信息论与编码习题集答案

合集下载

《信息论与编码》课后习题解答

《信息论与编码》课后习题解答

真诚为您提供优质参考资料,若有不当之处,请指正。

1 / 3《信息论与编码》课后习题解答2.2 假设一副充分洗乱了的扑克牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,任一特定的排序方式是等概率出现的,则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,从中抽取13张点数不同的牌的概率如下:bit C x p x I C x p i i i 208.134log )(log )(4)(135213135213=-=-==2.3 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历,则是大学生的概率为P(x)1 =0.25,不是大学生的概率为P(x)2 =0.75。

设随机变量Y 代表女孩子身高,则身高大于160cm 和小于160cm 的概率分别为P(y 1)=0.5、P(y 2)=0.5又有已知:在女大学生中有75%是身高160厘米以上的,即:bit x y p 75.0)/(11=所以身高160厘米以上的某女孩是大学生的信息量即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-= 2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求(1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p真诚为您提供优质参考资料,若有不当之处,请指正。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案1.在无失真的信源中,信源输出由H(X) 来度量;在有失真的信源中,信源输出由R(D) 来度量。

2.要使通信系统做到传输信息有效、可靠和保密,必须首先信源编码,然后_____加密____编码,再______信道_____编码,最后送入信道。

3.带限AWGN波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)=+;当归一化信道容量C/W趋C W SNR近于零时,也即信道完全丧失了通信能力,此时E b/N0为-1.6 dB,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4.保密系统的密钥量越小,密钥熵H(K)就越小,其密文中含有的关于明文的信息量I(M;C)就越大。

5.已知n=7的循环码42=+++,则信息位长g x x x x()1度k为 3 ,校验多项式《信息论与编码A》试卷第 2 页共 10 页《信息论与编码A 》试卷 第 3 页 共 10 页h(x)=31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。

(√ )2. 线性码一定包含全零码。

信息论与编码课后习题答案

信息论与编码课后习题答案

1. 有一个马尔可夫信源,已知p(x 1|x 1)=2/3,p(x 2|x 1)=1/3,p(x 1|x 2)=1,p(x 2|x 2)=0,试画出该信源的香农线图,并求出信源熵。

解:该信源的香农线图为:1/3○ ○2/3 (x 1) 1 (x 2)在计算信源熵之前,先用转移概率求稳固状态下二个状态x 1和 x 2 的概率)(1x p 和)(2x p 立方程:)()()(1111x p x x p x p =+)()(221x p x x p=)()(2132x p x p +)()()(1122x p x x p x p =+)()(222x p x x p =)(0)(2131x p x p + )()(21x p x p +=1 得431)(=x p 412)(=x p马尔可夫信源熵H = ∑∑-IJi j i jix x p x xp x p )(log )()( 得 H=0.689bit/符号2.设有一个无经历信源发出符号A 和B ,已知4341)(.)(==B p A p 。

求:①计算该信源熵;②设该信源改成发出二重符号序列消息的信源,采纳费诺编码方式,求其平均信息传输速度; ③又设该信源改成发三重序列消息的信源,采纳霍夫曼编码方式,求其平均信息传输速度。

解:①∑-=Xiix p x p X H )(log )()( =0.812 bit/符号②发出二重符号序列消息的信源,发出四种消息的概率别离为1614141)(=⨯=AA p 1634341)(=⨯=AB p1634143)(=⨯=BA p 1694343)(=⨯=BB p用费诺编码方式 代码组 b i BB 0 1 BA 10 2 AB 110 3 AA 111 3无经历信源 624.1)(2)(2==X H X H bit/双符号 平均代码组长度 2B =1.687 bit/双符号BX H R )(22==0.963 bit/码元时刻③三重符号序列消息有8个,它们的概率别离为641)(=AAA p 643)(=AAB p 643)(=BAA p 643)(=ABA p 649)(=BBA p 649)(=BAB p 649)(=ABB p 6427)(=BBB p用霍夫曼编码方式 代码组 b iBBB 6427 0 0 1 BBA 649 0 )(6419 1 110 3BAB 649 1 )(6418 )(644 1 101 3ABB 649 0 0 100 3AAB 6431 )(6461 11111 5 BAA 643 0 1 11110 5ABA6431 )(6440 11101 5 AAA641 0 11100 5)(3)(3X H X H ==2.436 bit/三重符号序列 3B =2.469码元/三重符号序列3R =BX H )(3=0.987 bit/码元时刻3.已知符号集合{ 321,,x x x }为无穷离散消息集合,它们的显现概率别离为 211)(=x p ,412)(=x p 813)(=x p ···ii x p 21)(=···求: ① 用香农编码方式写出各个符号消息的码字(代码组); ② 计算码字的平均信息传输速度; ③ 计算信源编码效率。

信息论与编码(陈运)习题答案

信息论与编码(陈运)习题答案

· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

《信息论与编码》部分课后习题参考答案

《信息论与编码》部分课后习题参考答案

P ( y1 = 0 | M 1 ) P ( y1 = 0)
因为信道为无记忆信道,所以
P( y1 = 0 | M 1 ) = P( y1 = 0 | x11 x12 = 00) = P( y1 = 0 | x11 = 0) = P(0 | 0) = p
同理,得 I ( y1 = 0 | M i ) = P ( y1 = 0 | xi1 xi 2 ) = P ( y1 = 0 | xi1 ) 输出第一个符号是 y1=0 时, 有可能是四个消息中任意一个第一个数字传送来的。 所以
第二章
2.1 同时掷两个骰子,设每个骰子各个面向上的概率都是 1/6。试求: (1)事件“2 和 6 同时出现”的自信息量; (2)事件“两个 3 同时出现”的自信息量; (3)事件“两个点数中至少有一个是 5”的自信息量; (4)两个点数之和的熵。 答: (1)事件“2 和 6 同时出现”的概率为:
《信息论与编码》
部分课后习题参考答案
1.1 怎样理解消息、信号和信息三者之间的区别与联系。 答:信号是一种载体,是消息的物理体现,它使无形的消息具体化。通信系统中传输的是 信号。 消息是信息的载体, 信息是指消息中包含的有意义的内容, 是消息中的未知成分。 1.2 信息论的研究范畴可以分成哪几种,它们之间是如何区分的? 答:信息论的研究范畴可分为三种:狭义信息论、一般信息论、广义信息论。 1.3 有同学不同意“消息中未知的成分才算是信息”的说法。他举例说,他从三岁就开始背 诵李白诗句“床前明月光,疑是地上霜。举头望明月,低头思故乡。 ” ,随着年龄的增长, 离家求学、远赴重洋,每次读到、听到这首诗都会带给他新的不同的感受,怎么能说这 些已知的诗句没有带给他任何信息呢?请从广义信心论的角度对此现象作出解释。 答:从广义信息论的角度来分析,它涉及了信息的社会性、实用性等主观因素,同时受知识 水平、文化素质的影响。这位同学在欣赏京剧时也因为主观因素而获得了享受,因此属于广 义信息论的范畴。

《信息论与编码》课后习题答案

《信息论与编码》课后习题答案

《信息论与编码》课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码理论习题答案

信息论与编码理论习题答案
= 3、3 设有一离散无记忆信源,U=,其熵为。考察其长为得输出序列,当时满
足下式
(a)在=0、05,=0、1 下求 (b)在=,=下求 (c)令就是序列得集合,其中
试求L=时情况(a)(b)下,T 中元素个数得上下限. 解:===0、81 bit
= ==—
= =0、471 则根据契比雪夫大数定理
0、2
001
100
a4
0、1
0001
1000
(a) 各码就是否满足异字头条件?就是否为唯一可译码?
(b) 当收到 1 时得到多少关于字母 a 得信息?
(c) 当收到 1 时得到多少关于信源得平均信息?
2、14 对于任意概率事件集 X,Y,Z,证明下述关系式成立 (a)+,给出等号成立得条件 (b)=+ (c)
证明:(b) =-
==—-
=+ (c) =-
=[—] [-]
=—
= 当=,即X给定条件下,Y 与 Z 相互独立时等号成立 (a) 上式(c)左右两边加上,可得 ++ 于就是+ 2、28 令概率空间,令 Y 就是连续随机变量。已知条件概率密度为 ,求: (a)Y 得概率密度 (b) (c) 若对 Y 做如下硬判决
求,并对结果进行解释. 解:(a) 由已知,可得
= =
=+
= (b) ==2、5 bit
=
= =2 bit =-=0、5 bit (c) 由可得到V得分布律

—1
p
1/4
再由可知
V
-1
p(V|x=-1)
1/2
p(V|x=1)
0
bit
=1 bit == 0、5 bit
0 1/2
0 1/2 1/2

信息论与编码试题集与答案

信息论与编码试题集与答案

一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

按照信息的地位,可以把信息分成客观信息和主观信息。

人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息的可度量性是建立信息论的基础。

统计度量是信息度量最常用的方法。

熵是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位一般有比特、奈特和哈特。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是∞。

15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。

17、离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。

18、离散平稳有记忆信源的极限熵,。

19、对于n元m阶马尔可夫信源,其状态空间共有 nm 个不同的状态。

信息论与编码理论习题答案

信息论与编码理论习题答案

第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5.17 bit 2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit 2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6=3.2744 bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

信息论与编码课后习题答案

信息论与编码课后习题答案

1. 有一个马尔可夫信源,已知p(x 1|x 1)=2/3,p(x 2|x 1)=1/3,p(x 1|x 2)=1,p(x 2|x 2)=0,试画出该信源的香农线图,并求出信源熵。

解:该信源的香农线图为: 1/3○○2/3(x 1) 1 (x 2)在计算信源熵之前,先用转移概率求稳定状态下二个状态x 1和 x 2的概率)(1x p 和)(2x p 立方程:)()()(1111x p x x p x p =+)()(221x p x x p=)()(2132x p x p + )()()(1122x p x x p x p =+)()(222x p x x p=)(0)(2131x p x p + )()(21x p x p +=1 得431)(=x p 412)(=x p 马尔可夫信源熵H = ∑∑-IJi j i jix x p x xp x p )(log )()( 得 H=0.689bit/符号2.设有一个无记忆信源发出符号A 和B ,已知4341)(.)(==B p A p 。

求: ①计算该信源熵;②设该信源改为发出二重符号序列消息的信源,采用费诺编码方法,求其平均信息传输速率; ③又设该信源改为发三重序列消息的信源,采用霍夫曼编码方法,求其平均信息传输速率。

解:①∑-=Xiix p x p X H )(log )()( =0.812 bit/符号②发出二重符号序列消息的信源,发出四种消息的概率分别为1614141)(=⨯=AA p 1634341)(=⨯=AB p 1634143)(=⨯=BA p 1694343)(=⨯=BB p 用费诺编码方法 代码组 b iBB 0 1 BA 10 2 AB 110 3 AA 111 3 无记忆信源 624.1)(2)(2==X H X H bit/双符号 平均代码组长度 2B =1.687 bit/双符号BX H R )(22==0.963 bit/码元时间③三重符号序列消息有8个,它们的概率分别为641)(=AAA p 643)(=AAB p 643)(=BAA p 643)(=ABA p 649)(=BBA p 649)(=BAB p 649)(=ABB p 6427)(=BBB p用霍夫曼编码方法 代码组 b i BBB 6427 0 0 1 BBA 649 0 )(6419 1 110 3 BAB 649 1 )(6418)(644 1 101 3 ABB 649 0 0 100 3AAB 643 1 )(646 1 11111 5 BAA 643 0 1 11110 5ABA 643 1 )(6440 11101 5AAA 6410 11100 5)(3)(3X H X H ==2.436 bit/三重符号序列 3B =2.469码元/三重符号序列3R =BX H )(3=0.987 bit/码元时间 3.已知符号集合{ 321,,x x x }为无限离散消息集合,它们的出现概率分别为 211)(=x p ,412)(=x p 813)(=x p ···i i x p 21)(=···求: ① 用香农编码方法写出各个符号消息的码字(代码组); ② 计算码字的平均信息传输速率; ③ 计算信源编码效率。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案信息论与编码习题答案信息论与编码是一门研究信息传输、存储和处理的学科,它的基本原理和方法被广泛应用于通信、数据压缩、密码学等领域。

在学习信息论与编码的过程中,习题是不可或缺的一部分。

下面将为大家提供一些信息论与编码习题的答案,希望能对大家的学习有所帮助。

习题一:请解释信息熵的概念。

答案:信息熵是信息论中的一个重要概念,用来衡量一个随机变量的不确定性。

对于一个离散型随机变量X,其信息熵H(X)定义为:H(X) = -Σ P(x)log2P(x)其中,P(x)表示随机变量X取值为x的概率。

信息熵的单位是比特(bit),表示信息的平均不确定性。

信息熵越大,表示随机变量的不确定性越高,反之亦然。

习题二:请计算以下离散型随机变量的信息熵。

1. 对于一个均匀分布的随机变量,其取值范围为{1, 2, 3, 4},请计算其信息熵。

答案:由于均匀分布,每个取值的概率相等,即P(1) = P(2) = P(3) = P(4) = 1/4。

代入信息熵的计算公式可得:H(X) = - (1/4)log2(1/4) - (1/4)log2(1/4) - (1/4)log2(1/4) - (1/4)log2(1/4)= - (1/4)(-2) - (1/4)(-2) - (1/4)(-2) - (1/4)(-2)= 22. 对于一个二值随机变量,其取值为{0, 1},且P(0) = 0.8,P(1) = 0.2,请计算其信息熵。

答案:代入信息熵的计算公式可得:H(X) = - 0.8log2(0.8) - 0.2log2(0.2)≈ 0.7219习题三:请解释信道容量的概念。

答案:信道容量是指在给定的信道条件下,能够传输的最大信息速率。

在信息论中,信道容量是衡量信道传输效率的重要指标。

对于一个离散无记忆信道,其信道容量C定义为:C = max{I(X;Y)}其中,X表示输入信号集合,Y表示输出信号集合,I(X;Y)表示输入信号X和输出信号Y之间的互信息。

信息论与编码课后习题答案

信息论与编码课后习题答案

信息论与编码课后习题答案信息论与编码课后习题答案第⼆章2.3 同时掷出两个正常的骰⼦,也就是各⾯呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的⾃信息; (2) “两个1同时出现”这事件的⾃信息;(3) 两个点数的各种组合(⽆序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的⼦集)的熵; (5) 两个点数中⾄少有⼀个是1的⾃信息量。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==+=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-===(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=? 其他15个组合的概率是18161612=?symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=??? ??+-=-=∑参考上⾯的两个点数的排列,可以得出两个点数求和的概率分布如下:bit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=?+?+?+?+?+?-=-==?∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-===2.42.12 两个实验X 和Y ,X={x 1 x 2 x 3},Y={y 1 y 2 y 3},l 联合概率(),i j ij r x y r =为1112132122233132337/241/2401/241/41/2401/247/24r r r r r r rr r=(1)如果有⼈告诉你X 和Y 的实验结果,你得到的平均信息量是多少?(2)如果有⼈告诉你Y 的实验结果,你得到的平均信息量是多少?(3)在已知Y 实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少?解:联合概率(,)i j p x y 为 22221(,)(,)log (,)724112log 4log 24log 4247244i j i j ijH X Y p x y p x y ==?=2.3bit/符号X 概率分布 21()3log 3 1.583H Y =?=bit/符号(|)(,)() 2.3 1.58H X Y H X Y H Y =-=- Y 概率分布是 =0.72bit/符号 Y y1 y2 y3 P8/248/248/242.15P(j/i)=2.16 ⿊⽩传真机的消息元只有⿊⾊和⽩⾊两种,即X={⿊,⽩},⼀般⽓象图上,⿊⾊的Y X y1y 2 y 3 x 1 7/24 1/24 0 x 2 1/24 1/4 1/24 x 31/247/24X x 1 x 2 x 3 P8/248/248/24出现概率p(⿊)=0.3,⽩⾊出现的概率p(⽩)=0.7。

信息论与编码试题集与答案(新)

信息论与编码试题集与答案(新)

一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

按照信息的地位,可以把信息分成客观信息和主观信息。

人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息的可度量性是建立信息论的基础。

统计度量是信息度量最常用的方法。

熵是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。

18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案信息论与编码是通信和数据传输领域的基础学科,它涉及到信息的量化、传输和编码。

以下是一些典型的信息论与编码习题及其答案。

# 习题1:信息熵的计算问题:给定一个随机变量X,其可能的取值为{A, B, C, D},概率分别为P(A) = 0.3, P(B) = 0.25, P(C) = 0.25, P(D) = 0.2。

计算X的熵H(X)。

答案:H(X) = -∑(P(x) * log2(P(x)))= -(0.3 * log2(0.3) + 0.25 * log2(0.25) + 0.25 *log2(0.25) + 0.2 * log2(0.2))≈ 1.846# 习题2:信道容量的计算问题:考虑一个二进制信道,其中传输错误的概率为0.01。

求该信道的信道容量C。

答案:C = log2(2) * (1 - H(error))= 1 * (1 - (-0.01 * log2(0.01) - 0.99 * log2(0.99))) ≈ 0.98 nats# 习题3:编码效率的分析问题:一个编码器将4位二进制数字编码为8位二进制码字。

如果编码器使用了一种特定的编码方案,使得每个码字都具有相同的汉明距离,求这个编码方案的效率。

答案:编码效率 = 信息位数 / 总位数= 4 / 8= 0.5# 习题4:错误检测与纠正问题:给定一个(7,4)汉明码,它能够检测最多2个错误并纠正1个错误。

如果接收到的码字是1101100,请确定原始的4位信息位是什么。

答案:通过汉明码的生成矩阵和校验矩阵,我们可以计算出接收到的码字的校验位,并与接收到的码字的校验位进行比较,从而确定错误的位置并纠正。

通过计算,我们发现原始的4位信息位是0101。

# 习题5:数据压缩问题:如果一个文本文件包含10000个字符,每个字符使用8位编码,如何通过霍夫曼编码实现数据压缩?答案:首先,我们需要统计文本中每个字符的出现频率。

信息论与编码理论(最全试题集+带答案+各种题型)

信息论与编码理论(最全试题集+带答案+各种题型)
6.相比于模拟通信系统,简述数字通信系统的优点。
答:抗干扰能力强,中继时可再生,可消除噪声累计;差错可控制,可改善通信质量;便于加密和使用DSP处理技术;可综合传输各种信息,传送模拟系统时,只要在发送端增加莫属转换器,在接收端增加数模转换器即可。
7.简述信息的性质。
答:存在普遍性;有序性;相对性;可度量性;可扩充性;可存储、传输与携带性;可压缩性;可替代性;可扩散性;可共享性;时效性;
A.形式、含义和安全性
B.形式、载体和安全性
C.形式、含义和效用
D.内容、载体和可靠性
20.(D)是香农信息论最基本最重要的概念
A.信源B.信息C.消息D.熵
三.简答(
1.通信系统模型如下:
2.信息和消息的概念有何区别?
答:消息有两个特点:一是能被通信双方所理解,二是能够互相传递。相对于消息而言,信息是指包含在消息中的对通信者有意义的那部分内容,所以消息是信息的载体,消息中可能包含信息。
31.简单通信系统的模型包含的四部分分别为信源、有扰信道、信宿、干扰源。
32. 的后验概率与先念概率的比值的对数为 对 的互信息量。
33.在信息论中,互信息量等于自信息量减去条件自信息量。
34.当X和Y相互独立时,互信息为0。
35.信源各个离散消息的自信息量的数学期望为信源的平均信息量,也称信息熵。
第一章
一、填空(
1.1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
2.按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
3.按照信息的地位,可以把信息分成客观信息和主观信息。
4.人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) R L log r=2.6 bit 符号
(4)R
H
S
L
2.53 2.6
0.973
bit
码元
其中,H
S
H
0.2,
0.2,
0.2, 0.2,
0.1,
0.1
2.53 bit
符号
(5) H S H S 0.973
L log r L
20、解:(1)
1
3
S1
S2
1
9
2
(2)由公式 P Si P Si | S j P S j j 1
1
0.125
0
0.0625
0
0
1
0.25 0
1 1.0
0.5 0
码字 1 01 001 0001 00001 00000
平均码长 l 1 *1 1 * 2 1 *3 1 * 4 1 *5 1 *5 1.933码元/ 符号 2 4 8 16 32 32
编码效率为 H (x) 100% l
11、W=WP
12、 max H(Y)max H(x)
13、等概_ _log(n)
14、3bit/符号
15、递减
16、都是第一行的置换
17、N 倍
18、香农编码
19、无失真信源
20、下凸
上凸
21、1bit / 符号 输入符号等概分布
22、 0.0536 15bit
23、0.5436 比特/符 m log2 8 (100 m) log2 (8 / 7) 比特/符号。
4
min Dmax=
pi dij ,由于 pi和dij 具有对称性,每个和式结果都为 1/2,因此 Dmax= 1/2,
j1,2,3,4 i1
1 0 0 0
对应的转移概率矩阵可取任意 1 列为全 1,如 P 1 1
0 0
0 0
0 ,此时 0
R(Dmax)= R(1/2)
1 0 0 0
= 0。
5
11、0.0817bit/符号 12、0.612bit/符号
H (x)
6 pilb(
i 1
pi
)
1 2
lb2
1 4
lb4
1 8
lb8
1 16
lb16
1 32
lb32
1 32
lb32
Huffman 编码为:
=1.933 bit/符号
符号 概率 a1 0.5 a2 0.25 a3 0.125 a4 0.0625 a5 0.03125 a6 0.03125
1
1
SNR=10dB=10
16、
7
17、解:
码字
00
0.32
10
0.22 0
0.18
11
1
0 0.28 1
0 0.6
1 0.4
“1”
010
0.16
0
0110 0.08 0
1
0111 0.04
0.12
1
该信源在编码之前的信源熵为:
6
H (S ) P(xi ) log P(xi)=0.526+0.481+0.445+0.423+0.292+0.186 i 1
编码效率为 H (x) 100% l
9、解:
1 由右图可知,该信道的转移概率矩阵为 P 1/ 2
0
0 1/ 2
1
可以看到,当该信道的输入分布取
P(
X
)
a1 1/ 2
a2 0
a3 1/ 2
时,
P (Y
)
b1 1/ 2
b2 1/ 2
此时 I(X
a1;Y )
2 j 1
p(b j
/ a1) log
a2 0
a3 1/ 2

10、解: 由于失真矩阵每行每列都只有一个最小值“0”,所以可以达到 Dmin=0,此时对应的信道转
1 0 0 0 移概率矩阵应使得信源的每个输出经过信道转移后失真为 0,即选择 P 0 1 0 0 。
0 0 1 0 0 0 0 1
R(Dmin)= R(0)= H(U) = 1-p*log p –(1-p)*log(1-p) = 1+H(p)。
1/8 0
1/16
1/16 1
1/2
1/2
1/4
1/4
0 1/8
1/4
1/8 1
L 1 1 2 1 4 4 1 2
24
2
ቤተ መጻሕፍቲ ባይዱ
H (x) 100 % L
1/2 0
0
0
10
1/2
1 1110
1
1111
1100
1101
2
s0 s1 s2
4、
(1)
s0 p
0
0.5 0.5
s1 0.5 0.5 0
s2 0 0.5 0.5
14、解
1)
求信源的熵 H(X)及信源剩余度 ;
信源的熵:
信源剩余度:
2)
对其进行四元 Huffman 编码;
,其中
,若取
,可得大于 9 但与 9 最接近的正整数
10,因此在 Huffman 编码是加入一个零概率符号。
编码为 332; 编码为 331; 编码为 330; 编码为 32; 编码为 31; 编码 为 30; 编码为 2; 编码为 1; 编码为 0
RB max
198k 15 8
1.056 105 Baud
2、该信道为准对称信道
(1)两个对称信道矩阵为
0.8 0.1
0.1 0.8 0.8 0.1
0.1 0.8

0.1 0.1
N1=0.8+0.1=0.9,N2=0.1; M1=0.9,M2=0.2 ∴ C log 2 H(0.8,0.1,0.1) 0.9log0.9 0.1log0.2 0.447bit / 符号 最佳输入概率分布为输入等概率,即 p(x1) p(x2) =1/2 3、 1) H(x)=H(1/16,1/16,1/16,1/16,1/4,1/2)=2bit
P
S1
2 i 1
P S1
|
Si P Si
2 3
P S1
PS2

P S2
2 i 1
P S2
|
Si
PSi
1 3
P S1
P S1 P S2 1

P
S1
P
S2
3 4 1 4
(3)该马尔可夫信源的极限熵为:
22
H P Si P S j | Si log P S j | Si i1 j1
信息论与编码习题集答案
一、填空 1、R=C 或信道剩余度为 0 2、2.3138bit/符号 3、小 大 4、大 小 5、175bit/符号 6、概率为独立等概 3bit/符号 7、有效性 可靠性 安全性 经济性 8、1.75bit/符号
m
9、 C log m pij log pij
j 1
10、唯一可译码
24、等概
25、定长 变长
26、信源符号间的相关性
27、无穷大
28、1
29、 m+1
qm
信源符号的统计不均匀性
二、简答
三、计算
1、(1)
Ct
B log2
1
S N
18log2
2048
198kbit
/
s
(2)
RB
max
Ct
H x
,
1
H
x
H
1 16
,
1 16
,
1 8
,
1 4
,
1 2
15 8
R(Dmax ) 0bit / 符号。 函数 R(D) 的图形:
R(D) ln4
D
0
1/4
1/2
3/4
7、解:根据题意有
R
r1 2k
0.7
r2 5k
0.3
,W
w1 1/
0.64
8
w2 1/ 0.36
4

p(w1/
r1)
0.8
由 p(w1) p(r1) p(w1/ r1) p(r2) p(w1/ r2) p(w1/ r2) 4 /15 所以 p(w2 / r2) 1 p(w1/ r2) 11/15 得知 5kΩ电阻的功耗为 1/4W,获得的自信息量为 lb( p(w2 / r2)) 0.448bit 8、解:该离散信源的熵为
5.解:
符号概率
编码过程
0.3 0.2
0
0 1
0.15
0.15 0.1
1
0.1
0 1
0 1 0 1
平均码长 K =2.5 码元/符号
H ( X ) p(xi ) log p(xi ) =2.471 bit/符号
I
H (X ) 2.471 =0.9884
K
2.5
6.解:
Dmax
min Dj
H
(2)
H
3 4
,
1 4
0.8113bit
(2) H XY H X H Y 11 2bit 对
H
XZ
H
XH
Z
|
X
1
1 2
H 1,0
1 2
H
1 2
,
1 2
1.5 bit

(3) H X | Y H X 1bit
H
Z
|
X
1 2
2
2
可以看出这是一个对称信道,L=4,那么信道容量为
相关文档
最新文档