动量守恒定律的典型模型
动量守恒定律几个模型
![动量守恒定律几个模型](https://img.taocdn.com/s3/m/ea64c22b58fb770bf78a553c.png)
第16章 动量守恒定律的几个典型模型(一)一、碰撞类。
1.弹性碰撞:碰撞前后,系统的动量守恒、动能守恒。
2.非弹性碰撞:碰撞前后,系统的动量守恒、动能不守恒。
3.完全非弹性碰撞:碰后粘在一起,系统的动量守恒,动能损失最大,损失的动能转化为热。
(1)一般的弹性碰撞:当m 1=m 2时,v 1′ = v 2,v 2′ = v 1 (速度交换)(2)以质量为m 1速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例结论:①当两球质量相等时,V 1’=0,V 2’=V 1。
两球碰撞后交换了速度、动量、动能.②当质量大的球碰质量小的球时,碰撞后两球都向前运动.m 1≫m 2,v 1’=v 1,v 2’=2v 1. ③当质量小的球碰质量大的球时,碰撞后质量小的球被反弹回来.m 1≪m 2,v l ’=一v 1,v 2’=0.(3)碰撞问题须同时遵守的三个原则:①系统动量守恒原则。
②系统动能不增加原则。
③合理性原则。
例如:追赶碰撞中,碰撞后,前面物体的速度一定不小于后面物体的速度。
例1. A 、B 两球在光滑水平面上沿同一直线,向同一方向运动,A 球动量为p A =5 kg ·m/s ,B 球动量为p B =7 kg ·m/s ,两球碰后B 球动量变为p B ′=10 kg ·m/s ,则两球质量关系可能是( ) A .m A =m B B .m A =2m B C .m B =4m A D .m B =6m A二、人船模型类。
(适用条件是:两个物体组成的系统动量守恒,系统的合动量为零。
)例2.静止在水面上的小船长为L ,质量为M ,在船的最右端站有一质量为m 的人,不计水的阻力,当人从最右 端走到最左端的过程中,小船移动的距离是多大?三、当堂检测1.在一个足够大的光滑平面内,有两质量相同的木块A 、B,中间用一轻质弹簧相连.如图所示.用一水平恒力F 拉B,A 、B 一起经过一定时间的匀加速直线运动后撤去力F.撤去力F 后,A 、B 两物体的情况是( ).(A)在任意时刻,A 、B 两物体的加速度大小相等 (B)弹簧伸长到最长时,A 、B 的动量相等 (C)弹簧恢复原长时,A 、B 的动量相等 (D)弹簧压缩到最短时,系统的总动能最小2.动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。
高三总复习物理课件 动量守恒中的三类典型模型
![高三总复习物理课件 动量守恒中的三类典型模型](https://img.taocdn.com/s3/m/3c0d12ae0875f46527d3240c844769eae009a38a.png)
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A
人船模型(学生版)-动量守恒的十种模型
![人船模型(学生版)-动量守恒的十种模型](https://img.taocdn.com/s3/m/ec16b49b0d22590102020740be1e650e52eacf3f.png)
动量守恒的十种模型解读人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:mv 人-Mv 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=m M +mL 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m 。
“人船模型”的拓展(某一方向动量守恒)【典例分析】1如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【针对性训练】1(2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为()A.M +m M hB.M +m m (h +2a )C.M +m M (h +2a )D.M +m Mh +2a 2(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船。
用卷尺测出船后退的距离d ,然后用卷尺测出船长L 。
动量守恒中几种常见的模型
![动量守恒中几种常见的模型](https://img.taocdn.com/s3/m/9566d5600812a21614791711cc7931b765ce7b31.png)
1、动力学规律:子弹和木块构成旳系统受到大小相等方 向相反旳一对相互作用力,故加速度旳大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块旳过程能够看作是 两个做匀变速直线运动旳物体间旳追及问题,在一段时间 内子弹射入木块旳深度,就是两者相对位移旳大小。而整 个过程产生旳热量等于滑动摩擦力和相对位移旳乘积。即 Q=Ff*s
代 根而入据f=数能μm据量g得守代:恒入定V=数律2m据得/解s:得fL: 12Lm=1v002m .12 M mv2
模型四:
带弹簧旳木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1旳小物块 A从坡道顶端由静止滑下,进入水平面上旳滑道时无机械能 损失,为使A制动,将轻弹簧旳一端固定在水平滑道延长线 M处旳墙上,另一端与质量为m2旳档板B相连,弹簧处于原 长时,B恰位于滑道旳末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间旳 动摩擦因数均为μ,其他各处旳摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v旳大小; (2)弹簧最大压缩量为d时旳弹性势能Ep(设弹簧处于原长 时弹性势能为零).
μ
mgL
1 2
m0
m
v2 1
1 2
Mv 2
1 2
m0
m
M
v 2 2
③
由①②③解得v0=149.6m/s为最大值, 所以v0≤149.6m/s
解:(1)物块A从坡道顶端由静止滑至O点旳过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远不小于外力,系统动
量守恒,以向左为正方向,由动量守恒定律得:
高中物理第08章动量守恒 动量守恒定律应用(四种模型)
![高中物理第08章动量守恒 动量守恒定律应用(四种模型)](https://img.taocdn.com/s3/m/8aa9d0fe551810a6f52486b9.png)
08、(2013·高考新课标全国卷Ⅱ,35 题)如图所示,光滑水平直轨道上有三个质量均为 m 的物 块 A、B、C.B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设 A 以速度 v0 朝 B 运动,压缩 弹簧;当 A、 B 速度相等时,B 与 C 恰好相碰并粘接在一起,然后继续运动.假设 B 和 C 碰撞过 程时间极短,求从 A 开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的1、如图所示,一排人站在沿 x 轴的水平轨道旁,原点 O 两侧的人的序号都记为 n(n=1,2, 3……) .每人只有一个沙袋,x>0 一侧的每个沙袋质量为 m=14 kg,x<0 一侧的每个沙袋质量为 m′=10 kg.一质量为 M=48 kg 的小车以某初速度从原点出发向正 x 方向滑行.不计轨道阻力, 当车每经过一人身旁时,此人就把沙袋以水平速度 v 朝与车速相反的方向沿车面扔到车上,v 的 大小等于扔此袋之前的瞬间车速大小的 2n 倍(n 是此人的序号数) . (1)空车出发后,车上堆积了几个沙袋时车就反向滑行? (2)车上最终有大小沙袋共多少个?
ECNU
LEX
高中物理第 08 章动量守恒 动量守恒定律应用(四种模型)
Lex Li
一、子弹木块模型 01、 如图所示, 一根质量不计、 长为 1 m, 能承受最大拉力为 14 N 的绳子, 一端固定在天花板上, 另一端系一质量为 1 kg 的小球,整个装置处于静止状态,一颗质量为 10 g、水平速度为 500 m/s 的子弹水平击穿小球后刚好将将绳子拉断, (g 取 10 m/s ) 。求: (1)小球此时的速度大小; (2)子弹此时的速度大小。
2
02、一颗质量为 m,速度为 v0 的子弹竖直向上射穿质量为 M 的木块后继续上升,子弹从射穿木块 到再回到原木块处所经过的时间为 T,那么当子弹射出木块后,求: (1)子弹身穿木块时的速度大小; (2)木块上升的最大高度为多少?
动量守恒定律的典型模型
![动量守恒定律的典型模型](https://img.taocdn.com/s3/m/c7db147d2379168884868762caaedd3383c4b536.png)
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2
②
2
解①、②两式得 x
Mv02
③
(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V
①
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?
动量守恒定律常见模型归类
![动量守恒定律常见模型归类](https://img.taocdn.com/s3/m/70e19534453610661ed9f4db.png)
m l2 L M m
Байду номын сангаас
l 2 l1
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
(1)射入类 特点:在某一方向上动量守恒,如子弹有初 速度而木块无初速度,碰撞时间非常短,子弹 射入木块后二者以相同速度一起运动。 (2)射穿类 特点:在某一方向动量守恒,子弹有初速度, 木块有或无初速度,击穿时间很短,击穿后二 者分别以某一速度运动。
动量守恒定律常见模型归类 模型一 —— 人船模型
【例1】质量为m的人站在质量为M ,长 为L的静止小船的右端,小船的左端靠在 岸边。当他向左走到船的左端时,船左 端离岸多远?
动量守恒定律常见模型归类
解:先画出示意图。人、船系统动量守恒,总动量 始终为零,所以人、船动量大小始终相等。 从图中可以看出,人、船的位移大小之和等于 L 。设 人、船位移大小分别为l1、l2 ,则: mv1=Mv2 两边同乘时间t ,有 m· l1 = M· l2 ………… ① 而 l1 +l2 = L ………… ② 联立①②式,解得
动量守恒定律常见模型归类 子弹打木块模型特征
模型特征: (1)系统合力为零,因此动量守恒; ( 2 )系统初动量不为零(一般为一静一动),末动 量也不为零; (3)子弹没有穿出木块时,子弹和木块两者发生的 相对位移等于子弹射入的深度;子弹穿出木块时,子 弹和木块两者发生的相对位移为木块的宽度。 (4)系统因摩擦产生的热量等于滑动摩擦力与两种 物体相对位移的乘积,且等于损失的机械能,即:
Q f s E
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
【例 2】设质量为 m 的子弹以初速度 v0 射向 静止在光滑水平面上的质量为M的木块,并 留在木块中不再射出,子弹钻入木块深度为 d 。求木块对子弹的平均阻力的大小和该过 程中木块前进的距离。
动量守恒定律10个模型
![动量守恒定律10个模型](https://img.taocdn.com/s3/m/6df76cd5afaad1f34693daef5ef7ba0d4a736d0e.png)
动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。
根据动量守恒定律,我们可以推导出许多有趣的模型和应用。
本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。
1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。
当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。
根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。
2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。
这样做的好处是简化计算,使得动量守恒定律更易于应用。
3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。
当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。
通过爆炸模型,我们可以计算出碎片的速度和动量。
4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。
当一个旋转物体发生转动时,它的动量也必须守恒。
转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。
5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。
在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。
在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。
它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。
8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。
通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。
9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。
高中物理第08章动量守恒 动量守恒定律应用 四种常见模型
![高中物理第08章动量守恒 动量守恒定律应用 四种常见模型](https://img.taocdn.com/s3/m/26135c7bcf84b9d528ea7a39.png)
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
在四种常见模型中应用动量守恒定律(解析版)
![在四种常见模型中应用动量守恒定律(解析版)](https://img.taocdn.com/s3/m/6b3ca01f302b3169a45177232f60ddccdb38e67a.png)
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。
2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。
动量守恒定律中的典型模型
![动量守恒定律中的典型模型](https://img.taocdn.com/s3/m/8ff17d6958fafab069dc02f3.png)
动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。
设木块对子弹的阻力F恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。
则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。
动量守恒定律10个模型
![动量守恒定律10个模型](https://img.taocdn.com/s3/m/15de1db7690203d8ce2f0066f5335a8102d26626.png)
动量守恒定律10个模型动量守恒定律是物理学中的基本定律之一,它描述了一个封闭系统中的总动量在没有外力作用下保持不变。
下面将介绍十个模型,以帮助我们更好地理解动量守恒定律。
1. 球的碰撞模型:当两个球以不同的速度相撞时,根据动量守恒定律,可以计算出碰撞后两球的速度。
2. 火箭发射模型:在火箭发射过程中,燃料的喷射速度越大,火箭的速度越快。
这符合动量守恒定律,因为燃料的喷射速度是一个外力,所以火箭的动量会发生改变。
3. 子弹射击模型:当一颗子弹射出时,子弹会带有一定的动量。
如果子弹击中一个静止的物体,根据动量守恒定律,可以计算出物体的运动速度。
4. 滑雪模型:滑雪运动中,滑雪者会借助滑雪板上的力,通过改变自身的动量来控制速度和方向。
这里的动量守恒定律可以帮助滑雪者更好地掌握滑雪技巧。
5. 跳水模型:跳水运动员在从高台跳水时,通过调整身体的动量分布,可以实现旋转和翻转动作。
动量守恒定律可以解释为什么跳水员在旋转过程中的速度会越来越快。
6. 棒球击球模型:当棒球被击中时,棒球会改变方向和速度。
根据动量守恒定律,可以计算出击球后棒球和球棒的动量变化。
7. 跑步模型:当人在奔跑时,每一步都会产生一个向后的力,这个力的大小和方向取决于人的动量变化。
动量守恒定律可以帮助我们理解为什么人在跑步时身体会向前移动。
8. 车辆碰撞模型:当两辆车发生碰撞时,根据动量守恒定律,可以计算出碰撞后车辆的速度和方向变化。
这对于交通事故的调查和分析非常重要。
9. 轮滑模型:轮滑运动员在滑行过程中可以通过改变身体的动量来改变速度和方向。
动量守恒定律可以帮助轮滑运动员更好地掌握技巧和平衡。
10. 舞蹈模型:舞蹈中的旋转动作可以通过改变身体的动量来实现。
动量守恒定律可以解释为什么舞者在旋转过程中能够保持平衡。
通过以上十个模型,我们可以看到动量守恒定律在各种物理现象中的应用。
这些模型不仅帮助我们理解动量守恒定律的概念,还能帮助我们解决实际问题,如交通事故调查、运动技巧的改进等。
动量守恒中几种常见的模型
![动量守恒中几种常见的模型](https://img.taocdn.com/s3/m/1111d07b0b1c59eef8c7b451.png)
模型四:
带弹簧的木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1的小物块 A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能 损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线 M处的墙上,另一端与质量为m2的档板B相连,弹簧处于原 长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的 动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能Ep(设弹簧处于原长 时弹性势能为零).
解:当人从船头走到船尾的过程中,人和船组成的系统都
在水平方向上不受力的作用,故系统水平方向动量守恒。
设某时刻人对地的速度为V2,船对地的速度为V1,则
mV2-MV1=0,即
V1 M V2 m
在人从船头走到船尾的过程中每一时刻系统的动量均守恒, 故mV2t-MV1t=0,即 m所s以2-Ms1 s1m=m0LM,而, ss21+msM2=LML。,
从AB碰撞到弹簧压缩最短过程:
1 2
m1
m2
v'2
Ep
W
代入数据得:Ep m12 gh μm1 m2gd
m1 m2
思考:如果题目让你求解整个系统所产生的热量和压缩 弹簧过程产生的热量,又该怎么求?
规律总结:带弹簧的木板与滑块的模型,可以分为三 个过程:A物体下滑过程,遵循的是机械能守恒定律或 动能定理; A物体碰撞B物体过程,由于内力远大于外力,遵循动 量守恒定律; A、B压缩弹簧的过程,又遵循能量守恒定律(摩擦力 做功,机械能不守恒),分清物理过程,应用物理规 律建立方程,是解决这类问题的关键。
动量守恒常见模型
![动量守恒常见模型](https://img.taocdn.com/s3/m/0c16e0c7284ac850ac02423d.png)
动量守恒常见模型1.子弹打木块类问题例1.设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理:①对木块用动能定理:②①、②相减得:总结:①对于这类型问题,系统的机械能不守恒,但是动量守恒②若,则s2<<d。
木块的位移很小,在处理问题时,可以忽略M的位移。
2.人船模型例2.质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?解析:先画出示意图。
人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L。
设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,∴总结:做这类题目,首先要画好示意图,要非凡注重两个物体相对于地面的移动方向和两个物体位移大小之间的关系。
3.相对滑动类型(包含弹簧类问题)例3.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m <M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B 开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(M m)v ①所以v= v0方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,则由动量守恒定律得:Mv0-mv0=Mv′ ①对板车应用动能定理得:-μmg s= mv′2/2- mv02/2②联立①②解得:s= v02总结:对于这类型的问题,一般情况下比较难,关键在于应用牛顿第二定律分析出物体的运动情况。
动量守恒中的常见模型
![动量守恒中的常见模型](https://img.taocdn.com/s3/m/ca371998852458fb760b56bf.png)
动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。
(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.【例题1】如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相同的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是()A.A开始运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时【例题2】如图所示,位于光滑水平面桌面上的小滑块P和Q都视作质点,质量相等。
Q与轻质弹簧相连。
设Q静止,P以某一初速度向Q 运动并与弹簧发生碰撞。
在整个过程中,弹簧具有最大弹性势能等于()A.P的初动能B .P的初动能的1/2C.P的初动能的1/3D.P的初动能的1/4【例题3】小球A和B的质量分别为mA 和mB 且mA»mB 在某高度处将A和B先后从静止释放。
动量守恒定律的典型模型及其应用+课件
![动量守恒定律的典型模型及其应用+课件](https://img.taocdn.com/s3/m/fb76f65291c69ec3d5bbfd0a79563c1ec4dad773.png)
动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。