三角函数图像与性质测试
三角函数的图象及性质综合检测(含答案)
三角函数的图象及性质综合检测一、单选题(共10道,每道10分)1.设函数对任意的,都有,若函数,则的值是( )A.1B.-5或3C.-2D.答案:C解题思路:试题难度:三颗星知识点:余弦函数的对称性2.函数的部分图象如图所示,如果( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:正弦函数的对称性3.函数的最小正周期为π,且其图象经过点,则函数f(x)在区间上最大值与最小值的和是( )A. B.0C. D.答案:C解题思路:试题难度:三颗星知识点:由y=Asin(ωx+φ)的基本性质确定其解析式4.已知函数的最小正周期为π,若其图象向右平移个单位后得到的函数是奇函数,则函数y=f(x)的图象( )A.关于点对称B.关于直线对称C.关于点对称D.关于直线对称答案:D解题思路:试题难度:三颗星知识点:由y=Asin(ωx+φ)的基本性质确定其解析式5.已知函数,其中,若f(x)的值域是,则实数a 的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:正弦函数的图象6.函数上是减函数,则的最大值是( )A. B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:余弦函数的单调性7.若函数在区间上是单调减函数,且函数值从1减小到-1,则的值是( )A.1B.C. D.0答案:C解题思路:试题难度:三颗星知识点:由y=Asin(ωx+φ)的基本性质确定其解析式8.若函数在上是单调函数,则应满足的条件是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正弦函数的单调性9.如果函数的图象关于直线x=π对称,则正实数的最小值是( )A. B.C. D.1答案:A解题思路:试题难度:三颗星知识点:余弦函数的对称性10.已知函数满足:,且在区间内有最大值但没有最小值,给出下列四个命题:①f(x)在区间上单调递减;②f(x)的最小正周期是4π;③f(x)的图象关于直线对称;④f(x)的图象关于点对称.其中,正确的命题是( )A.①②B.②④C.①③D.③④答案:B解题思路:试题难度:三颗星知识点:由y=Asin(ωx+φ)的基本性质确定其解析式。
三角函数图像与性质试题及配套标准答案
三角函数图像与性质试题及配套答案————————————————————————————————作者:————————————————————————————————日期:xO y1 2 3三角函数测试题一、选择题1、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 2、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 3、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的( ). A.)62sin(+=x y B.sin()26x y π=+ C.sin(2)6y x π=- D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( ).A.,24ωϕππ==B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6.要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C.向左平移8π个单位D.向右平移8π个单位7.设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3B.13C.1D.1- 8.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形 9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B .23C.23-D.2110.函数2cos 1y x =+的定义域是( ). A.2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B.2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C.22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D.222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦11.函数2sin(2)6y x π=-([0,]x ∈π)的单调递增区间是( ). A.[0,]3π B.7[,]1212ππ C.5[,]36ππ D.5[,]6ππ12.设a 为常数,且1>a ,02x ≤≤π,则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13. 函数1cos sin xy x-=的周期是 .14.)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 15. 方程1sin 4x x π=的解的个数是__________. 16、给出下列命题:(1)存在实数x ,使x x cos sin +=3π; (2)若αβ,是锐角△ABC 的内角,则sin α>cos β; (3)函数y =sin(32x -27π)是偶函数; (4)函数y =sin2x 的图象向右平移4π个单位,得到y =sin(2x +4π)的图象.其中正确的命题的序号是 .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.(12分)已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间18.已知函数f(x)=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数f(x)在区间⎣⎡⎦⎤π3,4π3上的图象(只作图不写过程).19.(1)当3tan =α,求αααcos sin 3cos 2-的值;(2)设3222cos sin (2)sin()32()22cos ()cos()f θθθθθθπ+π-++-=+π++-,求()3f π的值.20.已知函数()2cos(2)4f x x π=-,x ∈R .(1)求函数()f x 的最小正周期和单调递增区间;(2)求函数()f x 在区间[]82ππ-,上的最小值和最大值,并求出取得最值时x 的值.21.函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象过点(0,1),如图4所示.图4(1)求函数f 1(x )的表达式;(2)将函数y =f 1(x )的图象向右平移π4个单位,得函数y =f 2(x )的图象,求y =f 2(x )的最大值,并求出此时自变量x 的集合.22.已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π56π43π116π73π176πy1- 1 3 1 1- 1 3(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m = 恰有两个不同的解,求实数m 的取值范围.三角函数测试题参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1. B 2. D 3. C4.C ∵最小正周期为π,∴2ω=,又∵图象关于直线3x π=对称,∴()13f π=±,故只有C 符合.5.D ∵2134=-=T ,∴8=T ,4ωπ=,又由142ϕππ⨯+=得4ϕπ=.6.C ∵3sin 2()3sin(2)84y x x ππ=+=+,故选C.7.A 由tan()2απ+=,得tan 2α=,故sin()cos()sin cos sin cos tan 13sin()cos()sin (cos )sin cos tan 1αααααααααααααα-π+π---++====π+-π+-----.8.B 将52cos sin =+A A 两边平方,得254cos cos sin 2sin 22=++A A A A , ∴025211254cos sin 2<-=-=A A , 又∵0A <<π, ∴A 为钝角.9.B 53()(2)()()sin 333332f f f f πππππ=π-=-===. 10.D 由01cos 2≥+x 得21cos -≥x ,∴222233k x k πππ-≤≤π+,Z k ∈. 11.C 由3222262k x k πππ+π≤-≤+π得236k x k ππ-+π≤≤-+π(Z k ∈), 又∵[0,]x ∈π, ∴单调递增区间为5[,]36ππ.12.B 2222)(sin 1sin 2sin 11sin 2cos )(a a x x a x x a x x f +--=-+-=-+=, ∵π20≤≤x , ∴1sin 1≤≤-x , 又∵1>a ,∴12)1()(22max -=+--=a a a x f .二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13. 2π,14.3 22221(2cos )2cos ,cos 11,3113y y y x x x y y y ---=+=⇒-≤≤≤≤++. 15.3 画出函数x y sin =和x y lg =的图象,结合图象易知这两个函数的图象有3交点.16、解:(1) sin cos 2sin 2243x x x ππ⎛⎫⎡⎤+=+=∈ ⎪⎣⎦⎝⎭,成立; (2)锐角△ABC 中2παβ+fsin sin sin cos 22ππαβαβαβ⎛⎫⇒-⇒-⇒ ⎪⎝⎭ff f 成立(3)272sin sin 43232y x x πππ⎛⎫⎛⎫=-=-+=⎪ ⎪⎝⎭⎝⎭ 2cos 3x 是偶函数成立;(4) sin 2y x =的图象右移4π个单位为sin 2sin 242y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,与y =sin(2x+4π)的图象不同;故其中正确的命题的序号是:(1)、(2)、(3)三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17.解:(1)∵ y=2(x x 21cos 2321sin 21+) -----------------------1分 =2(x 21cos 3sin 21sin3cosππ+) ----------------------2分 =2sin(321π+x ) ----------------------4分∴ 函数y 的最大值为2, ---------------------5分 最小值为-2 --------------------6分 最小正周期πωπ42==T--------------------7分(2)由Z k k x k ∈+≤+≤-,2232122πππππ,得 ---------------------9分 函数y 的单调递增区间为:Z k k k ∈⎥⎦⎤⎢⎣⎡+-,34,354ππππ ----------------------12分 18. 11.解:(1)T =2π2=π.令2kπ+π2≤2x +π4≤2kπ+32π,k ∈Z ,则2kπ+π4≤2x≤2kπ+54π,k ∈Z ,得kπ+π8≤x≤kπ+58π,k ∈Z ,∴函数f(x)的单调递减区间为⎣⎡⎦⎤kπ+π8,kπ+58π,k ∈Z. (2)列表:2x +π4π 32π 2π 52π x3π8 5π8 7π8 9π8 f(x)=2sin ⎝⎛⎭⎫2x +π4 0- 22描点连线得图象如图:19.解:(1)因为1tan tan 31cos sin cos sin 3cos cos sin 3cos 22222+-=+-=-αααααααααα, 且3tan =α, 所以,原式=+⨯-=13331254-. (2)θθθθθθθπθπθπθθcos cos 223cos sin cos 2)cos()(cos 223)2sin()2(sin cos 2)(223223++-++=-+++-++-+=fθθθθθθθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 2cos cos 222cos cos cos 222223++--++-=++-+-=1cos 2cos cos 2)2cos cos 2)(1(cos 22-=++++-=θθθθθθ, ∴1()cos1332f ππ=-=-. 20.解:(1)因为()2cos(2)4f x x π=-,所以函数()f x 的最小正周期为22T π==π,由2224k x k π-π+π≤-≤π,得388k x k ππ-+π≤≤+π,故函数)(x f 的递调递增区间为3[,]88k k ππ-+π+π(Z k ∈); (2)因为()2cos(2)4f x x π=-在区间[]88ππ-,上为增函数,在区间[]82ππ,上为减函数,又()08f π-=,()28f π=,π()2cos()2cos 1244f ππ=π-=-=-,故函数()f x 在区间[]82ππ-,上的最大值为2,此时8x π=;最小值为1-,此时2x π=.21解:(1)由图知,T =π,于是ω=2πT =2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2·π12=π6.将(0,1)代入y =A sin(2x +π6),得A =2.故f 1(x )=2sin(2x +π6).(2)依题意,f 2(x )=2sin[2(x -π4)+π6]=-2cos(2x +π6),当2x +π6=2kπ+π,即x =kπ+5π12(k ∈Z )时,y max =2.x 的取值集合为{x |x =kπ+5π12,k ∈Z }.22. 解:(1)设()f x 的最小正周期为T ,得11()266T ππ=--=π, 由2T ωπ=,得1ω=,又31B A B A +=⎧⎨-=-⎩,解得21A B =⎧⎨=⎩ 令562ωϕππ⋅+=,即562ϕππ+=,解得3ϕπ=-, ∴()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭.(2)∵函数()2sin 13y f kx kx π⎛⎫==-+ ⎪⎝⎭的周期为23π, 又0k >, ∴3k =, 令33t x π=-,∵0,3x π⎡⎤∈⎢⎥⎣⎦, ∴2[,]33t ππ∈-, 如图,s t =sin 在2[,]33ππ-上有两个不同的解,则)1,23[∈s ,∴方程()f kx m =在[0,]3x π∈时恰好有两个不同的解,则)31,3m ⎡∈+⎣,- 11 - 即实数m 的取值范围是)31,3⎡+⎣。
三角函数的图像和性质(附答案解析)
第 䁮页,共 3页
.
故 䁲 在区间 䁮 h上的最小值为 䁮,最大值为 1.
10.解:䁲Ⅰ 䁲
쀀 ݏ䁮 쳌 쀀 ݏ
ಀ쀀
1
ಀ쀀䁮 䁮
쳌
1 䁮
쀀
ݏ䁮
䁮 䁮
sin䁲䁮
쳌
1,
䁮
令䁮
쳌䁮
,
解得
䁮
쳌
3 8
.
䁲 的对称轴方程为
䁮
쳌
3 8
.
䁲Ⅱ 由 䁲
1
得
䁮 䁮
sin䁲䁮
쳌
1 䁮
1,
即 sin䁲䁮
䁮,
䁮
第 3页,共 3页
10. 已知 䁲쀀 ݏಀ쀀 , 䁲쀀 ݏ쀀 ݏ,函数 䁲
.
䁲Ⅰ 求 䁲 的对称轴方程; 䁲Ⅱ 求使 䁲 1 成立的 x 的取值集合;
䁲Ⅲ 若对任意实数
h,不等式
3
䁲
一.选择题. 1--5CDABC
二.填空题 6. 1
7.
8.
三.解答题
t 䁮 恒成立,求实数 m 的取值范围. 答案
9.解:䁲1 䁲 1 쳌 䁮 3쀀 ݏಀ쀀 䁮쀀 ݏ䁮 ,
3쀀 ݏ䁮 쳌 ಀ쀀䁮 䁮쀀 ݏ䁲䁮 쳌 ,
令䁮
䁮쳌 䁮 쳌, ,
䁮
䁮
得
3
쳌, ,
可得函数 䁲 的单调增区间为
3 쳌 h,
;
令䁮 쳌䁮 䁮 쳌
䁮
쳌
3 䁮
,
,
得쳌
쳌
䁮 3
,
,
可得函数 䁲 的单调减区间为 쳌
쳌
䁮 3
h,
三角函数的图像与性质专项训练(解析版)
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
三角函数的图象和性质练习题及答案
1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。
三角函数的图像与性质题目及答案
三角函数的图像与性质题目及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高三理科数学周测十六(三角函数的图像与性质)1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程可以为 ( D ) A .x =5π12 B .x =π3 C .x =π6 D .x =π122.函数y =sin ⎝ ⎛⎭⎪⎫x +π3cos ⎝ ⎛⎭⎪⎫π6-x 的最大值及最小正周期分别为 ( A ) A .1,π B.12,π C .1,π2D .1,2π 3.函数y =2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫π4-x 是( C ) A .周期为2π的奇函数 B .周期为π的奇函数C .周期为π的偶函数D .周期为π的非奇非偶函数4.函数y =sin2x +sinx -1的值域为(C )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54] 5.对于函数f(x)=2sinxcosx ,下列选项中正确的是( B )A .f(x)在(π4,π2)上是递增的 B .f(x)的图像关于原点对称 C .f(x)的最小正周期为2π D .f(x)的最大值为26.函数f(x)=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ等于( D )A .k π (k ∈Z)B .k π+π6 (k ∈Z)C .k π+π3(k ∈Z)D .k π-π3(k ∈Z) 7. 若f (sin x )=3-cos2x ,则f (cos x )=( C )A 、3-cos2xB 、3-sin2xC 、3+cos2xD 、3+sin2x 8.函数)25sin()(π-=x x x f 是( B ) A.偶函数 B.奇函数 C.非奇非偶函数 D.既奇又偶函数9. 在(,)ππ-内是增函数, 且是奇函数的是( A ) . A. sin 2x y = B. cos 2x y = C. sin 4x y =- D. sin 2y x = 1.函数1sin 2-=x y 的定义域是_______)](652,62[z k k k ∈++ππππ__________________.2.函数)0(sin >+=b x b a y 的最大值是23,最小值是21-,则a =_____21, __,b =__1_____.3.函数)22cos(π-=x y 的单调递减区间是___________________. 4. 下列函数中,①x x y cos 2+=,②x x y sin 1cos +=,③2tan x y =,④x x y sin 2=.不是偶函数的是____②④________.11.(本小题满分12分)已知函数f (x )=-3sin 2x +sin x cos x .(1)求函数f (x )的最小正周期;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域. 解:f (x )=-3sin 2x +sin x cos x =-3×1-cos 2x 2+12sin 2x =12sin 2x +32cos 2x -32= sin ⎝ ⎛⎭⎪⎫2x +π3-32. (1)函数f (x )的最小正周期是T =2π2=π. (2)∵0≤x ≤π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-3,2-32. 2.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值和最小值。
三角函数的图象与性质考试题及参考答案
∴φ= +kπ,k∈Z,∵|φ|< ,∴φ= ,
又x1,x2∈ ,∴2x1+ ∈(0,π),2x2+ ∈(0,π),
∴ = ,
解得x1+x2= ,
∴f(x1+x2)=sin = ,故选C.
8.解析:依题意得函数f(x)= sin 在x=x1处取得最小值,在x=x1+2 015处取得最大值,因此 × =2 015,即ω= π(k∈Z),ω的最小正值为 ,故选B.
10.将函数f(x)= cosx-sinx的图象向右平移θ个单位后得到的图象关于直线x= 对称,则θ的最小正值为________.
11.设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f =2,f =0,且f(x)的最小正周期大于2π,则ω、φ的值分别为________.
12.函数f(x)= 的图象的相邻两条对称轴之间的距离等于________.
答案:
11.解析:∵f =2,f =0,且f(x)的最小正周期大于2π,
∴f(x)的最小正周期为
4 =3π,
∴ω= = ,∴f(x)=2sin .
∴2sin =2,
得φ=2kπ+ ,k∈Z.
又|φ|<π,∴取k=0,得φ= .
答案: 、
12.解析:因为f(x)= = |sin 3x|,
最小正周期T= × = ,所以图象的相邻两条对称轴之间的距离等于 T= .
3.解析:将函数f(x)=sin 的图象向左平移φ 个单位长度,得到的图象所对应的函数解析式为y=sin =sin ,由题知,该函数是偶函数,则2φ+ =kπ+ ,k∈Z,又0<φ≤ ,所以φ= ,选项A正确.
4.解析:由题图可知,函数f(x)的周期T=4× =π,所以ω=2.又函数f(x)的图象经过点 ,所以sin =1,则 +φ=2kπ+ (k∈Z),解得φ=2kπ+ (k∈Z),又|φ|< ,所以φ= ,即函数f(x)=sin .
三角函数图像与性质测试题(精华版)
函数y=Asin(ωx+φ) 的图象基础训练1.函数y=sin(2x+25π)的图像的一条对称轴方程是( ) A . x=-2π B. x=-4π C .x=8π D.x=45π 2. 函数y =tan( 2x -3π)的定义域是( ) A {x |x ≠1252ππ+k , k ∈Z} B. {x | x ≠ k π +125π, k ∈Z} C. {x | x ≠,26k x k Z ππ≠+∈} D. {x | x ≠ k π +6π, k ∈π } 3. 正弦型函数在一个周期内的图象如图所示,则该函数的表达式是( ) A. y = 2sin(x -4π) B. y = 2sin(x +4π) C. y = 2sin (2x -8π) D. y = 2sin (2x +8π) 4.在[0,2π]上满足sin x ≥12的x 的取值范围是 A.[0,π6 ] B.[π6 ,5π6 ] C.[π6 ,2π3 ] D.[5π6,π] 5.(2006四川文、理)下列函数中,图像的一部分如右图所示的是( )(A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π=- (D )sin(2)6y x π=- 6.函数x x y 2cos 32sin -= )66(ππ≤≤-x 的值域为A. []2,2- B. []0,2- C. []2,0 D. ]0,3[-7.函数y=sin(π4-2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k ∈Z) B. [kπ+π8 , kπ+5π8] (k ∈Z) C. [kπ-π8 , kπ+3π8 ] (k ∈Z) D. [kπ+3π8 , kπ+7π8] (k ∈Z) 8.函数y=sin(x+3π2)的图象是( ) A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 关于x=-32π对称 9.要得到函数y=cos(42π-x )的图象,只需将y=sin 2x 的图象( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位 10.函数f(θ ) = sin θ -1cos θ -2的最大值和最小值分别是 ( ) (A) 最大值 43 和最小值0 (B) 最大值不存在和最小值 34(C) 最大值 -43和最小值0 (D) 最大值不存在和最小值-34 11.把函数y=cos(x+34π)的图象向右平移φ个单位,所得的图象正好关于y 轴对称,则φ的最小正值为12.方程2cos()14x π-=在区间(0,)π内的解是 .13. 已知x ∈[ 0, 6π], 且sin x = 2m + 1, 则m 的取值范围是 14.关于函数f(x)=4sin(2x+π3) (x ∈R),有下列命题: (1)y=f(x )的表达式可改写为y=4cos(2x-π6);(2)y=f(x )是以2π为最小正周期的周期函数;(3)y=f(x ) 的图象关于点(-π6,0)对称;(4)y=f(x ) 的图象关于直线x=-π6对称; 其中正确的命题序号是___________.15.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间。
三角函数的图象与性质练习题及答案
三角函数的图象与性质练习题及答案三角函数的图象与性质练题一、选择题1.函数f(x) = sin(x)cos(x)的最小值是多少?A。
-1/2B。
-1/4C。
0D。
1/42.如果函数y = 3cos(2x + φ)的图象关于点(3,0)中心对称,那么|φ|的最小值是多少?A。
π/6B。
π/4C。
π/3D。
2π/33.已知函数y = sin(πx)在区间[0,t]上至少取得2次最大值,则正整数t的最小值是多少?A。
6B。
7C。
8D。
94.已知在函数f(x) = 3sin(πx/4)的图象上,相邻的一个最大值点与一个最小值点恰好在x^2 + y^2 = R^2上,则f(x) =。
A。
RB。
-RC。
2RD。
-2R5.已知a是实数,则函数f(x) = 1 + asin(ax)的图象不可能是?A。
一条直线B。
一条正弦曲线C。
一条余弦曲线D。
一条双曲线6.给出下列命题:①函数y = cos(2π/3 - x)是奇函数;②存在实数α,使得sinα + cosα = 1;③若α、β是第一象限角且α<β,则tanα<tanβ;④直线x = π/4是函数y = sin(2x + π/4)的一条对称轴方程;⑤函数y = sin(3πx/12)的图象关于点(3,0)成中心对称图形。
其中正确的序号为?A。
①③B。
②④C。
①④D。
④⑤7.将函数y = sin(2x)的图象向左平移π/2个单位,再向上平移1个单位,所得图象的函数解析式是?A。
y = 2cos(2x)B。
y = 2sin(2x)C。
y = 1 + sin(2x + π/2)D。
y = cos(2x)8.将函数y = sin(4x)的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π/4得到的图象解析式是?A。
f(x) = sin(x)B。
f(x) = cos(x)C。
f(x) = sin(4x)D。
f(x) = cos(4x)9.若函数y = Asin(ωx + φ) + m的最大值为4,最小值为-2,最小正周期为π/3,直线x = π/2是其图象的一条对称轴,则它的解析式是?A。
三角函数的图像与性质练习题
三角函数的图像与性质练习题一、选择题1. 在三角函数sin(x)的定义域内,函数值的范围是:A. (-∞, ∞)B. [-1, 1]C. [0, 1]D. [0, 2π]2. 函数y = cos(x)的一个周期是:A. πB. 2πC. π/2D. 4π3. 函数y = tan(x)的导数是:A. sec^2(x)B. cos^2(x)C. sin^2(x)D. csc^2(x)4. 在函数y = sin(x)的图像中,当x = π/2时,函数值等于:B. 1C. -1D. 不存在5. 函数y = cos(x)的对称轴是:A. y轴B. x轴C. 原点D. 平行于x轴且距离x轴1个单位的直线6. 函数y = tan(x)在定义域内的奇点是:A. x = 0B. x = π/2C. x = πD. x = 2π7. 函数y = sin^2(x) + cos^2(x)等于:A. 1B. 0C. 28. 函数y = sin(x) + cos(x)的一个周期是:A. 2πB. 4πC. π/2D. π/4二、填空题1. 函数y = sin(x)在区间[0, π]内的最小值是____,最大值是____。
2. 函数y = cos(2x)的周期是____。
3. 函数y = cos(x)在区间[-π/2, π/2]内的最小值是____,最大值是____。
4. 函数y = tan(x)的定义域是____。
5. 函数y = sin(2x)的一个周期是____。
6. 函数y = cos(x)的对称中心是____。
7. 函数y = tan(x)在区间[0, π]内的最小值是____,最大值是____。
8. 函数y = sin^2(x)的对称轴是____。
三、解答题1. 画出函数y = sin(x)在区间[0, 2π]上的图像。
2. 画出函数y = cos(2x)的图像,并求出它在区间[0, 2π]上的最小值和最大值。
3. 画出函数y = tan(x)在区间[-π/2, π/2]上的图像,并指出它的所有零点。
三角函数的图像和性质 测试题及解析
三角函数的图象与性质函数y =A sin(ωx +φ)的图象(时间:80分钟 满分:100分)一、选择题(每小题5分,共40分) 1.函数y =sin ⎝ ⎛⎭⎪⎫4x +32π的周期是( ). A .2π B .π C.π2 D .π4 解析 T =2π4=π2. 答案 C2.函数y =cos ⎝ ⎛⎭⎪⎫x +π2(x ∈R )是( ).A .奇函数B .偶函数C .非奇非偶函数D .无法确定 解析 ∵y =cos ⎝ ⎛⎭⎪⎫x +π2=-sin x ,∴此函数为奇函数.答案 A3.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为( ).A .2B .12C .4D .14解析 由已知y =cos x 的图象经变换后得到y =cos 12x 的图象,所以ω=12. 答案 B4.函数y =-x sin x 的部分图象是( ).解析 考虑函数的奇偶性并取特殊值.函数y =-x sin x 是偶函数,当x ∈⎝ ⎛⎭⎪⎫0,π2时,y <0. 答案 C5.在下列区间上函数y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数的是( ).A.⎣⎢⎡⎦⎥⎤-π2,π2 B .⎣⎢⎡⎦⎥⎤-3π4,π4 C .[-π,0] D .⎣⎢⎡⎦⎥⎤-π4,3π4 解析 由2k π-π2≤x +π4≤2k π+π2(k ∈Z )得2k π-3π4≤x ≤2k π+π4(k ∈Z ),当k =0时,-3π4≤x ≤π4,故选B. 答案 B6.已知简谐运动f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +φ⎝ ⎛⎭⎪⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( ).A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3 解析 将(0,1)点代入f (x )可得sin φ=12. ∵|φ|<π2,∴φ=π6,T =2ππ 3=6.答案 A7.已知函数y =A sin(ωx +φ)+B 的一部分图象如图所示,如果A >0,ω>0,|φ|<π2,则( ).A .A =4B .ω=1C .φ=π6 D .B =4 解析 由图象可知,A =2,14T =5π12-π6=π4,T =π, ω=2.∵2×π6+φ=π2,∴φ=π6,故选C. 答案 C8.若函数f (x )=3sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π3+x =f ⎝ ⎛⎭⎪⎫π3-x ,则f ⎝ ⎛⎭⎪⎫π3等于( ).A .3或0B .-3或0C .0D .-3或3 解析 ∵f ⎝ ⎛⎭⎪⎫π3+x =f ⎝ ⎛⎭⎪⎫π3-x ,∴f (x )关于直线x =π3对称, ∴f ⎝ ⎛⎭⎪⎫π3应取得最大值或最小值. 答案 D二、填空题(每小题5分,共20分)9.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________. 解析 ∵y =cos x 在[-π,0]上为增函数,又在[-π,a ]上递增,∴[-π,a ]⊆[-π,0],∴a ≤0. 又∵a >-π,∴-π<a ≤0. 答案 (-π,0]10.函数y =tan x ,x ∈⎣⎢⎡⎦⎥⎤0,π4的值域是________.解析 ∵y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上单调递增,∴0≤tan x ≤1,即y ∈[0,1]. 答案 [0,1]11.已知函数y =2sin(ωx +φ)(ω>0)在一个周期内当x =π12时,有最大值2,当x =7π12时有最小值-2,则ω=________.解析 由题意知T =2×⎝ ⎛⎭⎪⎫7π12-π12=π.∴ω=2πT =2.答案 212.函数y =6sin ⎝ ⎛⎭⎪⎫14x -π6的初相是________,图象最高点的坐标是________.解析 初相为-π6,当14x -π6=π2+2k π,即x =8π3+8k π(k ∈Z )时,函数取得最大值6. 答案 -π6⎝ ⎛⎭⎪⎫8π3+8k π,6(k ∈Z ) 三、解答题(每小题10分,共40分)13.用“五点法”作出函数y =2sin ⎝ ⎛⎭⎪⎫x -π3+3的图象,并指出它的周期、频率、相位、初相、最值及单调区间. 解 (1)列表:x -π3 0 π2 π 3π2 2π x π3 5π6 4π3 11π6 7π3 y35313(2)描点、作图(如图所示).将函数在一个周期内的图象向左、向右两边扩展,得y =2sin ⎝ ⎛⎭⎪⎫x -π3+3的图象.由图象知,周期T =2π,频率f =1T =12π,相位为x -π3,初相为-π3,最大值为5,最小值为1,函数的单调递减区间为⎣⎢⎡⎦⎥⎤5π6+2k π,11π6+2k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-π6+2k π,5π6+2k π,k ∈Z . 14.求函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π3的定义域、值域,并指出它的周期、奇偶性和单调性.解 由3x +π3≠π2+k π,得x ≠π18+k π3(k ∈Z ),∴函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π3的定义域为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≠π18+k π3(k ∈Z ).它的值域为R ,周期为T =π3,它既不是奇函数,也不是偶函数.由-π2+k π<3x +π3<π2+k π(k ∈Z ),得-5π18+k π3<x <π18+k π3(k ∈Z ),所以函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π3在区间⎝ ⎛⎭⎪⎫-5π18+k π3,π18+k π3(k ∈Z )上单调递减. 15.设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +φ⎝ ⎛⎭⎪⎫0<φ<π2,y =f (x )图象的一条对称轴是直线x =π4.(1)求φ;(2)求函数y =f (x )的单调增区间.解 (1)∵x =π4是y =f (x )的图象的一条对称轴, ∴sin ⎝ ⎛⎭⎪⎫12×π4+φ=±1,∴π8+φ=k π±π2,k ∈Z ,∵0<φ<π2,∴φ=3π8.(2)由(1)知φ=3π8,因此y =sin ⎝ ⎛⎭⎪⎫12x +3π8.由题意得:2k π-π2≤12x +38π≤2k π+π2,k ∈Z , 即4k π-74π≤x ≤4k π+π4,k ∈Z ,∴函数的单调增区间为⎣⎢⎡⎦⎥⎤4k π-74π,4k π+π4,k ∈Z .16.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2). (1)求f (x )的解析式;(2)将y =f (x )图象上所有点的横坐标缩短到原来的13,然后再将所得到的图象向x 轴正方向平移π3个单位长度,得到函数y =g (x )的图象,写出g (x )的解析式,并作出在长度为一个周期上的图象.解 (1)由已知,易得A =2,T 2=(x 0+3π)-x 0=3π,解得T =6π,∴ω=13. 把(0,1)代入解析式y =2sin ⎝ ⎛⎭⎪⎫x 3+φ,得2sin φ=1.又|φ|<π2,解得φ=π6. ∴y =2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)压缩后的函数解析式为y =2sin ⎝ ⎛⎭⎪⎫x +π6,再平移得g (x )=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6.列表:x π6 2π3 7π6 5π3 13π6 x -π6 0 π2 π 3π2 2π 2sin ⎝ ⎛⎭⎪⎫x -π62-2图象如图:。
三角函数图像和性质练习题(附答案)
三角函数的图像与性质一、选择题1.已知函数f(x)=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32B.23C.2D.32.若函数cos(3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于.A .12B .12C .2D .43.将函数sin()6y x x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()212x y x R π=-∈ D .5sin()224x y x R π=+∈4.函数262cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于A.)2,6(-πB.)2,6(πC.)2,6(--πD.)2,6(π-5.将函数sin yx =的图象向左平移(02)ϕϕπ≤≤个单位后,得到函数sin(6y x π=-的图象,则ϕ等于()A .6πB .76πC .116πD .56π 6.函数x x y 2cos 32sin -= 66(ππ≤≤-x 的值域为A. []2,2-B. []0,2-C. []2,0 D. ]0,3[-7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( )A .B . C. D.8.函数f(θ ) = 的最大值和最小值分别是( )sin θ -1cos θ -2 (A) 最大值 和最小值0(B) 最大值不存在和最小值 4334(C) 最大值 -和最小值0 (D) 最大值不存在和最小值-43349.ααcos sin +=t 且αα33cos sin+<0,则t 的取值范围是( )A. [)0,2-B. []2,2-C. ()(]2,10,1 -D. ()()+∞-,30,3 10.把函数)(x f y =的图象沿着直线0=+y x 的方向向右下方平移22个单位,得到函数x y 3sin =的图象,则A 、2)23sin(--=x yB 、2)63sin(--=x yC 、2)23sin(++=x yD 、2)63sin(++=x y 二、填空题11.设函数).0)(3cos()(πϕϕ<<+=x x f 若)()(x f x f '+是奇函数,则ϕ=.12.方程2cos()14x π-=在区间(0,)π内的解是.13.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间14.已知x R ∈,则函数()max sin ,cos f x x x ⎧=⎨⎩的最大值与最小值的和等于 。
(完整版)三角函数的图象与性质练习题及答案
三角函数的图象与性质练习题一、选择题1.函数f (x )=sin x cos x 的最小值是( ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .y=2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________. 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f (x )=sin x cos x 的最小值是( B ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( A ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( C ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( D ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( C )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( A )A .y =2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( A )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( D ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( D ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( A )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________.⎣⎡⎦⎤98π+3k π,21π8+3k π (k ∈Z ) 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 31415.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上) ②③16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 2 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1, 则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π, 可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合. 解 (1)f (x )=21+cos 2ωx2+sin 2ωx +1=sin 2ωx +cos 2ωx +2=2⎝⎛⎭⎫sin 2ωx cos π4+cos 2ωx sin π4+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由题设,函数f (x )的最小正周期是π2,可得2π2ω=π2, 所以ω=2.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫4x +π4+2. 当4x +π4=π2+2k π,即x =π16+k π2(k ∈Z )时,sin ⎝⎛⎭⎫4x +π4取得最大值1,所以函数f (x )的最大值是2+2, 此时x 的集合为⎩⎨⎧⎭⎬⎫x |x =π16+k π2,k ∈Z .19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.解 f (x )=32sin 2ωx +12cos 2ωx +12=sin ⎝⎛⎭⎫2ωx +π6+12. (1)因为T =π,所以ω=1. ∴f (x )=sin ⎝⎛⎭⎫2x +π6+12, 当-π6≤x ≤π3时,2x +π6∈⎣⎡⎦⎤-π6,5π6, 所以f (x )的值域为⎣⎡⎦⎤0,32. (2)因为f (x )的图象的一条对称轴为x =π3,所以2ω⎝⎛⎭⎫π3+π6=k π+π2(k ∈Z ), ω=32k +12 (k ∈Z ), 又0<ω<2,所以-13<k <1,又k ∈Z ,所以k =0,ω=12.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)由图象可知,函数的最大值M =3,最小值m =-1, 则A =,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f (x )=2sin(2x +φ)+1, 将x =6π,y =3代入上式,得1)3π(=+ϕ ∴π22π3πk +=+ϕ,k ∈Z , 即φ=6π+2k π,k ∈Z ,∴φ=6π, ∴f (x )=2sin )6π2(+x +1. (2)由2x +6π=2π+k π,得x =6π+21k π,k ∈Z , ∴f (x )=2sin )6π2(+x +1的对称轴方程为 216π+=x k π,k ∈Z. 21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos ⎝⎛⎭⎫2x +π6. 故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6 =22sin ⎝⎛⎭⎫2x -π12. 由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32. ∵0<x <π,∴-π12<2x -π12<2π-π12. ∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π, ∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6. 22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图象过点(-1,0),∴2sin ⎝⎛⎭⎫-π4+φ=0. ∵|φ|<π2,∴φ=π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.(2)y =f (x )+f (x +2)=2sin ⎝⎛⎭⎫π4x +π4+2sin ⎝⎛⎭⎫π4x +π2+π4=22sin ⎝⎛⎭⎫π4x +π2=22cos π4x . ∵x ∈⎣⎡⎦⎤-6,-23,∴-3π2≤π4x ≤-π6. ∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;π4x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2 2.当。
三角函数的图像和性质考试题及答案解析
装--------------------订--------------------线-------------------------------------------------------------试题共页第页4.(2019·济南市学习质量评估)为了得到函数y=2cos 2x的图象,可以将函数y=cos 2x-3sin 2x的图象()A.向左平移π6个单位长度B.向右平移π6个单位长度C.向左平移π3个单位长度D.向右平移π3个单位长度5.(2019·石家庄市模拟(一))已知函数f(x)=2cos(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,点A(0,3),B⎝⎛⎭⎪⎫π6,0,则函数f(x)图象的一条对称轴为() A.x=-π3B.x=-π12C.x=π18D.x=π246.将偶函数f(x)=sin(3x+φ)(0<φ<π)的图象向右平移π12个单位长度后,得到的曲线的对称中心为()A.⎝⎛⎭⎪⎫kπ3+π4,0(k∈Z) B.⎝⎛⎭⎪⎫kπ3+π12,0(k∈Z) C.⎝⎛⎭⎪⎫kπ3+π6,0(k∈Z) D.⎝⎛⎭⎪⎫kπ3+7π36,0(k∈Z)试题共页第页试题共页第页试题共页第页试题共页第页所以1-cos 2x-3sin 2x+m-1=0,所以cos 2x+3sin 2x-m=0,所以2sin⎝⎛⎭⎪⎫2x+π6=m,即sin⎝⎛⎭⎪⎫2x+π6=m2.方程2sin2x-3sin 2x+m-1=0在⎝⎛⎭⎪⎫π2,π上有两个不同的实数根,即y=sin⎝⎛⎭⎪⎫2x+π6,x∈⎝⎛⎭⎪⎫π2,π的图象与y=m2的图象有2个不同的交点.作出y=sin⎝⎛⎭⎪⎫2x+π6,x∈⎝⎛⎭⎪⎫π2,π及y=m2的图象如图所示,则-1<m2<-12,即-2<m<-1,所以m的取值范围是(-2,-1).答案:(-2,-1)。
三角函数图像和性质(含答案)--题型全面
应有 ,
,解得
.
14.【答案】C 解:
ȁ ܿጡ sin ጡ
ጡ ȁ ܿጡ ܿൌ ጡ ȁ ܿጡ 1,
ܿൌ ጡȁ ܿጡ ȁ ܿጡ ܿൌ ጡ 1
ጡ
的最小正周期为
,A 错误;
由
8
ܿൌ 1 1,B 错误;
由
8
sin 1 1,C 正确;
ጡ 的图象向左平移 个单位长度后得到
误. 故选 C.
cos ጡ
1,不为偶函数,故 D 错
(﹣ω,ω)内单调递增,且函数 y=f(x)的图象关于直线 x=ω对称,则ω
的值为 .
第 页,共 9页
答案和解析
1.【答案】A 解: 函数
的最小正周期为 ,
cos 丨 2x 丨 ȁ ܿጡ,它
丨
cosx
丨的最小正周期为1
1
,
cos ጡ
的最小正周期为
,
tan ጡ 的最小正周期为 ,
2.【答案】C 解:由题意可得 ጡ1
三角函数的图像和性质
一、选择题(本大题共 14 小题,共 70.0 分)
1. 在函数
cos ጡ ,
ȁ ܿጡ ,
cos ጡ ,
tan ጡ 中,最小正周期为 的所有函数为
A.
B.
C.
D.
. 设函数 ጡ sin ጡ
,若对任意 ጡ 都有 ጡ1
ጡ
ጡ
成立,那么 ጡ1 ጡ 的最小值为
A. 1
B. 2
C. 4
D. 8
在[ ]的零点个数为
第 页,共 9页
17. 设函数 ጡ cos ጡ
,若 ጡ
对任意的实数 x 都
成立,则 的最小值为______.
18. 函数 ጡ sin ጡ
三角函数的图像及性质测试题
1.函数),24x x R π-∈的最小正周期为 A.2πB.πC.2πD.4π2.函数f (x )=2sin x cos x 是(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数3.下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+ (B )cos(2)2y x π=+(C )sin()2y x π=+(D )cos()2y x π=+4.函数2sin sin 1y x x =+-的值域为A .[]1,1- B .5,14⎡⎤--⎢⎥⎣⎦ C .5,14⎡⎤-⎢⎥⎣⎦ D .51,,4⎡⎤-⎢⎥⎣⎦5.函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数6.函数()(1)cos f x x x =+的最小正周期为 A .2π B .32π C .π D .2π7.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是(A )sin(2)10y x π=-(B )y =sin(2)5x π- (C )y =1sin()210x π-(D )1sin()220y x π=-8.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是A. 22cos y x =B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =9.若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为 (A)61 (B)41 (C)31 (D)2110.如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为(A)6π(B)4π(C)3π(D)2π11.函数2()sin (2)4f x x π=-的最小正周期是12.函数s in ()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .13.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
(完整word版)三角函数图像与性质试题及配套答案
xO y1 2 3三角函数测试题一、选择题1、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 2、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 3、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin |x |C .y=-sin |x |D .y=-|sin x |4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的( ). A 。
)62sin(+=x y B.sin()26x y π=+ C.sin(2)6y x π=- D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( )。
A 。
,24ωϕππ== B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6。
要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C 。
向左平移8π个单位 D.向右平移8π个单位7。
设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3 B 。
13C 。
1D 。
1- 8。
A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B.23 C.23-D 。
2110.函数2cos 1y x =+的定义域是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的性质与图像(学案)
一、 学习目标
1、“五点法”画函数sin()y A x ωϕ=+的图像.
2、图像变换规律.
3、由函数图像或性质求解析式.
重点:围绕三角函数图像变换、五点作图求函数解析式. 难点:图像变换中的左右平移变换中平移量的确定.
二、 学习过程 1、高考考点分析
2、知识梳理:
(1)用“五点法”画sin()y A x ωϕ=+一个周期的简图时,要找出
五个关键点。
填写表格:
(2)三角函数图像的变化规律:
(3)函数sin()y A x ωϕ=+的物理意义:
(4)由函数sin()y A x k ωϕ=++图像求函数解析式的步骤和方法: ①A 的确定:
②k 的确定:
③ω的确定:
④ϕ的确定: 三、基础训练
1、函数sin(2)3
y x π
=+的最小正周期为( )
A. 4π
B. 2π
C. π
D. 2
π
2、将函数2sin(2)6
y x π
=+的图像向右平移14
个周期后,所得图像
对应的函数为( )
A. 2sin(2)6
y x π=+ B. 2sin(2)3
y x π
=+
C. 2sin(2)4
y x π=- D. 2sin(2)3
y x π
=-
3、为了得到sin()3
y x π
=+的图像,只需把函数sin y x =的图像上所
有的点( )
A .向左平移3π个单位
B .向右平移3π个单位
C .向上平移3π个单位
D .向下平移3
π
个单位
4、函数2cos2y x x +的最小正周期为( ) A . 2
π B .23π
C. π
D. 2π
四、范例导航
题型一:三角函数的图象
例1.(2000全国,5)函数y =-xc os x 的部分图象是( )
变式练习.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )
题型二:函数sin()y A x ωϕ=+图像及变换 例2、已知函数2sin(2)3
y x π
=+
(1)求它的振幅、周期、初相。
(2)用五点作图法作它在一个周期内的图像。
(3)试说明2sin(2)3
y x π
=+的图像可由sin y x =的图像经过
怎样的变换得到? 列表:
描点作图:
题型三:求函数sin()(0,0)y A x k A ωϕω=++>>的解析式
例3、已知函数sin()(0,)y A x A ωϕϕπ=+><的一段图像如下图所示,求函数解析式。
五 、小结:。