丄BE , 又由ACP\PC = C ,所以BE 丄面PAC , 由 PA C W J PAC ,所以 BE 丄 PA, BEHEF^E ,所以 PA 丄面 BEF, 由BF u 面BEF ,所以P4丄BF , 所以ZBFE 是二面角B-PA-C的平面角.•••△PEF 〜MAC,・••竺=竺PA AC•・・PE = 2,AC = 4,PA = 47L ・・・EF=JLBE /-•••在直角ACFE 中,有tan ZBFE = ——=冷6 •EF所以,二血角B-PA-C 的正切值为舲.(法二):如图3,过P 作PH 丄BC 交BC 于点H,由三视图知APBC 为等腰三角形,BC = 4, PH = 2屈,由图3所示的坐标系,及三视图屮的数据得:8(0,0,0), C(4,0,0), P(2,0,2^3), A(4,4,0),则 BA = (4,4,0), 丽= (2,0,2馆),C4 = (0,4,0),CP = (-2,0,2A /3),设平面PAB 、平面PAC 的法向量分别为加、n.(图3 —, __ 4%)+4y } = 0设加=(兀),zj,由/w ・BA = 0, m • BP = 0 ,得彳,图2........................ 8分P图1令Z]=l,得X严-观,即m = (-V3,V3,1).【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角, 三梭锥的体积,空间坐标系等基础知识,考查空间想彖能力、运算能力和推理论证能力,考 查用向量方法解决数学问题的能力.19.(本小题满分14分)已知首项大于0的等差数列{%}的公差〃 =1,且丄 + —1— = Z . a }a 2 a 2a }3(1) 求数列{色}的通项公式;(2) 若数列{化}满足:勺=一1,人=久,bn+]=——其屮n >2・① 求数列{化}的通项仇;② 是否存在实数2,使得数列{仇}为等比数列?若存在,求出久的值;若不存在,请 说明理由.解:(1)(法一):・.・数列{%}的首项q>0,公差d=l,设=由w-G4 = 0, n PA = O f 得『儿一° ・ -2 兀2+2V^=0令乞2=1,得x 2 = V3 , y 2 = 0 ,即ii = (V3,0,l).-2 V7~~ —_ 2A /7 ~ 7tan <m,n >=_品• 而二面角B-PA-C 的大小为锐角,所以二面角B — PA — C 的正切值为亦.・・・9分(3)(法一):记C 到面的距离为力,由(1)、(2) ^PA = AB = 4^2, PB = 4,S 、PAB= 4^7 ' y c-PAB =|SgB • h =h ,三棱锥P-ABC 的体积V P _^C=L S~ 3 MBCA / C [由匕—ABC = V —AB ,可得:h = -y12分13分14分(法二):由(2)矢口,平面PAB 的法向量m=(-V3,V3,l ), C4 = (0,4,0) 记C 到\hi PAB 的距离为力,4V21 714分4巧W整理得^+2^-3 = 0解得坷=1或角=—3 (舍去). .................... 4分因此,数列{%}的通项色=〃・ ............................ 5分(法二):由题意得丄+ 丄=幺也 =2,.............................................. 1分a }a^ a x a^a y 3・・・数列{色}是等差数列,・・・勺+偽=2偽,.................... 2分又 T a 】 >0,6/ = 1 ,.・.舛(务+2) = 3 ,解得°[=1或a x = -3 (舍去). ........................ 4分 因此,数列{%}的通项a” = n ...................................................... 5分nb u (Z2-1) b ,••• ―= ----- -------- +1 • ..................................................................................... 6 : (-1 严(-1)"令C“ =W二:半,则有 C 2=A, C Z ,+1 = c… +1 (/z > 2).(T)・••当 n> 2 时,c tl = c 0 + (77 - 2) = zz - 2 + A , b n =—~. .......... 8 分n-1i,n = 1,因此,数列{$}的通项仇=s_2 + Q)(-1)” ( f ・ (9)-------- : ---- ,(〃 n 2).n-1••• a n =a { + (n -1),1 1 ------ 1 -----a^ci=(丄—丄)+(丄—丄) | dr 61° Cl 31 1 _ 1 1 _2 -- — -- ----- — ----- ---% a. a x d]+2 3② T b] = —1, b2 = A , b.10分・•・若数列{仇}为等比数列,则有bf = b\S ,即A 2=(-l )( ), 解得2 = 1或A=-~............................................................................... 11分2当A = --时,b” =(2"7)_(T )]s2 2), 乩不是常数,数列{仇}不是等比数列, 2 2C/7-1) b n 当2 = 1时,6l=-l, 6n =(-l )w (n>2),数列{仇}为等比数列.所以,存在实数久=1使得数列{亿}为等比数列. ......................... 14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、 等比数列的定义,考杳了学生的运算能力,以及化归与转化的思想.20.(木小题满分14分)22斤己知椭圆E:罕+ \ = 1 (a>b>0)的离心率为―,过左焦点倾斜角为45。

2015年广东省深圳市十校联考中考一模数学试卷(解析版)

2015年广东省深圳市十校联考中考一模数学试卷(解析版)

2015年广东省深圳市十校联考中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)一个正方形的对称轴共有()A.1条B.2条C.4条D.无数条2.(4分)2cos45°的值等于()A.B.C.D.3.(4分)小明从正面观察如图所示的物体,看到的是()A.B.C.D.4.(4分)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()A.0个B.1个C.2个D.3个5.(4分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°6.(4分)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或12C.13D.11和13 7.(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和48.(4分)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()A.S>1B.S>2C.1<S<2D.1≤S≤2 9.(4分)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A.B.C.D.10.(4分)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对称轴可以是x=1;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A.0B.1C.2D.3二、填空题(共6小题,每小题5分,满分30分)11.(5分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.(5分)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.13.(5分)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.14.(5分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为米.15.(5分)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是.16.(5分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.三、解答题(共7小题,满分0分)17.计算:.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.21.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.2015年广东省深圳市十校联考中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)一个正方形的对称轴共有()A.1条B.2条C.4条D.无数条【考点】LE:正方形的性质;P3:轴对称图形.【解答】解:一个正方形的对称轴共有4条,故选C.2.(4分)2cos45°的值等于()A.B.C.D.【考点】T5:特殊角的三角函数值.【解答】解:∵cos45°=,∴2cos45°=.故选:B.3.(4分)小明从正面观察如图所示的物体,看到的是()A.B.C.D.【考点】U2:简单组合体的三视图.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选:C.4.(4分)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()A.0个B.1个C.2个D.3个【考点】G8:反比例函数与一次函数的交点问题.【解答】解:∵y=x的图象是过原点经过一、三象限,的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交.故选:A.5.(4分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【解答】解:已知AB=AC,∠A=30°可得∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD所以∠A=∠ACD=30°所以∠BCD=∠ACB﹣∠ACD=45°.故选:D.6.(4分)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或12C.13D.11和13【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【解答】解:由(x﹣2)(x﹣4)=0解得x=2或4,由三角形三边关系定理得6﹣3<x<6+3,即3<x<9,因此,本题的第三边应满足3<x<9,所以x=4,即周长为3+4+6=13.故选C.7.(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4【考点】L5:平行四边形的性质.【解答】解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选:B.8.(4分)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()A.S>1B.S>2C.1<S<2D.1≤S≤2【考点】G5:反比例函数系数k的几何意义.【解答】解:根据题意可得:k=2,故可知S△ACO=1,∵S△OPC <S△ACO=1,故△ACP的面积1≤S≤2.故选:D.9.(4分)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A.B.C.D.【考点】LE:正方形的性质;S9:相似三角形的判定与性质.【解答】解:设AC与DM的交点为G,∵△AMG∽△CDG,AM=AB=CD.∴AG=CG.∵△AMC的面积为.∴S△AMG=∵S阴影=S△ADM+S△ACM﹣2S△AMG∴S阴影=+﹣=因此图中的阴影部分的面积是;故选:B.10.(4分)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对称轴可以是x=1;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A.0B.1C.2D.3【考点】H3:二次函数的性质.【解答】解:由y=ax+b过(﹣2,1),可得﹣2a+b=1,即2a﹣b=﹣1.①当x=2时,代入抛物线的右边得到4a﹣2b+3=2(2a﹣b)+3=﹣2+3=1,故①正确;②由题意得b=2a+1,由对称轴x=﹣,对称轴为x=﹣≠1,故②错误.③由2a﹣b=﹣1得到:b=2a+1.抛物线的顶点坐标公式可知纵坐标===3﹣,因此当a<0时,即顶点的纵坐标的最小值是3,故③正确.故选:C.二、填空题(共6小题,每小题5分,满分30分)11.(5分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【考点】G7:待定系数法求反比例函数解析式.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.(5分)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为12.【考点】L8:菱形的性质.【解答】解:读图可知,AC=4,BD=6,则该菱形的面积为4×6×=12.故答案为12.13.(5分)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第一象限.【考点】D1:点的坐标;H4:二次函数图象与系数的关系.【解答】解:从图象得出,二次函数的对称轴在一,四象限,且开口向上,∴a>0,>0,因此b<0,∵二次函数的图象与y轴交于y轴的负半轴,∴c<0,∴a>0,bc>0,则点P(a,bc)在第一象限.故答案为:一.14.(5分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为12米.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【解答】解:因为tan∠BAE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:AB2=BE2+AE2,即:132=(12x)2+(5x)2,169=169x2,解得:x=1或﹣1(负值舍去);所以BE=12x=12(米).故答案为:12.15.(5分)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是m≠2且m≠1.【考点】AA:根的判别式.【解答】解:∵方程为一元二次方程,∴(m﹣1)≠0,即m≠1,∵方程有两个不相等实数根,∴△=(﹣m)2﹣4(m﹣1)=(m﹣2)2>0,∴m≠2,综合得m≠1且m≠2.故答案为:m≠1且m≠2.16.(5分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.【考点】L6:平行四边形的判定;X4:概率公式.【解答】解:从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,其中只有①②、①③和③④可以判断ABCD是平行四边形,所以其概率为=.故答案为:.三、解答题(共7小题,满分0分)17.计算:.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【解答】解:原式=1﹣4××+2×=1﹣+2=1+.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.【考点】X6:列表法与树状图法.【解答】解:(1)树状图为:(答对一组得1分);(4分)(2)由(1)中的树状图可知:P(一个回合能确定两人先上场)==.(8分)19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.【考点】LA:菱形的判定与性质.【解答】解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.【考点】AD:一元二次方程的应用.【解答】解:设花边的宽度为x米,依题意得:(2﹣2x)(1.4﹣2x)=1.6解得:x1=1.5(舍去),x2=0.2.答:花边的宽度为0.2米.21.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【考点】TB:解直角三角形的应用﹣方向角问题.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.【考点】KI:等腰三角形的判定;KX:三角形中位线定理.【解答】证明:(1)∵M为AB边的中点,AD⊥BC,BE⊥AC,∴ME=AB,MD=AB,∴ME=MD,∴△MED为等腰三角形;(2)∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.【考点】HF:二次函数综合题.【解答】解:∵抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,∴解得:,∴此抛物线的解析式为:y=﹣x2+2x+2;(2)∵A(3,3.5)、B(4,2)、C(0,2),∴AC=,AB=,①若PC∥AB,则过点B作BE∥x轴,过点A作AE∥y轴,交点为E,∴AE=1.5,BE=1,当时,AB∥PC,∴,∴OP=,∴点P的坐标为:(,0),∴BP=,∴AP≠BC,∴此点不符合要求,舍去;②若BP∥AC,则过点A作AE∥y轴,过点C作CE∥x轴,相交于点E,过点B作BF∥y轴,当时,BP∥AC,∴,解得:PF=4,∴点P与点O重合,∴PC=2≠AB.∴此点不符合要求,舍去;(3)过A作对称轴的对称点A′,过B作x轴对称点B′,连接A′B′,分别交对称轴与x轴于H点、P点,则这两点即为所求.∴AH=A′H,PB=PB′,∴AB+AH+PH+PB=AB+A′H+HP+PB′=AB+A′B′,∵抛物线的y=﹣x2+2x+2的对称轴为:x=2,∵A(3,3.5),B(4,2),∴A′(1,3.5),B′(4,﹣2),∴AB=,A′B′=,∴四边形AHPB周长的最小值为:+.。

广东省2015年高考一模数学(理)试题分类汇编:导数及其应用(含答案)

广东省2015年高考一模数学(理)试题分类汇编:导数及其应用(含答案)

广东省各市2015年高考一模数学理试题分类汇编导数及其应用一、选择题1、(2015届深圳市)在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(πB 。

]3,0(πC 。

],3[ππD 。

),3(ππ选择题参考答案1、D 二、填空题1、(2015届揭阳市)已知函数3()f x x =对应的曲线在点(,())()k k a f a k N *∈处的切线与x 轴的交点为1(,0)k a +,若11a =31010(1()3f a ++=-2、(2015届深圳市)设P 是函数x y ln =图象上的动点,则点P 到直线x y =的距离的最小值为填空题参考答案1、由2'()3f x x =得曲线的切线的斜率23k k a =,故切线方程为323()k k k y a a x a -=-,令0y =得123k k a a +=123k ka a +⇒=,故数列{}n a 是首项11a =,公比23q =的等比数列,又 310(f f f a +++101011210(1)3(1)1a q a a a q q-=+++==--,所以31010(31()3f a ++=-.2、2三、解答题1、(2015届广州市)已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围; (2)已知e 为自然对数的底数,证明:∀n ∈N *22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2、(2015届江门市)设函数)(ln )(a x e x f x -=,e 是自然对数的底数,718.2≈e ,R a ∈为常数.⑴若)(x f y =在1=x 处的切线 l 的斜率为e 2,求a 的值;⑵在⑴的条件下,证明切线 l 与曲线)(x f y =在区间)21 , 0(至少有1个公共点; ⑶若]3ln , 2[ln 是)(x f y =的一个单调区间,求a 的取值范围.3、(2015届揭阳市)已知函数()f x ax =,()ln g x x =,其中a R ∈,(e ≈2.718). (1)若函数()()()F x f x g x =-有极值1,求a 的值;(2)若函数()(sin(1))()G x f x g x =--在区间(0,1)上为减函数,求a 的取值范围;(3)证明:211sinln 2(1)nk k =<+∑.4、(2015届茂名市)设函数2()ln ||f x x x ax =-+。

广东省2015年高考一模数学(理)试题分类汇编:数列(含答案)

广东省2015年高考一模数学(理)试题分类汇编:数列(含答案)

广东省各市2015年高考一模数学理试题分类汇编数列一、选择题 1、(2015届江门市){}n a 是等差数列,1a 与2a 的等差中项为1,2a 与3a 的等差中项为2,则公差=dA .2B .23 C .1 D .212、(2015届汕头市)已知等差数列{}n a 的前n 项和为n S ,又知()ln ln 1x x x '=+,且101ln eS xdx =⎰,2017S =,则30S 为( )A .33B .46C .48D .503、(2015届湛江市)已知等比数列{}n a 的各项均为正数,且公比1q ≠,若2a 、312a 、1a 成等差数列,则公比q =( )A B C D选择题参考答案1、C2、C3、D二、填空题1、(2015届梅州市)已知等比数列{n a }的公比为正数,且239522,1a a a a ==,则1a =___填空题参考答案1、22三、解答题1、(2015届广州市)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足111,1n a a +==,n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.2、(2015届江门市)设数列{}n a 的前n 项和6)14)(1(-+=n n n S n ,*N n ∈.⑴求1a 的值;⑵求数列{}n a 的通项公式; ⑶证明:对一切正整数n ,有4541222221<+++na n a a .3、(2015届揭阳市)已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--(*n N ∈),且211a =.(1)求1a 的值;(2)求数列{}n a 的前n 项和n S ; (3)设数列{}n b满足n b =123n b b b +++<4、(2015届茂名市)已知数列{n a }的前n 项和为Sn ,1a =1,且122(1)(1)(*)n n nS n S n n n N +-+=+∈,数列{n b }满足2120(*)n n n b b b n N ++-+=∈,3b =5,其前9项和为63。

广东深圳市2015届高三上学期第一次五校联考数学理试题word版含解析

广东深圳市2015届高三上学期第一次五校联考数学理试题word版含解析

第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i + 【答案】D考点:复数的概念及运算.2.设集合{}12A x R x =∈-<,{}2,xB y R y x R =∈=∈,则A B =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 【答案】C考点:集合的运算. 3.函数()2ln =-f x xx的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4, 【答案】C 【解析】试题分析:对于函数()2ln =-f x x x 在(0,+∞)上是连续函数,由于f (2)=ln2-22<0,f (3)=ln3-32>0,故f (2)f (3)<0, 故函数()2ln =-f x x x的零点所在的大致区间是(2,3),故选C.考点:函数零点的定义以及函数零点判定定理.4.已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件 【答案】B考点:1.向量平行的条件;2.充要条件.5.一个多面体的三视图如右图所示,则该多面体的体积为( ) A .233 B .223C .6D . 7【答案】A考点:三视图求解几何体的体积.6.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.则不同的搜寻方案有( ) A .40种 B .70种 C .80种 D .100种 【答案】A 【解析】(第5题图)试题分析:按Grace 参与和不参与分两类:第一类Grace 不参与,则参与搜寻任务的小孩只有4人,均分考点:排列与组合.7.已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421- B .20142+1 C .201521- D .201521+【答案】A……20122012201423⨯≥-a a将上2013个同向不等式相加得:-⨯=+++⨯+≥-+20132012222013201423)222(31 a a a ,再注考点:1.等比数列的前n 项和;2.数列通项公式的求法. 8.已知函数()3sin f x x x x =--+,当02πθ⎛⎫∈ ⎪⎝⎭,时,恒有()()2cos 2sin 220f m f m θθ++-->成立,则实数m 的取值范围( )A .1,2⎛⎫-∞ ⎪⎝⎭ B .1,2⎛⎤-∞ ⎥⎝⎦ C .1,2⎛⎫-+∞ ⎪⎝⎭ D .1,2⎡⎫-+∞⎪⎢⎣⎭【答案】D考点:1.函数的奇偶性与单调性;2.不等式的恒成立.第Ⅱ卷(共110分)二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9.右图是一个算法的程序框图,若输出的结果是31,则判断框中的正整数...M 的值是___________.【答案】4.考点:程序框图.10.若二项式()*1(n n N x+∈的展开式中的第5项是常数项, 则n =___________.【答案】6.考点:二项式定理.11.若实数x y 、满足约束条件⎪⎩⎪⎨⎧≥++≥+-≤022022y x y x x ,则目标函数y x z +=2的最大值为___________.【答案】8.考点:线性规划.12.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题,其中所有正确命题的序号是___________.①若m ∥β,n ∥β,m 、n ⊂α,则α∥β . ②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n . ③若m ⊥α,α⊥β,m ∥n ,则n ∥β . ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n . 【答案】②④.考点:空间线面的位置关系的判断与推理.13.若不等式21x x a <-+的解集是区间()33-,的子集,则实数a 的范围为__________.【答案】(]5-∞,.考点:不等式的解法及应用.14.(参数方程与极坐标)已知在直角坐标系中曲线1C 的参数方程为2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数且0t ≠),在以原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中曲线2C 的极坐标方程为()4R πθρ=∈,则曲线1C 与2C 交点的直角坐标为__________.【答案】(2,2)考点:1.参数方程与普通方程的互化;2.极坐方程与直角坐标方程的互化;3.曲线的交点.15.(几何证明选讲)如图,PT 切圆O 于点T ,PA 交圆O 于A B 、两点,且与直径CT 交于点D ,若236CD AD BD ===,,,则PB =___________.【答案】15.(第15题图)考点:1.相交弦定理;2.切割线定理;3.勾股定理.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)已知()()()23sin cos 02f x x x x ππωωωω⎛⎫=+-->⎪⎝⎭的最小正周期为T π=. (1)求23f π⎛⎫⎪⎝⎭的值; (2)在ABC ∆中,角A B C 、、所对应的边分别为a b c 、、,若有()2cos cos a c B b C -=,则求角B 的大小以及()f A 的取值范围. 【答案】(1)-1;(2)3π=B ,]21,1(-.()()2sin cos sin cos cos sin sin sin sin A B B C B C B C A A π⇒=+=+=-= ……8分 1sin 0 cos 2A B >∴=()0 3B B ππ∈∴= , ……9分 22 033A C B A πππ⎛⎫+=-=∴∈ ⎪⎝⎭ , ……10分72666A πππ⎛⎫∴-∈- ⎪⎝⎭, 1sin 2,162A π⎛⎫⎛⎤∴-∈- ⎪ ⎥⎝⎭⎝⎦ ……11分 ()11sin 21,622f A A π⎛⎫⎛⎤∴=--∈- ⎪ ⎥⎝⎭⎝⎦ ……12分考点:1.三角恒等变形公式;2.三角函数的图象与性质;3.正弦定理. 17.(本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.(1)若每次取球后都放回..袋中,求事件“连续取球四次,至少取得两次白球”的概率; (2)若每次取球后都不.放回..袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望【答案】(1)11;(2)随机变量X 的分布列为:……11分 随机变量X 的期望为:12121023451515553EX =⨯+⨯+⨯+⨯= .的概率公式k n kk n p p C k P --==)1()(ξ进行计算;(2)首先得到随机变量X 的所有取值分别为2,3,4,5,然后利用古典概率公式计算出随机变量X 取每一个值时所对应的概率,从而可得随机变量X 的分布列与期望,注意:每次取球后都不.放回..袋中. 试题解析:(1)记事件i A 表示“第i 次取到白球”(*i N ∈),事件B 表示“连续取球四次,至少取得两次白球”,则:1234123412341=++++B AA A A AA A AAAAA. ……2分 ()()()()()()12341234123412341234P B P A A A A P A A A A P A A A A P A A A A P A A A A =++++4342416466627⎛⎫⎛⎫=+⨯⨯= ⎪ ⎪⎝⎭⎝⎭……4分考点:1.相互独立事件同时发生的概率积公式;2.古典概型.3.分布列与数学期望.18.(本小题满分14分)如图,三棱柱111C B A ABC -侧棱与底面垂直,且所有棱长都为4,D 为CC 1中点.(1)求证:BD A AB 11平面⊥;(2)求二面角B D A A --1的余弦值.【答案】(1)祥见解析;(2A-A 1D-B 的余弦值大小.也可用传统几何方法解决.(第18题图)()()()32,4,2,0,2,4,32,4,211-=-=-=∴BA BD AB ……4分 0,0111=⋅=⋅BA AB BD AB ,111,BA AB BD AB ⊥⊥∴. ……6分 1BD BA B = ⊥∴1AB 平面1A BD . ……7分(2)设平面AD A 1的法向量为()z y x ,,=.(()12,2,0,4,0AD AA =--= ,. ,,1⊥⊥ ⎩⎨⎧==-+-∴0403222y z y x(1)取BC 中点O ,连结AO 和O B 1,由正方形性质知:BD O B ⊥1, ……4分111 BD AOB AO B O O AB BD =∴⊥∴⊥ 面………5分又在正方形11ABB A 中,11AB A B ⊥, ………6分1A B BD B = ⊥∴1AB 平面1A BD . ……7分(2)设AB 1与A 1B 交于点G ,在平面A 1BD 中,作D A GF 1⊥于F ,连结AF ,考点:1.二面角的平面角及求法;2.直线与平面垂直的判定.19.(本小题满分14分)已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}n b 的前n 项和,且有1=12n n S n b n-+. (1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n b 的通项公式; (3)设n n na cb =,记数列{}nc 的前n 项和n T ,求证:1n T <. 【答案】(1)祥见解析;(2)2n n b n =⋅;(3)祥见解析.项和n T ,即可证得所要证明的不等式式.试题解析:(1)证明:()1121=2n n n a a n a ---≥ 111121111n n n n n a a a a a ------∴-=-= ……1分 ()()111111*********n n n n n n a a n a a a a ------+∴===+≥----考点:1.等差数列;2.数列通项公式的求法;3.数列前n 项和的求法.20.(本小题满分14分) 已知双曲线()2222:10,0x y C a b a b -=>>, 12F F ,分别是它的左、右焦点,A ()1,0-是其左顶点,且双曲线的离心率为2e =. 设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内.(1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12=x 交于M N 、两点,求证:22MF NF ⊥; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由.【答案】(1)2213y x -=;(2)祥见解析;(3)存在,=2λ,理由祥见解析.(3)先取直线的斜率不存在的特列情形,研究出对应的λ的值,然后再对斜率存在的情形给予一般性的证明:不难获得=2λ,从而假设存在=2λ使得22PF A PAF λ∠=∠恒成立,然后证明222tan tan PAF A PF ∠=∠即可.试题解析:(1)由题可知:1a = ……1分2222999993109124444393131⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭t t t t t t 22∴⊥MF NF ……9分(3)当直线l 的方程为2=x 时,解得()23,P . 易知此时2∆AF P 为等腰直角三角形,其中2224ππ∠=∠=,AF P PAF ,即222∠=∠AF P PAF ,也即:=2λ. ……10分 下证:222∠=∠AF P PAF 对直线l 存在斜率的情形也成立.考点:1.双曲线的标准方程;2.直线与双曲线的位置关系;3.探索性问题.21.(本小题满分14分)已知函数()()2ln 0f x x a x x a =--≠. (1)求函数()f x 的单调区间;(2)若0a >,设()11A x y ,,()22B x y ,是函数()f x 图像上的任意两点(12x x <),记直线AB 的斜率为k ,求证: '1223x x f k +⎛⎫> ⎪⎝⎭. 【答案】(1)(i )当18a ≤-时,()f x 的单增区间为()0+∞,,无单减区间.(ii )当108a -<<时,()f x 的单增区间为0⎛ ⎝⎭,+⎫∞⎪⎪⎝⎭,单减区间为⎝⎭.(iii )当0a >时,()f x 的单增区间为+⎫∞⎪⎪⎝⎭,单减区间为0⎛ ⎝⎭. (2)祥见解析.【解析】()11122211112122122231ln33 ln ln +2+2+2x x x x x x x x x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⇔<⇔<-, 令()120,1x t x =∈,构造函数2)1(3ln )(+--=t t t t g ,再利用导数证明)(t g 在)1,0(上是增函数,从而可得0)1()(=<g t g ,进而得所证不等式成立.单减区间为⎝⎭. (iii )当0a >时,()f x的单增区间为+⎫∞⎪⎪⎝⎭,单减区间为0⎛ ⎝⎭.…7分(2)证明:()'21a f x x x =-- ()12'12122+2+23133+2x x x x a f x x ⎛⎫∴=-- ⎪⎝⎭考点:1.利用函数的导数研究函数的单调性;2.利用导数证明不等式.。

深圳市2015年高三年级第一次调研考试数学理科试卷(扫描版,有答案)

深圳市2015年高三年级第一次调研考试数学理科试卷(扫描版,有答案)

2015年深圳市高三年级第一次调研考试数学(理科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数.二、填空题:本大题每小题5分,满分30分.9.23; 10. 18; 11.9; 12.13.2; 14.2; 15. 4. 三、解答题 16.(本小题满分12分)函数π()2sin()3f x x ω=+(0ω>)的最小正周期是π. (1)求5π()12f 的值;(2)若0sin 3x =,且0π(0,)2x ∈,求0()f x 的值. 解:(1)()f x Q 的周期πT =,即2ππω=, …………………………………………1分2ω∴=±,由0ω>,得2ω=,即π()2sin(2)3f x x =+. ……………………………………3分5π7πππ()2sin 2sin(π)2sin 112666f ∴==+=-=-. ………………………………5分(2)由0sin x =得2001cos 212sin 3x x =-=, ………………………………7分又0π(0,)2x ∈,∴02(0,π)x ∈, ……………………………………………8分 ∴0sin 23x ==, …………………………………………9分 000πππ2sin(2)2sin 2cos 2cos 2sin 333x x x +=+Q1122323=⨯⨯+⨯=.00π()2sin(2)3f x x ∴=+= …………………………………………12分【说明】 本小题主要考查了三角函数)sin()(ϕω+=x A x f 的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQI )是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:(1)请根据上表中的数据,完成下列表格: (2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望. 解:(1)根据数据,完成表格如下:…………………………………2分 (2)按分层抽样的方法,从“良好”类城市中抽取11264126n =⨯=+个, ………………………………… 3分 从“轻度污染”类城市中抽取2662126n =⨯=+个, ……………………………4分所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.1242361(1)5C C P C ξ===Q , 2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===.………8分ξ∴的分布列为:所以1232555E ξ=⨯+⨯+⨯=. ………………………………………………11分 答:ξ的数学期望为2个. …………………………………………………12分 【说明】本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(本小题满分14分)在三棱锥P ABC -中,已知平面PBC ⊥平面ABC ,AB 是底面△ABC 最长的边.三棱锥P ABC -的三视图如图5所示,其中侧视图和俯视图均为直角三角形.(1)请在图6中,用斜二测画法,把三棱锥P ABC-的直观图补充完整(其中点P 在 xOz 平面内),并指出三棱锥P ABC -的哪些面是直角三角形; (2)求二面角B PA C --的正切值;(3)求点C 到面PAB 的距离.正视图解:(1)三棱锥P ABC -直观图如图1所示;由三视图知ABC ∆和PCA ∆是直角三角形. (2)(法一):如图2,过P 作PH BC ⊥交BC 于点H 由三视图知PBC ∆为等腰三角形,4BC =Q ,PH =4PB PC BC ∴===,取PC 的中点E ,过E 作EF PA ⊥且交PA 于点F ,连接BE ,BF ,因为BE PC ⊥,由三视图知AC ⊥面PBC , 且BE ⊂面PBC ,所以AC BE ⊥,又由AC PC C =I ,所以BE ⊥面PAC , 由PA ⊂面PAC ,所以BE PA ⊥, BE EF E =I ,所以PA ⊥面BEF ,由BF ⊂面BEF ,所以PA BF ⊥,所以BFE ∠是二面角B PA C --的平面角.………~PEF PAC ∆∆Q ,PE EFPA AC∴=, 2,4,PE AC PA ===Q EF ∴=, ∴在直角CFE ∆中,有tan BEBFE EF∠== 所以,二面角B PA C --. ………………………………………9分 (法二):如图3,过P 作PH BC ⊥交BC 于点H ,由三视图知PBC ∆为等腰三角形,4BC =,PH =由图3所示的坐标系,及三视图中的数据得:(0,0,0)B ,(4,0,0)C ,(2,0,P ,(4,4,0)A , 则(4,4,0)BA =u u u r ,(2,0,BP =u u u r ,(0,4,0)CA =u u u r, (2,0,CP =-u u u r,设平面PAB 、平面PAC 的法向量分别为m 、n .设111(,,)x y z =m ,由0BA ⋅=u u u r m ,0BP ⋅=u u u r m ,得11420x ⎧⎪⎨+=⎪⎩,令11z =, 得1x =1y =(=m . …………………6分设222(,,)x y z =n ,由0CA ⋅=u u u r n ,0PA ⋅=u u u r n,得2224020y x =⎧⎪⎨-+=⎪⎩,令21=z ,得2x =,20y =,即=n . ………………………7分cos ,7⋅∴<>===-m n m n m n,tan ,m n <>=8分 而二面角B PA C --的大小为锐角,所以二面角B PA C --.…9分 (3)(法一):记C 到面PAB 的距离为h ,由(1)、(2)知4PA AB PB ===,PAB S ∆∴=,13C PAB PAB V S h -∆=⋅=, ………………………………12分 三棱锥-P ABC的体积13-∆=⋅=P ABC ABC V S PH , ……………………13分 由P ABC C PAB V V --=,可得:7=h . ………………………………………14分 (法二):由(2)知,平面PAB的法向量(=m ,(0,4,0)CA =u u u r记C 到面PAB 的距离为h ,CA h ⋅∴=u u u rmm== ………………………………………………14分 【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19. (本小题满分14分)已知首项大于0的等差数列{}n a 的公差1d =,且12231123a a a a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:11b =-,2b λ=,111(1)n n n nn b b n a -+--=+,其中2n ≥. ①求数列{}n b 的通项n b ;②是否存在实数λ,使得数列}{n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.解:(1)(法一):Q 数列{}n a 的首项10a >,公差1d =,∴1(1)n a a n =+-,11111n n n n a a a a ++=-, ………………………………………2分 12231223111111()()a a a a a a a a ∴+=-+-131********a a a a =-=-=+, ……………3分 整理得211230a a +-=解得11a =或13a =-(舍去). ……………………………4分 因此,数列{}n a 的通项n a n =. ………………………………………5分 (法二):由题意得1312231231123a a a a a a a a a ++==, …………………………………1分 Q 数列{}n a 是等差数列,∴1322a a a +=, ……………………………2分∴2123223a a a a =,即133a a =. ………………………………………………………3分又10,1a d >=Q ,∴11(2)3a a +=,解得11a =或13a =-(舍去). …………………………………4分因此,数列{}n a 的通项n a n =. ………………………………………5分(2)①111(1)n n n n b b n n-+--=+Q , 11(11(1)(1)n nn nnb n b ++-∴=+--). ……………………………………………………6分 令(1(1)nn nn b c -=-),则有2c λ=,11n n c c +=+(2)n ≥.∴当2n ≥时,2(2)2n c c n n λ=+-=-+,(21nn n b n λ-+=-)(-1). ………8分因此,数列{}n b 的通项1, 1,(2,(2).1n n n b n n n λ-=⎧⎪=⎨-+≥⎪-⎩)(-1). (9)分②11b =-Q ,2b λ=,312b λ+=-, ………………………………………10分∴若数列{}n b 为等比数列,则有2213b b b =,即21(1)()2λλ+=--, 解得1λ=或12λ=-. …………………………………………………………11分 当12λ=-时,(252)21n n n b n n -=≥-)(-1)((),+1n n b b 不是常数,数列{}n b 不是等比数列,当1λ=时,11b =-,(1)(2)n n b n =-≥,数列{}n b 为等比数列.所以,存在实数1λ=使得数列{}n b 为等比数列. ………………………………14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想. 20.(本小题满分14分)已知椭圆:E 22221(0)+=>>x y a b a b,过左焦点倾斜角为45︒的直线被椭圆截得的弦长为3. (1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点()1,0M 作l 的垂线垂足为Q ,求点Q 的轨迹方程.解:(1)因为椭圆E2=,解得222a b =, 故椭圆E 的方程可设为222212x y b b+=,则椭圆E 的右焦点坐标为(),0b , 过右焦点倾斜角为45︒的直线方程为:l y x b '=-. ………………………………………2分设直线l '与椭圆E 的交点记为,A B ,由22221,2,x y b b y x b ⎧+=⎪⎨⎪=-⎩消去y ,得2340x bx -=,解得1240,3b x x ==,因为1233AB x =-==,解得1b =. 故椭圆E 的方程为2212+=x y . ……………………………………………………4分 (2)(法一)(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,联立直线l 和椭圆E 的方程,得2212y kx m x y =+⎧⎪⎨+=⎪⎩, ……………………………………5分消去y 并整理,得()222214220k x kmx m +++-=, …………………………6分 因为直线l 和椭圆E 有且仅有一个交点,()()222216421220k m k m ∴∆=-+-=, ………………………………………7分化简并整理,得2221m k =+. …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x ky kx m ⎧=--⎪⎨⎪=+⎩ 解得221,1,1km x k k m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩ ………………………9分 222222222222222222(1)()1(1)(1)1(1)(1)(1)1km k m k m k m k m m x y k k k k -++++++++∴+====++++,把2221m k =+代入上式得222x y +=. ① …………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合①式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合①式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法二):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,同解法一,得22210k m -+=, ① …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x k y kx m ⎧=--⎪⎨⎪=+⎩解得002200001,,x k y x x y m y -⎧=⎪⎪⎨-+⎪=⎪⎩② …………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分即()()2222000002210+-+-+=y x yx x ,由点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③ ……………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合③式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法三):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为00()-=-y y k x x ,整理,得l 的方程为00=-+y kx kx y , ……………………………………………………………5分联立直线l 和椭圆E 的方程,得002212=-+⎧⎪⎨+=⎪⎩y kx kx y x y , 消去y 并整理,得()()()2220000214220++-+--=k x k y kx x y kx , ……………………6分因为直线l 和椭圆E 有且仅有一个交点,()()()222200001682110⎡⎤∴∆=--+--=⎣⎦k y kx k y kx , ………………………7分化简并整理,得22200002210--+++=y x kx y k , ① ………………………8分因为MQ 与直线l 垂直,有01-=x k y , ②……………………………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分 即()()2222000002210+-+-+=y x yx x ,Q 点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③………………………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合③式. ………13分综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 【说明】本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.(本小题满分14分)已知定义在]2,2[-上的奇函数)(x f 满足:当]2,0(∈x 时,)2()(-=x x x f . (1)求)(x f 的解析式和值域;(2)设a ax x x g 2)2ln()(--+=,其中常数0>a . ①试指出函数))(()(x f g x F =的零点个数;②若当11k+是函数))(()(x f g x F =的一个零点时,相应的常数a 记为k a ,其中 1,2,,k n =L .证明:1276n a a a +++<L (*N ∈n ). 解:(1)()f x Q 为奇函数,(0)0f ∴=.当[)2,0x ∈-时,(]0,2x -∈,则()()()(2)(2)f x f x x x x x =--=----=-+,∴[][)(2)0,2,()(2)2,0,x x x f x x x x ⎧-∈⎪=⎨-+∈-⎪⎩ ………………………………………2分[0,2]x ∈Q 时,[]()1,0f x ∈-,[)2,0x ∈-,[]()0,1f x ∈,()f x ∴的值域为[]1,1-. …………………………………………………3分(2)①函数()f x 的图象如图a 所示,当0t =时,方程()f x t = 有三个实根;当1t =或1t =-时,方程()f x t =只有一个实 根;当(0,1)t ∈或(1,0)t ∈-时,方程()f x t =有两个实根.(法一):由()0g x =,解得ln(2)2x a x +=+,()f x Q 的值域为[]1,1-,∴只需研究函数ln(2)2x y x +=+在[]1,1-上的图象特征.设ln(2)()([1,1])2x h x x x +=∈-+,(1)0h -=,21ln(2)()(2)x h x x -+'=+, 令()0h x '=,得e 2(0,1)x =-∈,1(e 2)eh -=. Q 当1e 2x -<<-时,()0h x '>,当e 21x -<<时,()0h x '<,又32ln 2ln 3<Q ,即ln 2ln 323<,由ln 2(0)2h =,ln 3(1)3h =,得(0)(1)h h <, ()h x ∴的大致图象如图b 所示.根据图象b 可知,当ln 2ln 2ln 310223a a a e<<<<=、、直线y a =与函数()y h x =的图像仅有一个交点,则函数()g x 在[1,1]-上仅有一个零点,记零点为t ,则t 分别在区间(1,0)-(0,1)、(0,1)上,根据图像a ,方程()f x t =有两个交点,因此函数()(())F x g f x =有两个零点. …………………………………………5分类似地,当ln 22a =时,函数()g x 在[1,1]-上仅有零点0,因此函数()F x 有1-、0、1这三个零点. ………………………………………………………………6分当ln 33a =时,函数()g x 在[1,1]-上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数()F x 有三个零点. …………………………………………………………7分当ln 313ea <<时,函数()g x 在[1,1]-上有两个零点,且这两个零点均在(0,1)内,因此函数()F x 有四个零点. ……………………………………………………………8分当1ea >时,函数()g x 在[]1,1-上没有零点,因此函数()F x 没有零点. ………9分 (法二):1()2g x a x '=-+ ,令0()0g x '=,得012x a=-,0a >Q ,()02,x ∴∈-+∞.当1(1,2)x a ∈--时,()0g x '>,当1(2,)x a∈-+∞时,()0g x '<, ∴当0x x =时,()g x 取得极大值01()ln 1g x a=-.(Ⅰ)当()g x 的极大值1ln10a -<,即1e a >时,函数()g x 在区间1,1-上无零点,因此函数()(())F x g f x =无零点.(Ⅱ)当()g x 的极大值1ln10a -=,即1ea =时, 02(0,1)x e =-∈,函数()g x 的图像如图c 所示,函数g由图a 可知方程()e 2f x =-有两不等的实根,因此函数()(())F x g f x =有两个零点.(Ⅲ)当()g x 的极大值1ln 10a ->且0121x a=->,即103a <≤时,()g x 在[1,1]-上单调递增,因为()10g a -=-<,222(0)ln 22ln 2ln ln1033e 3g a =->-=>=,函数()g x 的图像如图d 所示,函数()g x 在[]1,1-存在唯一零点1t ,其中1(1,0)t ∈-.由图a 可知方程1()f x t =有两不等的实根,因此函数()(())F x g f x =有两个零点. (Ⅳ)当()g x 的极大值1ln10a ->且0121x a =-<,即113ea <<时: 由(0)ln 220g a =-=,得ln 22a =,由(1)ln 330g a =-=,得ln 33a =, 根据法一中的证明有1ln 2ln 31323e<<<.(ⅰ)当1ln 232a <<时,(0)ln 220g a =->,(1)ln 330g a =->,函数()g x 的图像如图e 所示,函数()g x 在区间[1,1]-有唯一零点2t ,其中2(1,0)t ∈-.由图a 可知方程2()f x t =有两不等的实根,因此 函数()(())F x g f x =有两个零点. (ⅱ)当ln 22a =时,(0)ln 220g a =-=, (1)ln 330g a =->,函数()g x 的图像如图f 所示,函数()g x 在区间[1,1]-有唯一零点0.由图a 可知方程()0f x =有三个不等的实根,因此函数()(())F x g f x =有三个零点. (ⅲ)当ln 2ln 323a <<时,(0)ln 220g a =-<,(1)ln 330g a =->,函数()g x 的 图像如图g 所示,函数()g x 在区间[1,1]-有唯一零点3t ,其中3(0,1)t ∈.由图a 可知方程3()f x t =()(())F x g f x =有两个零点.(ⅳ)当ln 33a =时,(0)0g <,(1)ln 330g a =-=,函数()g x 的图像如图h 所示,函数()g x 在区间[1,1]-有 两个零点,分别是1和4t ,其中4(0,1)t ∈.由图a 可知方程()1f x =有一个实根1-,方程4()f x t =有两个非1-的不等实根,因此函数()(())F x g f x =(ⅴ)当ln 313ea <<时,(0)0g <,(1)ln 33g a =-<函数()g x 的图像如图i 所示,函数()g x 在区间[1,1]-有两个零点5t 、6t ,其中56,(0,1)t t ∈.由图a 可知方程5()f x t =、6()f x t =且这四个根互不相等,因此函数()(())F x g f x =综上可得:当ln 2ln 2ln 310223a a a e <<<<=、、时,函数()F x 有两个零点;………………5分 当ln 22a =、ln 33a =时,函数()F x 有三个零点; ………………………………7分当ln 313e a <<时,函数()F x 有四个零点; ……………………………………8分当1e a >时,函数()F x 无零点. ………………………………………………9分②因为k11+是函数))(()(x f g x F =的一个零点,所以有1((1))0g f k +=,(]110,2k +∈Q ,211(1)1f k k∴+=-,2221111((1))(1)ln(1)(1)0k g f g a k k k k ∴+=-=+-+=,221ln(1)11k k a k+∴=+,1,2,,k n =L . …………………………………………10分记()ln(1)m x x x =+-,1()111xm x x x -'=-=++, Q 当(]0,1x ∈时,()0m x '<,∴当(]0,1x ∈时,()(0)0m x m <=,即ln(1)x x +<.故有2211ln(1)k k+<,则2222211ln(1)111111k k k a k k k +=<=+++()1,2,,k n =⋅⋅⋅. …11分当1n =时,11726a <<; 当2n ≥时, (法一):2211221121214k k k k <=-+-+-Q, ………………………………13分 123a a a ∴+++…++++++<+131121111222n a …112++n 1222222()()()235572121n n <+-+-+⋅⋅⋅+--+ 12272723216216n n =+-=-<++. 综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分(法二):当2n =时,12117725106a a +<+=<;当3n ≥时,2211111()11211k k k k <=-+--+Q , ………………………13分123a a a ∴+++…++++++<+131121111222n a …112++n 111111111[()()()]252243511n n <++-+-+⋅⋅⋅+--+ 111111167111677[]()2522316021606n n n n =+++--=-+<<++.综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分 【说明】本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年深圳市高三年级第一次调研考试数学(理科)试题 2015.1一、选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合}5,1,0,2{=U ,集合}2,0{=A ,则A C U =( ) A.φ B 。

}2,0{ C 。

}5,1{ D 。

}5,1,0,2{ 2、已知复数z 满足1)1(=+i z (其中i 为虚数单位),则=zA.21i +- B 。

21i -- C 。

21i + D 3、若函数b a y x+=的部分图象如图1所示,则A.01,10<<-<<b a B 。

10,10<<<<b a C.01,1<<->b a D 。

4、已知实数y x ,满足不等式组300≤⎪⎩⎪⎨⎧≥≥+y x y x ,则y x +2的最大值为( )A.3 B 。

4 C 。

6 D 。

95、已知直线b a ,,平面βα,,且α⊥a ,β⊂b ,则“b a ⊥”是“βα//”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6、执行如图2所示的程序框图,则输出S 的值为( ) A. 16 B 。

25 C 。

36 D 。

497、在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(π B 。

]3,0(π C 。

],3[ππ D 。

),3(ππ8、如果自然数a 的各位数字之和等于8,我们称a 为“吉祥数”。

将所有“吉祥数”从小到大排成一列321,,a a a …,若2015=n a ,则=n ( ) A. 83 B 。

82 C 。

39 D 。

37图1图2二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

本大题分为必做题和选做题两部分(一)必做题:第9、10、11、12、13题为必做题,每道试题考生必须做答。

9、4)31(xx -的展开式中常数项为 .(用数字表示) 10、⎰-=-332)sin 2(dx x x11、已知向量)1,11(-=x,)1,1(yb =)0,0(>>y x ,若b a ⊥,则y x 4+的最小值为12、已知圆C :05822=-+++ay x y x 经过抛物线E :y x 42=的焦点,则抛物线E 的准线与圆C 相交所得弦长 为13、设P 是函数x y ln =图象上的动点,则点P 到直线x y =的距离的最小值为(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算第一题的得分。

14、(坐标系与参数方程选做题)在极坐标系中,曲线1C :2cos =θρ与曲线12cos :22=θρC 相交于A ,B 两点,则|AB |=15、(几何证明选讲选做题)如图3,在ABC Rt ∆中,030=∠A ,090=∠C ,D 是AB 边上的一点,以BD 为直径的⊙O 与AC 相切于点E 。

若BC =6,则DE 的长为三、解答题 16、(本小题满分12分)函数π()2sin()3f x x ω=+(0ω>)的最小正周期是π.(1)求5π()12f 的值; (2)若0sin x =,且0π(0,)2x ∈,求0()f x 的值.17、(本小题满分12分)空气质量指数(简称AQI )是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,图3为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:(1)请根据上表中的数据,完成下列表格:(2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望.18、(本小题满分14分)在三棱锥P ABC -中,已知平面PBC ⊥平面ABC ,AB 是底面△ABC 最长的边.三棱锥P ABC -的三视图如图5所示,其中侧视图和俯视图均为直角三角形.(1)请在图6中,用斜二测画法,把三棱锥P ABC -的直观图补充完整(其中点P 在xOz 平面内),并指出三棱锥P ABC -的哪些面是直角三角形;(2)求二面角B PA C --的正切值; (3)求点C 到面PAB 的距离.19、(本小题满分14分)已知首项大于0的等差数列{}n a的公差1d=,且12231123a a a a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:11b =-,2b λ=,111(1)n n n nn b b n a -+--=+,其中2n ≥. ①求数列{}n b 的通项n b ;②是否存在实数λ,使得数列}{n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.正视图图520、(本小题满分14分)已知椭圆:E 22221(0)+=>>x y a b a b 的离心率为2,过左焦点倾斜角为45︒的直线被椭圆截(1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点()1,0M 作l 的垂线垂足为Q ,求点Q 的轨迹方程.21、(本小题满分14分)已知定义在]2,2[-上的奇函数)(x f 满足:当]2,0(∈x 时,)2()(-=x x x f . (1)求)(x f 的解析式和值域;(2)设a ax x x g 2)2ln()(--+=,其中常数0>a . ①试指出函数))(()(x f g x F =的零点个数;②若当11k+是函数))(()(x f g x F =的一个零点时,相应的常数a 记为k a ,其中1,2,,k n =.证明:1276n a a a +++<(*N ∈n ).2015年深圳市高三年级第一次调研考试数学(理科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数.9.23; 10. 18; 11.9; 12.;13 14.2; 15. 4.三、解答题 16.解:(1)()f x 的周期πT =,即2ππω=, …………………………………………1分2ω∴=±, 由0ω>,得2ω=,即π()2sin(2)3f x x =+. (3)分5π7πππ()2sin 2sin(π)2sin 112666f ∴==+=-=-. ………………………………5分(2)由0sin x =得2001cos 212sin 3x x =-=, ………………………………7分又0π(0,)2x ∈,∴02(0,π)x ∈, ……………………………………………8分∴ 0sin 23x ==, …………………………………………9分000πππ2sin(2)2sin 2cos 2cos 2sin 333x x x +=+ 112223=+⨯=.00π()2sin(2)3f x x ∴=+=. …………………………………………12分 【说明】 本小题主要考查了三角函数)sin()(ϕω+=x A x f 的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17、解:(1)根据数据,完成表格如下:…………………………………2分(2)按分层抽样的方法, 从“良好”类城市中抽取11264126n =⨯=+个, ………………………………… 3分从“轻度污染”类城市中抽取2662126n =⨯=+个, ……………………………4分 所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.1242361(1)5C C P C ξ===, 2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===.………8分 ξ∴的分布列为:所以1232555E ξ=⨯+⨯+⨯=. ………………………………………………11分 答:ξ的数学期望为2个. …………………………………………………12分 【说明】本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18、解:(1)三棱锥P ABC -直观图如图1所示;由三视图知ABC ∆和PCA ∆是直角三角形.(2)(法一):如图2,过P 作PH BC ⊥交BC 于点H 由三视图知PBC ∆为等腰三角形,4BC =,PH =4PB PC BC ∴===,取PC 的中点E ,过E 作EF PA ⊥且交PA 于点F ,连接BE ,BF ,因为BE PC ⊥,由三视图知AC ⊥面PBC , 且BE ⊂面PBC ,所以AC BE ⊥,又由ACPC C =,所以BE ⊥面PAC ,由PA ⊂面PAC ,所以BEPA ⊥, BE EF E =,所以PA ⊥面BEF ,由BF ⊂面BEF ,所以PA BF ⊥,所以BFE ∠是二面角B PA C --的平面角. (6)分~PEF PAC ∆∆,PE EFPA AC∴=,2,4,PE AC PA ===EF ∴=, ∴在直角CFE ∆中,有tan BEBFE EF∠== 所以,二面角B PA C --. ………………………………………9分 (法二):如图3,过P作PH BC ⊥交BC 于点H ,由三视图知PBC ∆为等腰三角形,4BC =,PH =由图3所示的坐标系,及三视图中的数据得:(0,0,0)B ,(4,0,0)C ,P ,(4,4,0)A ,则(4,4,0)BA =,BP =,(0,4,0)CA =, (CP =-,设平面PAB 、平面PAC 的法向量分别为m 、n .设111(,,)x yz =m ,由0BA ⋅=m ,0BP ⋅=m,得11420x ⎧⎪⎨+=⎪⎩,令11z =, 得1x =1y =(=m . …………………6分设222(,,)x y z =n ,由0CA ⋅=n ,0PA ⋅=n ,得2224020y x =⎧⎪⎨-+=⎪⎩,令21=z , 得2x ,20y =,即=n . ………………………7分cos ,⋅∴<>===m n m n m n ,tan ,m n <>=8分 而二面角B PA C --的大小为锐角,所以二面角B PA C --9分(3)(法一):记C 到面PAB 的距离为h ,由(1)、(2)知4PA AB PB ===,PABS ∆∴=13C PAB PAB V S h -∆=⋅=, ………………………………12分 三棱锥-P ABC的体积133-∆=⋅=P ABC ABC V S PH , ……………………13分 由P ABC C PAB V V --=,可得:7=h . ………………………………………14分 (法二):由(2)知,平面PAB的法向量(=m ,(0,4,0)CA = 记C 到面PAB 的距离为h ,CAh ⋅∴=mm=7=. ………………………………………………14分【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19、解:(1)(法一):数列{}n a 的首项10a >,公差1d =,∴1(1)n a a n =+-,11111n n n n a a a a ++=-, ………………………………………2分 12231223111111()()a a a a a a a a ∴+=-+-131********a a a a =-=-=+, ……………3分 整理得211230a a +-=解得11a =或13a =-(舍去). ……………………………4分 因此,数列{}n a 的通项n a n =. ………………………………………5分 (法二):由题意得1312231231123a a a a a a a a a ++==, …………………………………1分 数列{}n a 是等差数列,∴1322a a a +=, ……………………………2分∴2123223a a a a =,即133a a =. ………………………………………………………3分又10,1a d >=,∴11(2)3a a +=,解得11a =或13a =-(舍去). …………………………………4分因此,数列{}n a 的通项n a n =. ………………………………………5分(2)①111(1)n n n n b b n n -+--=+, 11(11(1)(1)n n n nnb n b ++-∴=+--). …………………………6分 令(1(1)nn nn b c -=-),则有2c λ=,11n n c c +=+(2)n ≥. ∴当2n ≥时,2(2)2n c c n n λ=+-=-+,(21nn n b n λ-+=-)(-1). ………8分 因此,数列{}n b 的通项1, 1,(2,(2).1n n n b n n n λ-=⎧⎪=⎨-+≥⎪-⎩)(-1). ………………………9分②11b =-,2b λ=,312b λ+=-, ………………………………………10分∴若数列{}n b 为等比数列,则有2213b b b =,即21(1)()2λλ+=--,解得1λ=或12λ=-. ………11分当12λ=-时,(252)21n n n b n n -=≥-)(-1)((),+1n nbb 不是常数,数列{}n b 不是等比数列, 当1λ=时,11b =-,(1)(2)n n b n =-≥,数列{}n b 为等比数列.所以,存在实数1λ=使得数列{}n b 为等比数列. (14)分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想.20、解:(1)因为椭圆E2=,解得222a b =, 故椭圆E 的方程可设为222212x y b b+=,则椭圆E 的右焦点坐标为(),0b , 过右焦点倾斜角为45︒的直线方程为:l y x b '=-. ………………………………………2分设直线l '与椭圆E 的交点记为,A B ,由22221,2,x y b b y x b ⎧+=⎪⎨⎪=-⎩消去y ,得2340x bx -=,解得1240,3b x x ==,因为1233AB x =-==,解得1b =. 故椭圆E 的方程为2212+=x y . ……………………………………………………4分 (2)(法一)(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,联立直线l 和椭圆E 的方程,得2212y kx m x y =+⎧⎪⎨+=⎪⎩, ……………………………………5分消去y 并整理,得()222214220k x kmx m +++-=, …………………………6分 因为直线l 和椭圆E 有且仅有一个交点,()()222216421220k m k m ∴∆=-+-=, ………………………………………7分化简并整理,得2221m k =+. …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x ky kx m ⎧=--⎪⎨⎪=+⎩ 解得221,1,1km x k k m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩………………………9分 222222222222222222(1)()1(1)(1)1(1)(1)(1)1km k m k m k m k m m x y k k k k-++++++++∴+====++++,把2221m k =+代入上式得222x y +=. ① …………………………………11分 (ii )当切线l 的斜率为0时,此时(1,1)Q ,符合①式. …………………………12分(iii )当切线l的斜率不存在时,此时Q或(,符合①式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法二):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,同解法一,得22210k m -+=, ① …………………………………………8分因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x k y kx m ⎧=--⎪⎨⎪=+⎩ 解得002200001,,x k y x x y m y -⎧=⎪⎪⎨-+⎪=⎪⎩② …………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分 即()()2222000002210+-+-+=y x yx x ,由点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③ ……………………………………………………11分 (ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分(iii )当切线l的斜率不存在时,此时Q或(,符合③式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法三):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为00()-=-y y k x x ,整理,得l 的方程为00=-+y kx kx y ,5分联立直线l 和椭圆E 的方程,得002212=-+⎧⎪⎨+=⎪⎩y kx kx y x y , 消去y 并整理,得()()()2220000214220++-+--=k x k y kx x y kx , ……………………6分因为直线l 和椭圆E 有且仅有一个交点,()()()222200001682110⎡⎤∴∆=--+--=⎣⎦k y kx k y kx , ………………………7分化简并整理,得22200002210--+++=y x kx y k , ① ………………………8分因为MQ 与直线l 垂直,有01-=x k y , ②……………………………………9分②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分 即()()2222000002210+-+-+=y x yx x ,点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③………………………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式.…………………………12分(iii )当切线l 的斜率不存在时,此时Q 或(,符合③式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分【说明】本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21、解:(1)()f x 为奇函数,(0)0f ∴=.当[)2,0x ∈-时,(]0,2x -∈,则()()()(2)(2)f x f x x x x x =--=----=-+,∴[][)(2)0,2,()(2)2,0,x x x f x x x x ⎧-∈⎪=⎨-+∈-⎪⎩ ………………………………………2分 [0,2]x ∈时,[]()1,0f x ∈-,[)2,0x ∈-,[]()0,1f x ∈,()f x ∴的值域为[]1,1-. …………………………………………………3分(2)①函数()f x 的图象如图a 所示,当0t =时,方程()f x t = 有三个实根;当1t =或1t =-时,方程()f x t =只有一个实 根;当(0,1)t ∈或(1,0)t ∈-时,方程()f x t =有两个实根.(法一):由()0g x =,解得ln(2)2x a x +=+,()f x 的值域为[]1,1-,∴只需研究函数ln(2)2x y x +=+在[]1,1-上的图象特征.设ln(2)()([1,1])2x h x x x +=∈-+,(1)0h -=,21ln(2)()(2)x h x x -+'=+,令()0h x '=,得e 2(0,1)x =-∈,1(e 2)eh -=. 当1e 2x -<<-时,()0h x '>,当e 21x -<<时,()0h x '<, 又32ln 2ln 3<,即ln 2ln 323<,由ln 2(0)2h =,ln 3(1)3h =,得(0)h <()h x ∴的大致图象如图b 所示.根据图象b 可知,当ln 2ln 2ln 310223a a a e<<<<=、、时, 直线y a =与函数()y h x =的图像仅有一个交点,则函数()g x在[1,1]-上仅有一个零点,记零点为t ,则t 分别在区间(1,0)-、 (0,1)、(0,1)上,根据图像a ,方程()f x t =有两个交点,因此函数()(())F x g f x =有两个零点. …………………………………………5分类似地,当ln 22a =时,函数()g x 在[1,1]-上仅有零点0,因此函数()F x 有1-、0、1这三个零点. ………………………………………………………………6分当ln 33a =时,函数()g x 在[1,1]-上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数()F x 有三个零点. …………………………………………………………7分当ln 313ea <<时,函数()g x 在[1,1]-上有两个零点,且这两个零点均在(0,1)内,因此函数()F x 有四个零点. ……………………………………………………………8分 当1ea >时,函数()g x 在[]1,1-上没有零点,因此函数()F x 没有零点. ………9分(法二):1()2g x a x '=-+ ,令0()0g x '=,得012x a=-, 0a >,()02,x ∴∈-+∞.当1(1,2)x a ∈--时,()0g x '>,当1(2,)x a∈-+∞时,()0g x '<, ∴当0x x =时,()g x 取得极大值01()ln 1g x a=-.(Ⅰ)当()g x 的极大值1ln 10a -<,即1ea >时,函数()g x 在区间[]1,1-上无零点,因此函数()(())F x g f x =无零点.(Ⅱ)当()g x 的极大值1ln 10a -=,即1ea =时,02(0,1)x e =-∈,函数()g x 的图像如图c 所示,函数()g x 有零点2e -.由图a 可知方程()e 2f x =-有两不等的实根,因此函数()(())F x g f x =(Ⅲ)当()g x 的极大值1ln 10a ->且0121x a =->, 即103a <≤时,()g x 在[1,1]-上单调递增,因为()10g a -=-<,222(0)ln 22ln 2ln10333g a =->-=>=,函数()g x 的图像如图d 所示,函数()g x 在[]1,1-存在唯一零点1t ,其中1(1,0)t ∈-. 由图a 可知方程1()f x t =有两不等的实根,因此函数()(())F x g f x =有两个零点.(Ⅳ)当()g x 的极大值1ln10a ->且0121x a =-<,即113ea <<时: 由(0)ln 220g a =-=,得l n22a =,由(1)l n330g a =-=,得l n33a =, 根据法一中的证明有1ln 2ln 31323e<<<. (ⅰ)当1ln 232a <<时,(0)ln 220g a =->,(1)ln330g a =->,函数()g x 的图像如图e 所示, 函数()g x 在区间[1,1]-有唯一零点2t ,其中2(1,0)t ∈-. 由图a 可知方程2()f x t =有两不等的实根,因此 函数()(())F x g f x =有两个零点.(ⅱ)当ln 22a =时,(0)ln 220g a =-=,(1)ln330g a =->,函数()g x 的图像如图f 所示, 函数()g x 在区间[1,1]-有唯一零点0.由图a 可知方程()0f x =有三个不等的实根,因此函数()(())F x g f x =(ⅲ)当ln 2ln 323a <<时,(0)ln 220g a=-<,(1)ln330g a =->,函数(g x 图像如图g 所示,函数()g x 在区间[1,1]-有唯一零点3t ,其中3(0,1)t ∈.由图a 可知方程3()f x t =有两个不等的实根,因此函数()(())F x g f x =有两个零点.(ⅳ)当ln 33a =时,(0)0g <,(1)ln330g a =-=,函数()g x 的图像如图h 所示,函数()g x 在区间[1,1]-有 两个零点,分别是1和4t ,其中4(0,1)t ∈.由图a 可知方程()1f x =有一个实根1-,方程4()f x t =有两个非1-的不等实根,因此函数()(())F x g f x =有三个零点. (ⅴ)当ln 313ea <<时,(0)0g <,(1)ln330g a =-<, 函数()g x 的图像如图i 所示,函数()g x 在区间[1,1]-有两个零点5t 、6t ,其中56,(0,1)t t ∈.由图a 可知方程5()f x t =、6()f x t =都有两个不等的实根, 且这四个根互不相等,因此函数()(())F x g f x =有四个零点.综上可得:当ln 2ln 2ln 310223a a a e <<<<=、、时,函数()F x 有两个零点;………………5分 当ln 22a =、ln 33a =时,函数()F x 有三个零点; ………………………………7分当ln 313e a <<时,函数()F x 有四个零点; ……………………………………8分 当1e a >时,函数()F x 无零点. ………………………………………………9分②因为k11+是函数))(()(x f g x F =的一个零点,所以有1((1))0g f k +=,(]110,2k +∈,211(1)1f k k∴+=-,2221111((1))(1)ln(1)(1)0k g f g a k k k k ∴+=-=+-+=,221ln(1)11k k a k +∴=+,1,2,,k n =. …………………………………………10分 记()ln(1)m x x x =+-,1()111x m x x x -'=-=++, 当(]0,1x ∈时,()0m x '<,∴当(]0,1x ∈时,()(0)0m x m <=,即ln(1)x x +<.故有2211ln(1)k k +<,则2222211ln(1)1111k k k a k k k+=<=+++()1,2,,k n =⋅⋅⋅. …11分 当1n =时,11726a <<; 当2n ≥时, (法一):2211221121214k k k k <=-+-+-, ………………………………13分 123a a a ∴+++…++++++<+131121111222n a …112++n 1222222()()()235572121n n <+-+-+⋅⋅⋅+--+12272723216216n n =+-=-<++. 综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分(法二):当2n =时,12117725106a a +<+=<;当3n ≥时,2211111()11211k k k k <=-+--+, ………………………13分 123a a a ∴+++…++++++<+131121111222n a …112++n 111111111[()()()]252243511n n <++-+-+⋅⋅⋅+--+111111167111677[]()2522316021606n n n n =+++--=-+<<++. 综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分【说明】本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.。

相关文档
最新文档