方差分析与多重比较

合集下载

方差分析与多重比较

方差分析与多重比较

第六章 方差分析第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。

这时,若仍采用t 检验法就不适宜了。

这是因为:1、检验过程烦琐 例如,一试验包含5个处理,采用t 检验法要进行25C =10次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。

2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。

若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。

例如,试验有5个处理,每个处理重复6次,共有30个观测值。

进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。

可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。

3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。

由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。

方差分析(analysis of variance)是由英国统计学家R.A.Fisher 于1923年提出的。

这种方法是将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。

高级数据分析技巧Excel的方差分析与多重比较

高级数据分析技巧Excel的方差分析与多重比较

高级数据分析技巧Excel的方差分析与多重比较在数据分析领域,方差分析是一种广泛应用的统计方法,用于比较多个样本的均值是否存在显著差异。

Excel作为常用的数据分析工具,同样可以进行方差分析并进行多重比较。

本文将介绍在Excel中进行高级数据分析的技巧,重点讲解方差分析和多重比较的方法与步骤。

1. 数据准备在进行方差分析之前,我们需要准备好相关的数据。

数据可以包括不同组别或处理条件下的多个样本的观测值。

在Excel中,可以将每一组的数据放置在不同的列或者不同的工作表中。

确保数据结构清晰,并且每个样本的数据位于相应的列或者工作表中。

2. 打开数据分析工具在Excel中,可以通过“数据”选项卡中的“数据分析”功能来打开数据分析工具。

如果没有看到“数据分析”选项,需要先启用该功能。

在Excel的菜单栏中,选择“文件”->“选项”->“加载项”,然后勾选上“数据分析工具包”,点击确定。

3. 进行方差分析选择“数据”选项卡中的“数据分析”,在弹出的对话框中找到“方差分析”选项,点击确定。

接着,在“输入范围”中选择之前准备好的数据范围,勾选上“标签”选项以表示数据包含列或者工作表的标签信息,在“α水平”中选择显著性水平(通常为0.05),然后点击确定。

4. 解读方差分析结果方差分析的结果将显示在一个新的工作表中。

在结果中,我们关注“F值”和“P值”。

F值表示方差分析的统计量,用于判断不同样本均值之间的差异是否显著;P值表示显著性水平,如果P值小于显著性水平,就可以拒绝原假设,认为不同样本均值之间存在显著差异。

5. 进行多重比较如果方差分析结果显示存在显著差异,那么我们可以进行多重比较来确定具体哪些样本之间存在差异。

Excel提供了多种进行多重比较的方法,包括Tukey方法、LSD方法等。

5.1 Tukey方法选择“数据”选项卡中的“数据分析”,在弹出的对话框中找到“方差分析: 单因素”选项,点击确定。

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较.单因素方差分析SPSS——单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个单因素方差分析因变量由因素各水平分组的均值之间的差异是否具有统计)(或几个相互独立的平分组中哪一组与其他各组均值间具有显著性意义。

还可以对该因素的若干水过程要求因变量属于正差异进行分析,即进行均值的多重比较。

One-Way ANOVA 态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使Repeated Measu用非参数分析过程。

如果几个因变量之间彼此不独立,应该用过程。

re][例子所示。

调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-11-1图分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

)启动分析过程2”项,”项,在下拉菜单中点击“Compare Means 点击主菜单“Analyze在右拉式菜单中点击“0ne-Way ANOVA”项,系统。

打开单因素方差分析设置窗口如图1-2单因素方差分析窗口1-2 图)设置分析变量3”框中。

本选择一个或多个因子变量进入“Dependent List 因变量: 例选择“幼虫”。

Factor”框中。

本例选择“品种”选择一个因素变量进入因素变量: “)设置多项式比较4所示的对话框。

该对话框用”按钮,将打开如图单击“Contrasts1-3于设置均值的多项式比较。

”对话框图Contrasts“1-3定义多项式的步骤为:中显示1-3 均值的多项式比较是包括两个或更多个均值的比较。

例如图值的 H0:第一组均mean1-1×mean2”的值,检验的假设的是要求计算“1.1×”过程允许进倍与第二组的均值相等。

单因素方差分析的“0ne-Way ANOVA1.1次的均值多项式比较。

多项式的系数需要由读者自己根据研究的需要行高达5输入。

具体的操作步骤如下:”参数框。

Degree 选中“Polynomial”复选项,该操作激活其右面的“①”线参数框右面的向下箭头展开阶次菜单,可以选择“Linear 单击Degree②”五次多项式。

方差分析之多重比较

方差分析之多重比较

方差分析之多重比较目前对于均数的多重比较的方法较多,例如SPSS软件共提供18种均数的多重比较的方法。

对于均数多重比较,当资料满足正态性方差齐性时,可采用的比较方法有LSD法、Bonferroni法、Sidak法、Scheffe法、R-E-G-W F法、R-E-G-W Q法、S-N-K法、Tukey法、Tukey-b法、Duncan法、Hochberg GT2法、Gabriel法、Waller Duncan法、Dunnett法;当资料满足正态性但不符合方差齐性时,可采用Tamhane T2法、Dunnett T3、Games-Howell法、Dunnett C法。

1.常见的多重比较方法介绍1.1 LSD法原理:LSD与独立样本t检验非常相近,主要差别在于LSD法在首先满足F检验达到显著的基础上,将F检验的误差均方作为合并方差。

优点:在ANOVA中F检验显著时,LSD方法是检验效率最高的多重比较方法.缺点:①涉及过多的要比较均数对;②犯I型错误的概率较高;③这种方法只控制了每次比较犯I型错误概率,没有对总犯I型错误概率进行控制。

1.2 Bonferroni法原理:利用Bonferroni不等式来控制多次比较的总I型错误,Bonferroni不等式是指一个或多个事件发生的总概率不高于这些事件各自发生概率的加和。

通过将每次检验的α设置为总α除以检验次数,从而控制总α。

优点:用途最广,几乎可用于任何多重比较的情形,包括组间例数相等或不等、成对两两比较或综合多重比较等。

缺点:会增加犯Ⅱ型错误的概率。

1.3 Sidak法原理:基本思路与Bonferroni法接近,只是在调整仅值时采用不同的策略。

若控制单次比较犯I型错误的概率为αpc,一次比较不犯I型错误的概率为1-αpc,n次比较均不犯I型错误的概率为(1-αpc)n,则n次比较总的犯I型错误的概率为1-(1-αpc)n。

优点:调整多重比较的显著性水平,提供比Bonferroni 更严密的边界。

方差分析中的多重比较

方差分析中的多重比较

14
由 上 述 结 果 ,可 以 作 出 统 计 结 论
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
6
Psychology Statistics
2、N-K法(q检验)
步骤:
(1)把要比较的各个平均数从小到大作等级排列;
如5个平均数从小到大顺序是XB,XC,XA,XE,XD, 则
11
Psychology Statistics
r 2 q0.05 2.89
r 3 q0.05 3.49
r 4 q0.05 3.84源自r 5 q0.05 4.10
(3)求X的标准误 SE MSw MSw
X
n
8
当r
2时,q0.05
SE X
2.891.7385.02,
当r
3时,q0.05
如果小于q0.05SEX,则两个平均数之间差异不显著。
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
8
2、N-K法(q检验)
Psychology Statistics
例8.3 为研究不同科目的教师当班主任,对学生某一学科的 学习是否有影响。把40名学生随机分派到5名教不同科 目的班主任负责的班级中,经过一段时间以后对这40名 学生进行数学考试,结果见下表。用方差分析的方法检 验5组不同班主任的学生数学成绩是否有显著差异。(其 中,A表示班主任教数学,B表示班主任教语文,C表示 班主任教生物,D表示班主任教地理,E表示班主任教物 理)。
t2 M Swn 1i n 1j2.122.44285 22.096,
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@

方差分析(ANOVA)、多重比较(LSDDuncan)、q检验(student)

方差分析(ANOVA)、多重比较(LSDDuncan)、q检验(student)

方差分析(ANOV A)、多重比较(LSD Duncan)、q检验(student)实际研究中,经常需要比较两组以上样本均数的差别,这时不能使用t检验方法作两两间的比较(如有人对四组均数的比较,作6次两两间的t检验),这势必增加两类错误的可能性(如原先a定为0.05,这样作多次的t检验将使最终推断时的a〉0.05)。

故对于两组以上的均数比较,必须使用方差分析的方法,当然方差分析方法亦适用于两组均数的比较。

方差分析可调用此过程可完成。

Least-significant difference(LSD):最小显著差法。

a可指定0~1之间任何显著性水平,默认值为0。

05;Bonferroni:Bonferroni修正差别检验法。

a可指定0~1之间任何显著性水平,默认值为0。

05;Duncan’s multiple range test:Duncan多范围检验。

只能指定a为0.05或0.01或0。

1,默认值为0.05;Student-Newman-Keuls:Student—Newman—Keuls检验,简称N-K检验,亦即q检验。

a 只能为0.05;(以前都以SNK法最为常用,但研究表明,当两两比较的次数极多时,该方法的假阳性非常高,最终可以达到100%.因此比较次数较多时,包括SPSS和SAS在内的权威统计软件都不再推荐使用此法。

)Tukey's honestly significant difference:Tukey显著性检验。

a只能为0.05;Tukey's b:Tukey另一种显著性检验。

a只能为0。

05;Scheffe:Scheffe差别检验法.a可指定0~1之间任何显著性水平,默认值为0.05。

根据对相关研究的检索结果,除了参照所研究领域的惯例外,一般可以参照如下标准:如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferoni(LSD)法;若需要进行的是多个平均数间的两两比较(探索性研究),且各组样本数相等,宜用Tukey法,其他情况宜用Scheffe法。

单因素的方差分析和LSR法多重比较Excel表格计算

单因素的方差分析和LSR法多重比较Excel表格计算

1、划分变异原因总变异=处理间变异+区组间变异+误差变异2、列出试验结果并初步计算,求处理和T,区组和T ,和总和T。

3、分解并计算各项平方和、自由度(1)求平方和n (区组)=4k (处理)=6矫正数39609.37501257.631099.3855.46102.79(2)求各项自由度235使用说明:①使用前请详细阅读文档为娱乐学习之用,处理及区组均为10个,作中的蓝字为使用者填入,其他如工作表、格式及果给予重视,如为“不能反映处理间效应”或“一、单因素随机化完全区组设计的方差分析2=nkT C =k 2i i=11n A SS C T ∙==∑-==∑=C SS T B -n 1j 2j .k 1=--=SS SS SS SS B A T e ==1-nk T f =-=1f k A =-=1n f B --=)1)(1(n k f e n n 2ij i=1j=1x T SS C ==∑∑-3155、进行F检验64(2)求F值32.092.70(3)查F表(4)检验由表中F值和F临界值相比较得知:①否定H01,差异极显著2②接受H02,区组间差异不显著1结论:该项试验结果能极显著反映处理间的效应。

已知k=65种 , n=41.30893 3.16 4.351.3089 4.14 5.69②4 3.25 4.461.3089 4.25 5.84③5 3.31 4.551.3089 4.33 5.95④6 3.36 4.611.3089 4.40 6.03⑤0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑥二、邓肯(Duncan)多重极差法(LSR法),a有2、3……等(1)求LSR(1)H 01:α1=α2=…=αH 02;β1=β2=…=β=1-nk T f =-=1f k A =-=1n f B =--=)1)(1(n k f e ==22/e A A S S F 22e /=B B F S S =X S =0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑦0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑧细阅读统计学有关资料,按照相关要求进行完善,同时建议按照统计学示例进行验算;②本之用,处理及区组均为10个,作者不承担由使用该文档而产生的法律责任,如不赞同,请删除;③文者填入,其他如工作表、格式及公式等内容请勿非专业改动或删除;④在输入数据后请对方差分析结为“不能反映处理间效应”或“不能接受”,多重比较已无意义,请核对原始数据。

方差分析与多重比较

方差分析与多重比较

方差是表示变异的量,在一个多处理试验 中,可以得出一系列不同的观测值,造成它们 不同的原因是多方面的。 • 由处理不同引起的,叫处理效应(或叫 条件变异) • 由试验过程中偶然性因素的干扰和测量 误差所致,这一类误差称试验误差。
• 方差分析的最大优点是在于它可以全面分 析差异的原因。
方差分析的基本思想:
二、方差分析的基本原理
• 重复数相等的几个均数的比较
符号:
nn knk knn k k
xxiijj xxijij x为ij 表中所有观测数据之和
ii11 jij111 jii11 j1j1
n
xij 为各列(重复)之和
i 1
k
xij 为各行(处理)之和
j 1
1. 自由度的分解
设有k组样本,每样本具有n个观察值, 则总共有nk个观察值,其自由度df
ijj111 ji11 j1 j1
St2=SSt/(k-1)
(xij
nn n nkk
SxSi )t2=nk k
k
n
(((xx(xiixjiijj xx)x)22xi ))2=20.73(1x i
x)2
k
=0.731/3 1 =0.2437
i i11i ij1j111j 1
2
i 1
j1
(x x) SSeini1n1ij1jikkn11j((1ijxkn1x1ij(jiikxjj1ij(xx)i2xjx)i )2x2 )=20k.i3n10(9x i
总自由度:dfT=nk-1 组间自由度:dft=k-1 组内自由度:dfe=k(n-1)
总自由度:dfT=dft+dfe =(k-1)+k(n-1)
=k-1+kn-k=nk-1

报告中的ANOVA分析和多重比较

报告中的ANOVA分析和多重比较

报告中的ANOVA分析和多重比较引言:ANOVA(方差分析)是一种经典的统计方法,用于比较两个或多个组别之间的差异。

在报告中使用ANOVA进行数据分析时,为了更全面地揭示结果,通常需要进行多重比较。

本文将就报告中使用ANOVA分析和多重比较方法的相关问题展开论述,包括效应大小的解读、假设检验的细节、多重比较的必要性以及选择合适的多重比较方法。

一、效应大小的解读在报告中,除了给出显著性检验的结果外,也需要对实验效应的大小进行解读。

效应大小可以通过η²或ω²指标来衡量,它们分别表示了解释变量(组别)对因变量的解释程度。

η²指标的取值范围是0到1,表示了变量解释的百分比;而ω²指标的取值范围是-1到1,它修正了样本偏差的影响。

二、假设检验的细节在报告中呈现ANOVA分析结果时,需要清晰地陈述研究者所采用的假设以及相应的检验方法。

具体而言,首先要明确零假设(H0)和备择假设(H1),以及选择合适的统计检验(如一元ANOVA、双因素ANOVA等)。

此外,还需提及所使用的显著性水平和效应大小指标。

三、多重比较的必要性多重比较是为了进一步分析差异显著的组别之间的具体差异。

在进行多重比较时,可以利用事前比较和事后比较两种方法。

事前比较是在进行方差分析之前,对组别进行两两比较;而事后比较是在方差分析结果显著时,对不同组别之间进行比较。

四、多重比较的方法选择在报告中选择合适的多重比较方法非常重要。

有多种方法可以选择,包括Bonferroni校正、Tukey HSD、Scheffe法等。

具体选择哪种方法取决于研究者的需求和实验设计的特点。

文章中可以简要介绍每种方法的原理和应用场景,以帮助读者选择适合自己研究的方法。

五、多重比较的结果描述在报告中对进行多重比较的结果进行准确和全面的描述至关重要。

可以使用表格或图表来展示多个组别之间的差异,同时注明置信区间和显著性水平等信息。

此外,还可以使用文字对发现的差异进行解释和解读。

单因素方差分析与多重比较

单因素方差分析与多重比较

单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。

表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数从复水稻品种1 2 3 4 51 41 33 38 37 312 39 37 35 39 343 40 35 35 38 34 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。

图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。

或者打开已存在的数据文件“DATA5-1.SAV”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。

图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图5-3所示的对话框。

该对话框用于设置均值的多项式比较。

图5-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

单因素方差分析与多重比较课件

单因素方差分析与多重比较课件
通过比较组间方差和组内方差,可以 判断各组平均值是否存在显著差异。
方差分析的步骤
1. 收集数据
收集每个组的观测值,并确保数据满足独立性、正态性和 同方差性。
2. 数据整理
整理数据,将观测值按照组别进行分类和汇总。
3. 计算离差平方和
计算每个组的离差平方和,即每个组内观测值与组平均值 的差的平方和。
详细描述
Duncan法是一种非参数检验方法,它不需要假设数据服从正态分布,因此适用范围更广。该方法通 过多级分类的方式,将各组均值进行排序和比较,能够更全面地了解各组之间的差异情况。Duncan 法的优点在于简单易行,但缺点是对于极端值的敏感度较高。
S-N-K法
总结词
基于秩和的方法
详细描述
S-N-K法(Studentized Range Distribution)是一种基于秩和的方法,它通过对各组秩次进行统计分析,判 断各组均值是否存在显著差异。该方法能够避免极端值对结果的影响,并且对于非正态分布的数据也有较好的 适用性。S-N-K法的优点在于稳健性和可靠性较高,但缺点是计算较为复杂。
否存在显著差异。
随着数据量的增长,单因素方 差分析与多重比较在数据分析 和科学研究中具有越来越重要
的地位。
课程目标
1
掌握单因素方差分析的基本原理和计算方法。
2
理解多重比较的意义和作用,掌握常用的多重比 较方法。
3
学会在实际问题中应用单因素方差分析与多重比 较,提高数据分析能力。
02
单因素方差分析基本概念
单因素方差分析与多重比 较课件
目录
• 引言 • 单因素方差分析基本概念 • 单因素方差分析的数学模型 • 多重比较方法 • 单因素方差分析的应用实例 • 课程总结与展望

单因素方差分析与多重比较

单因素方差分析与多重比较
2. 系统误差
▪ 因素的不同水平(不同总体)下,各观察值之间的差异 ▪ 比如,不同行业之间的被投诉次数之间的差异 ▪ 这种差异可能是由于抽样的随机性所造成的,也可能
是由于行业本身所造成的,后者所形成的误差是由系
统性因素造成的,称为系统误差
方差分析的基本思想和原理
(两类方差)
1. 数据的误差用平方和(sum of squares)表示,称 为方差
单因素方差分析与 多重比较
§3.1 方差分析引论
一. 方差分析及其有关术语 二. 方差分析的基本思想和原理 三. 方差分析的基本假定 四. 问题的一般提法
什么是方差分析(ANOVA)?
(analysis of variance)
1. 检验多个总体均值是否相等
▪ 通过分析观察数据的误差判断各总体均值是否
=115.9295
构造检验的统计量
(计算水平项平方和 SSA)
1. 各组平均值 xi (i 1,2,, k)
平均值 的离差平方和
x 与总
2. 反映各总体的样本均值之间的差异程度,又称组
间平方和
3. 该平方和既包括随机误差,也包括系统误差
4. 计算公式为
k
SSA
ni
k
xi x 2 ni xi x 2
统计量F
2. 当H0为真时,二者的比值服从分子自由度为
这种差异也可能是由于抽样的随机性所造成的
2. 需要有更准确的方法来检验这种差异是否显著, 也就是进行方差分析
所以叫方差分析,因为虽然我们感兴趣的是均值, 但在判断均值之间是否有差异时则需要借助于方差
这个名字也表示:它是通过对数据误差来源的分析 判断不同总体的均值是否相等。因此,进行方差分 析时,需要考察数据误差的来源。

第三章_单因素方差分析与多重比较

第三章_单因素方差分析与多重比较

第三章_单因素方差分析与多重比较1.引言在统计学中,方差分析是一种用于比较不同组之间差异的方法。

它可以帮助我们确定不同因素之间是否存在显著差异,以及哪些因素对结果有重要影响。

在实际应用中,我们常常需要使用单因素方差分析,即只考虑一种因素对结果的影响。

本章将介绍单因素方差分析的基本原理和方法,以及如何进行多重比较来进一步分析不同组之间的差异。

2.单因素方差分析的基本原理在单因素方差分析中,我们假设只有一个因素对结果有影响,而其他因素对结果没有影响。

我们通过计算组内变异和组间变异来判断不同组之间是否存在显著差异。

组内变异表示同一组内部个体之间的差异,而组间变异表示不同组之间的差异。

如果组间变异显著大于组内变异,则可以认为不同组之间存在显著差异。

为了进行单因素方差分析,我们需要满足以下几个前提条件:1)样本来自正态分布总体;2)各个组的方差相等;3)各个组的观测值之间相互独立。

3.单因素方差分析的步骤单因素方差分析的步骤通常包括以下几个步骤:1)建立假设:根据实际问题,我们需要建立相应的零假设和备择假设。

零假设通常表示不同组之间没有显著差异,而备择假设表示不同组之间存在显著差异。

2)计算统计量:根据计算公式,计算组内平方和和组间平方和,进而计算F值。

3)判断显著性:根据给定的显著性水平,查表或计算P值,判断F 值是否显著。

4)做出结论:根据显著性检验的结果,决定是否接受零假设,进而得到结论。

4.多重比较在单因素方差分析中,如果我们得到了显著的F值,说明不同组之间存在差异,但是并不能告诉我们具体是哪些组之间存在差异。

这时候,我们可以进行多重比较来进一步分析不同组之间的差异。

多重比较可以帮助我们确定哪些组之间存在显著差异,以及差异的大小。

常用的多重比较方法包括Bonferroni法、Tukey法和Duncan法等。

这些方法都可以通过计算置信区间来确定差异的显著性。

多重比较的步骤通常包括以下几个步骤:1)计算均值差异:首先计算不同组之间的均值差异,可以通过计算置信区间来确定差异的显著性。

方差分析与邓肯多重比较

方差分析与邓肯多重比较

方差分析与邓肯多重比较單一變異數分析 (One-wayANOVA)單一變異數分析主要用於三組以上樣本之平均值比較,若於檢定結果差異顯著之時則須作多重比較,以比較兩兩組別之差異是否顯著。

例題:於板材倉庫取得四種樹種之木材,每種樹種取3個樣本測定其含水率,分別測得之數據如下表:pine spruce ash oak 1 12 23 36 45 2 12 22 35 44 3 11 24 36 44欲檢定此四種木材之含水率是否有差異,由於樣本組數超過2(即3 或3組以上),需使用變異數分析進行檢定使用SPSS軟體之操作步驟如下:1. 依下圖方式輸入數據,Var0001之數字1,2,3,4為組別代號,var0002為實驗數據,在此共有四組數據2. 將滑鼠移至Statistics ,,Compare means,,one way ANOVA3.var0001設為Factor,var0002設為dependent list4.點選Post Hoc,,勾選Duncan,,continue5. 點選 OK,即進行檢測6.結果如下:若差異顯著則Sig值大於0.05,表示各組間差異不顯著若差異顯著則Sig值小於0.057. 此時須看Duncan之比較結果如上之結果資料整理如下:在此可見比較結果將各組數據由小至大分為四各階層,各組樣本分別屬於不同之階層,比較結果可以下表方式呈現其結果:組別平均值 Duncan比較結果 1 11.67 A2 23.00 B3 35.33 C4 44.33 DDuncan比較結果可用ABCD….或abcd….表示,若各組樣本所標示之英文字母不同則表示差異顯著。

於表格下方須註明字母所代表之義意為何。

您好:本篇文章是精心制作,值得下载收藏,,但下面两页是无用的,请跳过阅读吧。

您好:本篇文章是精心制作,值得下载收藏,,但下面两页是无用的,请跳过阅读吧。

您好:本篇文章是精心制作,值得下载收藏,,但下面两页是无用的,请跳过阅读吧。

方差分析与多重比较

方差分析与多重比较

方差分析与多重比较方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较两个或多个组之间的均值差异是否显著。

它被广泛应用于实验研究、社会调查、医学研究等领域,可以帮助我们确定组间的差异是否由于随机因素引起。

而多重比较则是方差分析的扩展,用于比较多个组间的均值差异。

一、方差分析方差分析是一种通过分解总体总体差异来检验组间均值是否有显著差异的方法。

在进行方差分析之前,我们需要先提出假设,即原假设和备择假设。

原假设(H0):所有组的均值相等。

备择假设(H1):至少有一个组的均值与其他组有显著差异。

方差分析通常采用F检验来检验组间均值是否存在显著差异。

F统计量的计算依赖于组内均方(Mean Square Within,MSW)和组间均方(Mean Square Between,MSB)。

若F值大于临界F值,则拒绝原假设,即组间均值存在显著差异。

二、多重比较多重比较是对方差分析中拒绝原假设的组进行进一步比较的方法。

当我们发现组间均值存在显著差异时,我们希望进一步了解哪些组之间存在差异。

常用的多重比较方法包括:1. LSD法(最小显著差异法):对所有可能的组合进行两两比较,判断均值差异是否显著。

这种方法简单,但容易产生错误的正差异判断。

2. Bonferroni校正法:将显著性水平除以组合数量来校正,保证整体错误率不超过显著性水平。

这种方法控制了错误率,但可能导致过度保守。

3. Tukey HSD法(Tukey Honestly Significant Difference):相较于LSD法,Tukey HSD法更为保守,适合进行大样本比较。

4. Duncan多重比较法:根据多重比较,将组间均值划分成若干个不同类型。

在进行多重比较时,我们需要注意研究目的、数据类型和样本容量的差异,选择适合的方法进行比较。

三、实际应用方差分析与多重比较方法广泛应用于各个领域的研究中。

以医学研究为例,研究人员可能会针对不同药物进行实验,比较各个药物对患者的疗效是否存在显著差异。

方差分析与多重比较

方差分析与多重比较

方差分析与多重比较方差分析是一种统计分析方法,用于比较多个个体、组或处理之间的平均数差异。

它的主要目的是确定因素对于所观察到的变量是否具有显著影响。

在进行方差分析之后,如果发现了显著差异,那么就需要进行多重比较来确定哪些组或处理之间存在着实质性的差异。

1. 方差分析方差分析可以分为单因素和多因素方差分析。

单因素方差分析用于比较一个因素对于变量的影响,而多因素方差分析则考虑了多个因素的影响。

方差分析的原假设是各组或处理的均值相等,备择假设是各组或处理的均值不相等。

方差分析模型的基本假设是各组或处理的观测值是来自于正态分布总体。

在进行方差分析之前,需要检验各组或处理的观测值是否满足方差齐性的假设。

如果方差齐性假设成立,则可以使用方差分析方法进行推断;如果方差齐性假设不成立,则需要采取相应的修正方法,如Welch方法。

方差分析的结果通常以F统计量的形式呈现,根据F统计量的显著性水平,可以判断各组或处理之间是否存在显著差异。

2. 多重比较在进行方差分析后,如果发现了显著差异,则需要进行多重比较来确定具体是哪些组或处理之间存在着实质性的差异。

多重比较可以采用多种方法,常用的方法包括两两比较法、多重t 检验法和Tukey HSD法等。

在进行多重比较时,需要对比较结果进行适当的校正,以控制错误发现率。

两两比较法是最直观的方法,它通过对所有可能的组合进行t检验或其他适当的检验来确定差异的组合。

然而,当组数较多时,两两比较会导致多个假设检验,从而增加了错误发现的可能性。

多重t检验法是通过对多个均值进行比较来确定差异的组合。

不同于两两比较,多重t检验可以同时比较多个组之间的差异,从而减少错误发现的机会。

然而,多重t检验法需要进行适当的校正,以控制错误发现率。

Tukey HSD(Honestly Significant Difference)法是一种经典的多重比较方法,它通过估计多个均值之间的差异来确定差异的组合。

Tukey HSD法可以提供一个整体的比较结果,并以置信区间的形式表示差异的大小。

统计实验设计中的方差分析与多重比较方法

统计实验设计中的方差分析与多重比较方法

统计实验设计中的方差分析与多重比较方法方差分析(ANOVA)和多重比较方法是统计学中常用于研究实验设计的重要工具。

方差分析用于比较多个组别之间的均值是否有显著差异,而多重比较方法则用于确定哪些组别之间存在差异。

本文将介绍方差分析和多重比较方法的原理、应用以及相关注意事项。

一、方差分析(ANOVA)的原理方差分析是用于比较两个或多个组别之间差异的一种统计方法。

它基于总体均值之间的方差来判断各组别之间是否存在显著差异。

方差分析的核心思想是将总体方差分为组内方差与组间方差,并通过比较两者的大小来判断组别之间的差异是否显著。

在进行方差分析时,需要满足以下假设:各组别之间的样本来自于正态分布的总体,各组别的方差相等,样本之间独立。

对于一个因变量和一个自变量,可以使用单因素方差分析;对于一个因变量和多个自变量,可以使用多因素方差分析。

方差分析的结果通常通过F统计量来体现。

F统计量是组间方差与组内方差的比值,如果F值足够大,就可以认为组别之间存在显著差异。

如果显著性水平小于设定的阈值(通常是0.05),则可以拒绝无差异的假设,认为组别之间存在显著差异。

二、多重比较方法当我们得出方差分析结果显示组别之间存在显著差异时,接下来需要进行多重比较以确定具体差异在哪些组别之间。

多重比较方法可以帮助我们进行两两组别之间的比较,以确定哪些组别之间存在差异。

常见的多重比较方法包括Tukey方法、Bonferroni方法和Duncan方法等。

这些方法的原理和步骤有所不同,但基本思想是进行多次假设检验,并通过控制错误率来确定具体差异是否显著。

Tukey方法是一种常用的多重比较方法,它通过计算各组别之间的平均差异和置信区间来判断是否存在显著差异。

Bonferroni方法则是将显著性水平除以比较的次数,以控制整体错误率。

Duncan方法是利用多重范围检验校正标准来确定差异的存在。

三、方差分析与多重比较方法的应用方差分析和多重比较方法在统计实验设计中有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Excel在灌溉试验数据处理中的应用
之二方差分析
张寄阳
水利部灌溉试验总站
“数据分析”功能的安装
启动Excel后查看窗口主菜单“工具”项下是否有“数据分析”菜单项。

若有表明已经安装了数据分析功能;
若没有此项,按以下步骤安装:
主菜单“工具”“加载宏”选中“分析工具库”“确定”
方差分析程序的进入
“工具”“数据分析”选择分析工具“确定”
方差分析工具的选择
单因素方差分析
无重复双因素分析
可重复双因素分析
单因素完全随机试验
单因素随机区组试验
双因素无重复试验(不存在)
双因素完全随机试验
单因素方差分析的一个实例
不同施肥法对小麦植株含氮量的影响,6个
处理×5次重复的完全随机试验
“工具”“数据分析”单因素方差分析数据输入引用的区域
处理的排列方式
“数据区域”第一行
是否为标题
显著水平
选择结果输出的位置
单击“确定”
一、单因素方差分析
方差分析结果表中各项目的含义
SS 平方和
df 自由度
MS 均方
F及F crit F值及F临界值,F crit =FINV(α,df1,df2) P-value F分布的概率,P-value=FDIST(F,df1,df2)组间处理
组内误差
显著性判断
根据P-value 判断:
P-value ≤ 0.01 极显著
0.01<P-value≤ 0.05 显著
P-value>0.05 不显著
根据F crit判断:
F ≥F crit 在α水平上显著
F < F crit 在α水平上不显著
小提示:P-value 提供的信息更详细
显著性检验结果
P-value=9.6E-18<0.01
F0.05=2.6207,F0.01= FINV(0.01,5,24)=3.8951 F=164.17> F 0.01
不同施肥法的小麦植株含氮量差异达极显著水平
样本容量误差项的均方==n MS SE 1. 计算平均数的标准误
样本容量误差项的均方
=0.104
2. 计算最小显著极差( )α
αSSR SE LSR ⨯=α
SSR 根据p 、α和误差项的df 查SSR 表;P 某两个极差之间所包含的平均数的个数,
p=2,3,4……m(处理数);
α显著水平。

αLSR
LSR 2. 计算最小显著极差( )
3. 新复极差检验
将平均数从大到小排列;
用两个平均值的差值与进行比较;
差值≥差值<αLSR αLSR αLSR 显著;
不显著
多重比较结果表示(字母标记法)
首先将全部平均数从大到小依次排列后,在最大的平均数上标上字母a;并将该平均数与以下各平均数相比,凡差异不显著的,都标上字母a,直至某一个与之差异显著的平均数则标以字母b(向下过程),再以该标有b的平均数为标准,与上方各个比它大的平均数比,凡不显著的也一律标以字母b(向上过程);再以该标有b的最大平均数为标准,与以下各未标记的平均数比,凡不显著的继续标以字母b,直至某一个与之相差显著的平均数则标以字母c.……如此重复进行下去,直至最小的一个平均数有了标记字母且与以上平均数进行了比较为止。

这样,各平均数间,凡有一个相同标记字母的即为差异不显著,凡没有相同标记字母的即为差异显著。

在实际应用时,需区分0.05水平上
显著和0.01水平上显著。

一般用小写
字母表示0.05显著水平,大写字母表
示0.01显著水平。

在研究论文或研究报告中标示方差分析结果
实例:不同生育期干旱对春小麦产量影响7处理×3重复的随机区组试验
“工具”“数据分析”无重复双因素分析
显著性检验结果
行间(处理间):P-value=6.49E-09<0.01
差异极显著
列间(重复间):P-value=0.56>0.1
差异不显著
1. 计算平均数差数的标准误
样本容量
误差项的均方⨯=⨯=-2221n MS S x x 注意LSD 法与SSR 法中计算
标准误所用公式的差别
MS=36178.47
n=3
=155.3
2. 计算最小显著差()
αLSD α
αt S LSD x x ⨯=-21)
,(误df TINV t αα=显著水平,0.05/0.01误差项的自由度
α
误df
LSD 2. 计算最小显著差()
3. LSD 检验
将平均数从大到小排列;
计算各处理与对照的差值并与进行比较;差值≥反之,
αLSD αLSD 在水平上显著
α在水平上不显著α检验结果:苗期旱处理与
对照差异在0.05水平上
显著;其他处理与对照差
异在0.01水平上显著。

在研究论文或研究报告中标示方差分析结果
实例:水肥耦合试验
3种施肥水平×3种水分水平,每种组合重复3次
注意原始数据表的设计与输入区域的选择
方差分析结果
方差分析结果表“变异源”中各项目的含义样本水分效应
列肥料效应
交互水肥交互效应
内部误差
显著性检验结果
不同水分处理:P-value=2.56E-09<0.01
差异极显著
不同施肥水平:P-value=2.96E-13<0.01
差异极显著
不同水肥组合:P-value=1.95E-08<0.01
差异极显著
水肥组合的多重比较
样本容量误差项的均方==n MS SE =0.4779(MS=0.685,n=3)
与单因素方差分析中所用方法相同
各水分处理平均数的比较
样本容量误差项的均方==n MS SE (MS=0.685,n=9)=0.276
各水分处理平均数的新复极差检验结果
各肥料处理平均数的比较
样本容量误差项的均方==n MS SE =0.276
(MS=0.685,n=9)
各肥料处理平均数的新复极差检验结果。

相关文档
最新文档