Matlab基础:最短路径问题

合集下载

matlab的floyd算法

matlab的floyd算法

matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。

它是以发明者之一、罗伯特·弗洛伊德的名字命名的。

这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。

算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。

特别地,当i=j时,dist(i,j)=0。

为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。

则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。

算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。

具体来说,设S={1, 2, ⋯, k},其中k是整数。

Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。

最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。

Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。

这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。

算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现李志辉 刘争平(西南交通大学土木工程学院 成都 610031)摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。

关键词:最短路径法 射线追踪 MATLAB 数值模拟利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。

地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。

最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。

Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。

通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。

被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。

MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。

本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。

1 最短路径法射线追踪方法原理最短路径法的基础是Fermat 原理及图论中的最短路径理论。

其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。

网络中,速度场分布在离散的节点上。

相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。

将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。

matlab弗洛伊德算法求出最短距离

matlab弗洛伊德算法求出最短距离

最短路径Floyd算法
Floyd算法是一种用于解决最短路径问题的动态规划算法,其时间复杂度为O(n^3 )。

Floyd算法可以求出任意两点之间的最短路径,并且可以处理负权边(但不能处理负权环)。

算法思想
Floyd算法的基本思想是:对于图中的每一对顶点i和j,看看是否存在一个顶点k,使得从i 到k 再到j 比已知的路径更短。

如果是更短的,就修改当前路径为更短的那个路径。

算法步骤
1.初始化:将图中任意两点之间的最短路径长度初始化为它们之间的权值,如果两点之间没有直接的边,则权值为∞。

2.对于每一个中间节点k,依次考察所有的节点对(i,j),如果从i到j经过节点k比原来的路径更短,则更新最短路径长度。

3.最后得到的矩阵即为任意两点之间的最短路径长度。

Matlab代码
function [D,P] = floyd(W)
% W为邻接矩阵
% D为最短距离矩阵
% P为最短路径矩阵
n = size(W,1);
for k=1:n
for i=1:n
for j=1:n
if W(i,k)+W(k,j)<W(i,j)
W(i,j)=W(i,k)+W(k,j);
P(i,j)=k;
end
end
end
end。

matlab、lingo程序代码1-最短距离

matlab、lingo程序代码1-最短距离

例9 某公司在六个城市c1, c2, …c6 中有分公司,从ici到cj的直接航程票价记在下述矩阵的(I,j)位置上。

(∞表示无直接航路),请帮助该公司设计一张城市c1到其它城市间的票价最便宜的路线图。

clc,cleara=zeros(6);a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20;a(4,5)=10;a(4,6)=25;a(5,6)=55;a=a+a';a(find(a==0))=inf;pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));d(1:length(a))=inf;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));endd, index1, index2编写LINGO 程序如下:model:sets:cities/A,B1,B2,C1,C2,C3,D/;roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatan=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i)));@sum(roads(i,j)|i #eq#1:x(i,j))=1;@sum(roads(i,j)|j #eq#n:x(i,j))=1;endmodel:sets:cities/1..11/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=2;w(1,3)=8;w(1,4)=1;w(2,3)=6;w(2,5)=1;w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2;w(4,7)=9;w(5,6)=3;w(5,8)=2;w(5,9)=9;w(6,7)=4;w(6,9)=6;w(7,9)=3;w(7,10)=1;w(8,9)=7;w(8,11)=9;w(9,10)=1;w(9,11)=2;w(10,11)=4;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));end例12 用Floyd算法求解例9。

matlab中求最短路径的函数

matlab中求最短路径的函数

matlab中求最短路径的函数在matlab中,有多种方法可以求解最短路径问题。

其中,较为常用的方法包括Dijkstra算法、Bellman-Ford算法和Floyd算法等。

这些方法对应的函数分别为dijkstra、bellmanford和floyd。

以下是这些函数的使用方法:1. dijkstra函数dijkstra函数可以求解带权有向图的单源最短路径问题。

其使用方法如下:[d,path] = dijkstra(W,s,t)其中,W为带权邻接矩阵,s为源节点,t为目标节点。

函数返回最短路径长度d和路径path。

例如,假设有以下带权有向图:W = [0 1 12 0;0 0 9 3;0 0 0 0;0 0 4 0];其中,0表示两节点之间没有边相连。

则可以使用以下代码求解1号节点到4号节点的最短路径:[d,path] = dijkstra(W,1,4)最短路径长度为7,路径为[1 2 4]。

2. bellmanford函数bellmanford函数可以求解带权有向图的单源最短路径问题,但是可以处理负权边。

其使用方法如下:[d,path] = bellmanford(W,s,t)其中,W为带权邻接矩阵,s为源节点,t为目标节点。

函数返回最短路径长度d和路径path。

例如,假设有以下带权有向图:W = [0 1 12 0;-4 0 9 3;0 0 0 0;0 0 4 0];其中,负权边被用负数表示。

则可以使用以下代码求解1号节点到4号节点的最短路径:[d,path] = bellmanford(W,1,4)最短路径长度为-1,路径为[1 2 4]。

3. floyd函数floyd函数可以求解带权有向图的所有节点之间的最短路径问题。

其使用方法如下:[D,path] = floyd(W)其中,W为带权邻接矩阵。

函数返回最短路径长度矩阵D和路径矩阵path。

例如,假设有以下带权有向图:W = [0 1 12 0;0 0 9 3;0 0 0 0;0 0 4 0];则可以使用以下代码求解所有节点之间的最短路径:[D,path] = floyd(W)最短路径长度矩阵为:D = [0 1 10 4;Inf 0 9 3;Inf Inf 0 Inf;Inf Inf 4 0];其中,Inf表示两节点之间不存在路径。

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题摘要:一、Dijkstra 算法简介1.Dijkstra 算法背景2.Dijkstra 算法原理二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象2.计算最短路径3.可视化结果三、Dijkstra 算法应用示例1.例题描述2.解题步骤3.结果分析正文:一、Dijkstra 算法简介Dijkstra 算法是一种经典的图论算法,用于计算图中两个节点之间的最短路径。

它是由荷兰计算机科学家Edsger W.Dijkstra 于1956 年提出的,其基本思想是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

可以用堆优化来提高效率。

二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象首先,我们需要使用MATLAB 的graph 函数创建一个图对象,指定节点和边的信息。

例如,我们创建一个简单的图,包含4 个节点和3 条边:```matlabG = graph(4, 3);```其中,4 表示图中有4 个节点,3 表示图中有3 条边。

2.计算最短路径接下来,我们可以使用MATLAB 的shortestpath 函数计算两个节点之间的最短路径。

例如,我们计算节点1 到节点3 的最短路径:```matlabSP = shortestpath(G, 1, 3);```3.可视化结果最后,我们可以使用MATLAB 的plot 函数将最短路径可视化。

例如,我们绘制节点和边以及最短路径:```matlabplot(G, SP);```三、Dijkstra 算法应用示例以下是一个使用Dijkstra 算法求解最短路径的例题:在一个图中,有4 个节点和3 条边,如下所示:```1 --2 -- 3| /| /| /| /|/4```请问,节点1 到节点4 的最短路径是多少?。

MATLAB解决最短路径问题代码

MATLAB解决最短路径问题代码

默认是Dijkstra 算法是有权的, 我想如果把权都赋1的话, 就相当于没权的了参数是带权的稀疏矩阵及结点看看这两个例子(一个有向一个无向), 或许你能找到你想知道的% Create a directed graph with 6 nodes and 11 edgesW = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; %这是权DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W) %有权的有向图h = view(biograph(DG,[],'ShowWeights','on')) %画图, 这个好玩% Find shortest path from 1 to 6[dist,path,pred] = graphshortestpath(DG,1,6) %找顶点1到6的最短路径% Mark the nodes and edges of the shortest pathset(h.Nodes(path),'Color',[1 0.4 0.4]) %上色edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));set(edges,'LineColor',[1 0 0]) %上色set(edges,'LineWidth',1.5) %上色下面是无向图的例子% % Solving the previous problem for an undirected graph% UG = tril(DG + DG')% h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on')) % % Find the shortest path between node 1 and 6% [dist,path,pred] = graphshortestpath(UG,1,6,'directed',false)% % Mark the nodes and edges of the shortest path% set(h.Nodes(path),'Color',[1 0.4 0.4])% fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));% revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID')); % edges = [fowEdges;revEdges];% set(edges,'LineColor',[1 0 0])% set(edges,'LineWidth',1.5)clc;close all; clear;load data;% global quyu;quyu = [2,3];%一片区域z_jl = lxjl(jdxx,lxxh);%计算路线的距离z = qyxz(jdxx,quyu,z_jl);% 根据节点信息,从z中将y区域的节点和路线选出所有点的信息hzlx(z);%绘制Z的图像[qypt, nqypt] = ptxzm(xjpt,quyu);changdu = length(bhxz(jdxx,1:6));%选出x中y区的标号,只是分区域,求长度并绘制它tt = z(:,[1,2,end])';k = min(min(tt(1:2,:)));%求两次最小值t = tt(1:2,:) ;xsjz = sparse(t(2,:),t(1,:),tt(3,:),changdu,changdu);%产生稀疏矩阵[dist, path, pred] = zdljxz(xsjz, qypt, k );%三个原包矩阵通过zdljxz计算得到最短路径hold onfor j = 1:nqyptcolors = rand(1,3);%产生随机数并用颜色标记hzptxc(path{j},jdxx,colors)endhold offaxis equal%把坐标轴单位设为相等zjd = jdfgd( path, quyu);function z = lxjl(x, y)%计算路线的距离[m n] = size(y);for i = 1:myy(i,1:2) = x(y(i,1),2:3);yy(i,3:4) = x(y(i,2),2:3);endz = sqrt((yy(:,3) - yy(:,1)).^2 + (yy(:,2) - yy(:,4)).^2);y = sort(y');y = y';z = [y yy z];z = sortrows(z);function [z lz] = ptxz(xjpt,y)pt = xjpt(:,2);wei = ismember(xjpt(:,1),y);z = pt(wei);lz = length(z);unction hzptxc(path,jdxx,colors)n = length(path);% hold onfor i = 1:nhzptjd(jdxx, path{i},colors)end% hold offunction hzptjd(jdxx,x,colors)% m = length(x);% x = x';hold onplot(jdxx(x,2),jdxx(x,3),'o','LineStyle' ,'-' ,...'Color',colors,'MarkerEdgeColor',colors)plot(jdxx(x(1),2),jdxx(x(1),3),'*','MarkerFaceColor',colors)hold offfunction hzlx(x)%绘制x的图像[m n] = size(x);hold onfor i = 1:mplot([x(i,3) x(i,5)],[x(i,4) x(i,6)],'k:')endhold offfunction z = bhxz(x,y)%选出x中y区的标号,只是分区域xzq = x(:,4);xzr = ismember(xzq,y);z = x(xzr,:);z = z(:,1);。

matlab实现dijkstra算法

matlab实现dijkstra算法

matlab实现dijkstra算法Matlab实现Dijkstra算法第一段:什么是Dijkstra算法,为什么它重要?Dijkstra算法是一种用于解决最短路径问题的经典算法。

它由荷兰计算机科学家Edsger Dijkstra在1956年提出,被广泛应用于网络路由、地图导航和图论等领域。

该算法的核心思想是在给定的带权图中找到从起点到终点的最短路径,通过迭代的方式逐步推进,直到找到最短路径或处理完所有节点。

Dijkstra算法被广泛认为是一种高效、可靠的解决方案,具有良好的理论基础和实际应用性。

第二段:如何在Matlab中实现Dijkstra算法?在Matlab中实现Dijkstra算法,可以分为以下几个步骤:1. 创建带权图:我们需要将问题转化为带权图的形式。

在Matlab中,可以使用邻接矩阵来表示图的连接关系,其中每个边的权重存储在矩阵中的对应位置。

2. 初始化距离和路径:将起点到每个节点的距离初始化为无穷大,并为每个节点设置一个空路径。

将起点的距离设置为0,表示起点到自身的距离为0。

3. 遍历节点:循环遍历所有节点,找到距离起点最近的节点,并标记为已访问。

更新与该节点相邻节点的距离和路径信息。

如果经过当前节点到达某个相邻节点的距离更短,则更新该节点的距离和路径。

4. 重复步骤3,直到所有节点都被遍历为止。

这样,我们就能得到从起点到其他节点的最短路径信息。

第三段:个人观点和理解Dijkstra算法是解决最短路径问题的经典算法之一,它具有广泛的应用价值。

在日常生活中,我们经常需要找到最佳的路径规划,例如快递员送货时选择最短路径、地铁或公交车乘客选择最快到达目的地的路线等。

对于这些问题,Dijkstra算法可以提供一个可靠、高效的解决方案。

在使用Matlab实现Dijkstra算法时,我们可以利用Matlab强大的矩阵运算能力和易用的函数库来简化算法的实现过程。

Matlab还提供了丰富的可视化工具,可以帮助我们直观地展示算法执行过程和结果。

基于MATLAB的最短路径算法分析

基于MATLAB的最短路径算法分析

基于MATLAB的最短路径算法分析周志进(贵阳学院贵州贵阳550005)摘要:随着社会快速发展,人们生活水平提高,很多需求都在向着最优化、最快捷、最高效的方向延伸,而最短路径算法则是图论研究中的典型问题。

该文简要概述MATLAB软件,分析基于MATLAB的4种用于解决最短路径问题的算法,并研究基于MATLAB的最短路径算法的实际应用状况,以期对最短路径算法的应用提供一定借鉴意义。

关键词:MATLAB最优路径Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法中图分类号:TP301.6文献标识码:A文章编号:1672-3791(2022)08(a)-0217-03最短路径算法就是用于计算一个节点到其他节点的最短路径问题,一般是指确定起点的最短路径问题,求起始节点到某一终点的最短路径问题,也常用于已知起点和终点,求解两节点之间的最短路径。

1MATLAB程序概述MATLAB是由美国MathWorks公司出品的数学软件,MATLAB意为矩阵工程,将用于一维、二维与三维数值积分的函数进行了统一,并经过基本数学和内插函数的辅助,提供数值分析、矩阵计算等诸多功能,为应用数学、工程设计和数值计算提供全方位的解决方案,很大程度上摆脱了传统程序设计语言的编辑模式。

其高效的数值及符号计算功能,可以帮助用户快速处理繁杂的数学运算问题,具备的图形处理功能可以实现计算结果和编程的可视化。

MATLAB本身是一个高级的矩阵语言,包括诸多算法、控制语句、函数等面向基本对象或问题的应用程序[1]。

比如:在最短路径计算中可以利用矩阵运算和线性方程组的求解或是数据的统计分析来优化相关问题。

2基于MATLAB的4种最短路径算法2.1Dijkstra算法Dijkstra(迪杰斯特拉)算法是最经典的单源最短路径算法,也就是用于计算一个节点到其他所有节点最短路径的算法。

Dijkstra算法采用贪心算法策略,每次遍历与起点距离最近且未访问过的节点,直至扩展到终点。

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题Dijkstra算法是一种用于在带有非负权值的图中找到单源最短路径的算法。

以下是一个用MATLAB实现Dijkstra算法求解最短路径的简单例子:function [shortestDistances, predecessors] = dijkstra(graph, startNode)% 输入参数:% - graph: 表示图的邻接矩阵,graph(i, j) 表示节点i 到节点 j 的权值,如果没有直接连接则为 inf。

% - startNode: 起始节点的索引。

numNodes = size(graph, 1);% 初始化距离数组,表示从起始节点到每个节点的最短距离 shortestDistances = inf(1, numNodes);shortestDistances(startNode) = 0;% 初始化前驱节点数组predecessors = zeros(1, numNodes);% 未访问的节点集合unvisitedNodes = 1:numNodes;while ~isempty(unvisitedNodes)% 选择当前最短距离的节点[~, currentNodeIndex] = min(shortestDistances(unvisitedNodes));currentNode = unvisitedNodes(currentNodeIndex);% 从未访问节点集合中移除当前节点unvisitedNodes(currentNodeIndex) = [];% 更新与当前节点相邻节点的距离for neighbor = unvisitedNodesif graph(currentNode, neighbor) + shortestDistances(currentNode) < shortestDistances(neighbor) shortestDistances(neighbor) = graph(currentNode, neighbor) + shortestDistances(currentNode);predecessors(neighbor) = currentNode;endendendend现在,让我们使用一个简单的例子来测试这个算法:% 创建一个邻接矩阵表示图graph = [0, 2, 0, 4, 0;2, 0, 3, 7, 0;0, 3, 0, 1, 0;4, 7, 1, 0, 5;0, 0, 0, 5, 0];startNode = 1; % 起始节点% 调用Dijkstra算法[shortestDistances, predecessors] = dijkstra(graph, startNode);% 显示结果disp('最短距离:');disp(shortestDistances);disp('前驱节点:');disp(predecessors);这个例子中,graph 表示一个带有权值的图的邻接矩阵,startNode 是起始节点的索引。

matlab 最短路径

matlab 最短路径

matlab 最短路径
Matlab最短路径算法是一种经典的图论算法,主要用于在给定的图中找到两个节点之间的最短路径。

在Matlab中,可以使用Dijkstra算法或Floyd算法来实现最短路径的计算。

Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。

它从起点开始,依次加入离该点最近的邻居节点,并更新最短路径,直到所有节点都被加入。

Dijkstra算法的时间复杂度为O(n^2),适用于稠密图。

Floyd算法是一种动态规划算法,用于求解所有点对之间的最短路径。

它通过中间节点的枚举,逐步更新路径长度,直到所有点对的最短路径都被求解出来。

Floyd算法的时间复杂度为O(n^3),适用于稀疏图。

在Matlab中,可以使用built-in函数graph和shortestpath 来实现最短路径的计算。

代码示例:
% 创建图
G = graph([1 2 3 4 4 5 6],[2 3 4 5 6 6 1]);
% 使用Dijkstra算法求解最短路径
[dist,path,pred] = shortestpath(G,1,5);
% 输出结果
disp(dist);
disp(path);
disp(pred);
% 使用Floyd算法求解最短路径
dist = floyd(G);
% 输出结果
disp(dist);
以上就是Matlab最短路径算法的简要介绍和代码示例。

在实际应用中,需要根据具体问题选择合适的算法,并注意算法的时间复杂度和空间复杂度,以及图的特征。

matlab 点到线段最短距离

matlab 点到线段最短距离

matlab 点到线段最短距离摘要:1.问题背景2.MATLAB 编程求解点到线段最短距离3.总结与拓展正文:1.问题背景在计算机图形学、机器人导航等领域,点到线段的最短距离是一个常见问题。

给定一个点P 和一条线段AB,求点P 到线段AB 的最短距离。

这个问题可以通过数学方法求解,也可以通过编程实现。

MATLAB 作为一种功能强大的数学软件,可以方便地实现点到线段最短距离的计算。

2.MATLAB 编程求解点到线段最短距离假设线段AB 的两个端点分别为A(x1, y1) 和B(x2, y2),点P 的坐标为P(x, y)。

我们可以通过以下步骤使用MATLAB 求解点到线段的最短距离:(1) 计算向量AB 和向量AP。

% 向量ABAB = [x2 - x1, y2 - y1];% 向量APAP = [x - x1, y - y1];(2) 计算向量AB 和向量AP 的点积。

% 点积dot_product = AB * AP;(3) 计算向量AB 的模长。

% 模长AB_magnitude = sqrt(AB(1)^2 + AB(2)^2);(4) 计算点到线段的最短距离。

% 最短距离min_distance = abs(dot_product) / AB_magnitude;(5) 输出结果。

fprintf("点P 到线段AB 的最短距离为:%f", min_distance);1.总结与拓展本文介绍了如何使用MATLAB 求解点到线段最短距离的问题。

通过计算向量的点积和模长,可以得到点到线段的最短距离。

MATLAB 具有丰富的函数和良好的图形界面,可以方便地解决各种数学问题。

在实际应用中,点到线段最短距离问题可能需要针对不同场景进行优化和拓展,如考虑线段的斜率、角度等参数。

贝尔曼福特算法matlab

贝尔曼福特算法matlab

贝尔曼福特算法matlab贝尔曼-福特算法也叫作最短路径算法,主要用于求解一个有向图中从一个源节点到其他所有节点的最短路径。

在MATLAB中,可以按照以下步骤来实现该算法:1. 定义有向图(可使用MATLAB自带的graph类)和源节点。

例如,定义一个3个节点的有向图,并将节点1作为源节点:```g = graph([1 1 2], [2 3 3]);s = 1;```2. 初始化节点到源节点的距离数组dist和前驱节点数组prev。

一开始,源节点到自身距离为0,前驱节点为空。

例如,对于上例中的有向图,初始化dist数组为[0 inf inf],prev数组为[NaN NaN NaN]:```dist = inf(1, numnodes(g));dist(s) = 0;prev = NaN(1, numnodes(g));```3. 多次进行松弛操作,更新dist和prev数组的值。

松弛操作是指尝试将经过一个节点的路径变短。

例如,对于有向图中所有的边,重复松弛操作V-1次(其中V为节点数):```for i = 1:numnodes(g)-1for e = g.Edges.EndNodes.' % 转置得到每一条边的起点和终点u = e(1);v = e(2);w = g.Edges.Weight(findedge(g, u, v)); % 找到边的权重if dist(v) > dist(u) + wdist(v) = dist(u) + w;prev(v) = u;endendend```4. 检查是否存在负环路(即从一个节点出发,最终回到该节点时,路径的总权重为负数)。

如果存在,该算法无法得到正确结果。

可以通过第二遍遍历来检查。

例如,对于有向图中所有的边,进行第二遍松弛操作。

如果任何节点的dist值继续变小,则说明存在负环路。

```for e = g.Edges.EndNodes.'u = e(1);v = e(2);w = g.Edges.Weight(findedge(g, u, v));if dist(v) > dist(u) + werror('该有向图存在负环路!');endend```5. 根据prev数组,构建从源节点到所有其他节点的最短路径。

dijkstra matlab 代码

dijkstra matlab 代码

Dijkstra算法是一种用于寻找图中单源最短路径的算法,由荷兰计算机科学家艾兹赫·迪科斯彻尔(Edsger Dijkstra)于1956年提出。

它主要用于计算从一个节点到其他所有节点的最短路径,通过不断更新起始节点到其他节点的最短距离来实现。

Dijkstra算法的基本思想是利用贪心算法,不断更新起始节点到其他节点的最短距离,直到所有节点的最短路径都被找到。

这个过程中,算法会维护一个距离数组,来记录起始节点到其他节点的最短距离,通过不断更新这个数组来找到最短路径。

对于一幅图G,Dijkstra算法可以描述如下:1. 初始化起始节点到其他所有节点的距禫数组,将起点到自己的距离设为0,其他节点的距离设为无穷大。

2. 从起始节点开始,选择距离数组中距离最小的节点,标记为已访问。

3. 遍历该节点的所有邻接节点,更新距离数组中的距离,如果有更短的路径,则更新距离数组。

4. 重复步骤2和3,直到所有节点都被访问过。

在Matlab中,我们可以通过编写Dijkstra算法的代码来实现对图的最短路径计算。

下面是一个简单的Dijkstra算法的Matlab实现:```matlabfunction [dist, path] = Dijkstra(graph, start)n = length(graph); 获取图的节点个数dist = inf(1, n); 距离数组初始化为无穷大path = ones(1, n) * -1; 路径数组初始化为-1visited = false(1, n); 标记数组初始化为falsedist(start) = 0; 起始节点到自己的距离为0for i = 1:n[mindist, u] = min(dist(~visited)); 找到距离数组中未访问节点的最小值以及对应的节点visited(u) = true; 标记该节点为已访问for v = 1:nif ~visited(v) graph(u, v) > 0 dist(u) + graph(u, v) < dist(v) 如果节点未访问且存在边u到v,并且通过u到v的距离小于dist(v) dist(v) = dist(u) + graph(u, v); 更新起始节点到v的距离path(v) = u; 记录最短路径中v的前驱节点endendendend```在这段Matlab代码中,我们首先定义了一个函数Dijkstra,输入参数为图graph和起始节点start,输出参数为距离数组dist和路径数组path。

matlab最短路径算法

matlab最短路径算法

Matlab提供了多种用于计算最短路径的算法和工具。

其中最常用的是Dijkstra算法和Bellman-Ford算法。

以下是这两种算法的简要介绍以及如何在Matlab中使用它们:1. **Dijkstra算法**:- Dijkstra算法用于找到从一个起始节点到所有其他节点的最短路径。

- 在Matlab中,您可以使用`graph` 和`shortestpath` 函数来实现。

首先,创建一个图对象,然后使用`shortestpath` 函数来计算最短路径。

```matlab% 创建一个有向图对象G = digraph([1 1 2 3], [2 3 4 4]);% 计算从节点1到所有其他节点的最短路径[distances, path, pred] = shortestpath(G, 1, 'Method','Dijkstra');```2. **Bellman-Ford算法**:- Bellman-Ford算法用于计算单源最短路径,允许存在负权边,但不能存在负权环。

- 在Matlab中,您可以使用`bellmanford` 函数来实现。

```matlab% 创建一个有向图的权重矩阵weights = [0 5 inf inf; inf 0 2 inf; inf inf 0 1; inf inf inf 0];% 计算从节点1到所有其他节点的最短路径[distances, path, predecessor] = bellmanford(weights, 1);```这些算法可以根据您的需求选择。

请根据您的具体问题和数据设置来决定使用哪种算法来计算最短路径。

同时,请确保您已在Matlab中加载相关的图论工具箱。

基于MATLAB求解任意城市间的最短路问题

基于MATLAB求解任意城市间的最短路问题
维普术
本栏 责 辑: 桂 目 任编 李 瑾
基于 MA L T AB求解任意城市 间的最短路 问题
李 涛 ’张 静 .
(. 徽 理 工 大学 , 徽 淮南 2 2 0 ;、 西 九 江 学 院 理 学 院 , 西 九 江 32 0 ) 1 安 安 30 12江 江 3 0 5 摘 要 : 文 首 先 介 绍 最 短 路 问题 的 数 学 模 型 及 Di sa算 法 , 本 jt kr 紧接 着采 用 Di sa算 法 的 改 进 算 法— — F y jt kr 1 d算 法 , 后 将 求城 市道 o 然
J 其他 ∞
随 着 计算 机 的 出 现 和发 展 , 图论 的研 究 得 到 广泛 重 视 ,如 2 0 世纪 5 0年 代 的 Djsa算 法 ,0年 代 的 Fod算 法 ,但 是 关 于 最 i t kr 6 l y 短 路 问题 的研 究 却 在 7 0年 代 至 8 0年 代 发 展 缓 慢 ,然 而进 入 9 0 年 代 后 , 着 信 息 科 学 、 代 通 讯 、 能 网 络 的发 展 , 出 现 了 一 随 现 智 又 些 新 的 问题 . 些 问 题 基 本 上 是 最 短 路 问 题 的 变 形 , 这 因此 关 于 最 短 路 问 题 的 变 形 的 研 究 又 开 始 活 跃 起 来 , 在 已经 有 很 多 的 学 者 现 开 始 对这 个 问题 进 行 研 究 了 。 最短 路径 问题 (P作 为 图 论 中 的 ~ S1 个 典 范 问题 , 已 经被 应 用 于 众 多 领 域 。在 网络 通 信 领 域 , 息 包 它 信 传 递 的 路 径 选 择 问 题 也 与 最 短 路 径 问 题 息 息 相 关 , 且解 决 最 短 并 路 径 问题 的算 法 在 诸 多 工程 领 域 都 有 较 强 的实 用 价 值 。 最 短 路 问题 是 网络 优 化 中 的 一个 经 典 问 题 ,已很 好 地 解 决 , 许 多优 化 问题 都 可 以使 用 这 个 模 型 , 如说 设 备 更 新 、 道 铺 设 、 比 管 线 路 安 排 、 区 布局 等 等 。 于 怎样 求 解 最 短 路 问 题 , 们 有 动 态 厂 对 我

matlab最短路径问题

matlab最短路径问题

在MATLAB中解决最短路径问题,你可以使用内置的`shortestpath`函数。

这个函数用于查找从一个点到另一个点的最短路径。

这是一个简单的例子:
```matlab
创建一个图形
nodes = [1 2 3 4 5];
edges = [1 2 2 3 3 4 4 5];
G = graph(nodes,edges);
找到从节点1到节点5的最短路径
[start, target] = shortestpath(G, 1, 5);
```
在这个例子中,我们首先定义了图中的节点和边。

然后,我们使用`graph`函数创建了一个图。

最后,我们使用`shortestpath`函数来找到从节点1到节点5的最短路径。

`shortestpath`函数返回两个向量:`start`和`target`。

`start`包含了路径中每个节点的起始节点,而`target`包含了路径中每个节点的目标节点。

需要注意的是,MATLAB的图形和网络工具箱是执行此类任务所必需的。

如果你没有安装这个工具箱,你需要先进行安装。

matlab 点到线段最短距离

matlab 点到线段最短距离

matlab 点到线段最短距离在MATLAB中,我们可以使用不同的方法来计算点到线段的最短距离。

这篇文章将一步一步地回答如何在MATLAB中实现这个任务。

1. 首先,我们需要明确问题。

我们要计算的是点到线段的最短距离,其中线段由两个点定义。

我们可以将这个问题分解为两部分:点到直线的最短距离和点到线段端点的最短距离。

2. 对于点到直线的最短距离,我们可以使用向量的方法来实现。

给定一个直线,可以使用两点坐标表示为(x1, y1)和(x2, y2)。

我们还需要一个额外的点的坐标(xp, yp),代表我们要计算最短距离的点。

我们可以使用向量的投影来计算最短距离。

首先,我们需要计算直线的方向向量V和一个指向目标点的向量W。

V = [x2x1, y2y1]W = [xpx1, ypy1]然后,我们将向量W投影到向量V上,得到向量P。

W_proj_V = dot(W, V) / dot(V, V)P = W_proj_V * V最后,我们可以计算点到直线的最短距离d。

d = norm(P W)在MATLAB中,我们可以以以下方式实现这个计算:matlabfunction d = point_to_line_distance(x1, y1, x2, y2, xp, yp)V = [x2x1, y2y1];W = [xpx1, ypy1];W_proj_V = dot(W, V) / dot(V, V);P = W_proj_V * V;d = norm(P W);end3. 对于点到线段端点的最短距离,我们可以使用向量的长度来计算。

我们需要计算点到线段两个端点的距离,然后选取最小值作为最短距离。

我们可以使用以下公式来计算点到端点的距离:d1 = norm([xp x1, yp y1])d2 = norm([xp x2, yp y2])d = min(d1, d2)在MATLAB中,我们可以编写一个函数来计算点到线段端点的最短距离:matlabfunction d = point_to_endpoints_distance(x1, y1, x2, y2, xp, yp) d1 = norm([xp x1, yp y1]);d2 = norm([xp x2, yp y2]);d = min(d1, d2);end4. 现在,我们可以将这两个函数组合起来,以计算点到线段的最短距离。

matlab 点到线段最短距离

matlab 点到线段最短距离

matlab 点到线段最短距离(原创版)目录一、引言二、点到线段的距离计算方法1.计算点到线段的垂足2.计算点到线段的两个端点的距离3.计算最短距离三、MATLAB 实现点到线段最短距离的函数四、结论正文一、引言在几何学中,点到线段的距离问题是一个基本问题。

在 MATLAB 中,我们可以通过编程实现点到线段的最短距离的计算。

本文将从点到线段的距离计算方法入手,介绍如何在 MATLAB 中实现点到线段最短距离的函数,并举例说明其应用。

二、点到线段的距离计算方法点到线段的距离计算方法可以分为以下几个步骤:1.计算点到线段的垂足:假设点 P(x0, y0, z0) 到线段 AB 的两个端点 A(x1, y1, z1) 和 B(x2, y2, z2),首先我们需要计算点 P 到线段 AB 的垂足 H。

可以通过计算向量 PA 和向量 PB 的点积来找到垂足H,公式为:HP·AB = 0,其中 AB = (x2 - x1, y2 - y1, z2 - z1) 是线段 AB 的方向向量。

解这个方程组,可以得到垂足 H 的坐标。

2.计算点到线段的两个端点的距离:计算点 P 到线段 AB 的两个端点 A 和 B 的距离,分别为 PA 和 PB。

3.计算最短距离:最短距离就是 PA 和 PB 中的较小值。

三、MATLAB 实现点到线段最短距离的函数在 MATLAB 中,我们可以通过编写一个函数来实现点到线段最短距离的计算。

以下是一个简单的示例:```matlabfunction dist = pointToLineSegment(P, A, B)% P: 点的坐标 (x0, y0, z0)% A: 线段的一个端点的坐标 (x1, y1, z1)% B: 线段的另一个端点的坐标 (x2, y2, z2)% 计算向量PA = P - A;PB = P - B;% 计算点到线段的两个端点的距离PA_norm = norm(PA);PB_norm = norm(PB);% 计算最短距离dist = min(PA_norm, PB_norm);end```四、结论通过以上分析和示例,我们可以看到在 MATLAB 中,可以通过编写函数实现点到线段最短距离的计算。

MATLAB编程:最短路问题

MATLAB编程:最短路问题
( 2 ) 更 新 l ( v ) 、 z ( v ) : v S V \ S ,若 l ( v ) > l ( u ) W ( u , v )
z 则 令 l(v ) = l(u ) W (u , v ) , (v ) = u
( 3) 设 v 是 使 l(v ) 取 最 小 值 的 S
定 义 3 ( 1 ) 设 P (u ,v)是 赋 权 图 G 中 从 u 到 v 的 路 径 , 则 称 w(P)
e E ( P )
w (e) 为 路 径
P 的权.
(2 )
在赋权图 G 中,从顶点 u 到顶点 v 的具有最小权的路
P (u , v ) , 称 为 u 到 v 的 最 短 路 .
u2
u 6
6
u5
图 G 的 边 为 边 集 的 图 G 的 子 图 , 称 为 G 的 由 V 1 导 出 的 子 图 , 记 为 G[V 1 ]. (3)设 E 1 E ,且 E 1 ,以 E 1 为 边 集 ,E 1 的 端 点 集 为 顶 点 集 的 图 G 的 子 图 , 称 为 G 的 由 E 1 导 出 的 子 图 ,记 为 G[E 1 ].
返回
邻接矩阵
对 无 向 图 G , 其 邻 接 矩 阵 A ( a ij ) , 其 中 :
a ij
1 0
若 v i 与 v j 相邻 若 v i 与 v j 不相邻
v1 A= 0 1 0 1 v2 1 0 1 1 0 1 0 1
注:假设图为简单图
返回
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的 数目(环 算两次) 称 为 v 的 次 数 , 记 为 d (v). (2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记 为 d + ( v), 从 顶 点 v 引 入 的 边 的 数 目 称 为 的 入 度 , 记 为 d - (v), d ( v)= d + ( v)+ d - ( v) 称 为 v 的 次 数 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

for i=1:n
if nargin==3
for j=1:n
min1=D(start,terminal);
if D(i,j)~=inf
m(1)=start;
path(i,j)=j;
i=1;
end, end, end
2) 有向图、无向图和混合图;
3) 权非负.
算法思路:
采用标号作业法,每次迭代产生一个永久标号, 从而生长一颗以v0为根的最短路树,在这颗树上每 个顶点与根节点之间的路径皆为最短路径.
Dijkstra算法——算法步骤
S: 具有永久标号的顶点集; l(v): v的标记; f(v):v的父顶点,用以确定最短路径;
L=length(path);
path=path(L:-1:1);
end, end
if ins==0
v=i;
if label(v)>(label(u)+w(u,v))
label(v)=(label(u)+w(u,v)); f(v)=u;
end, end, end
v1=0;
k=inf; for i=1:n
for i=1:n
① ins=0;
for j=1:length(s) if i==s(j) ins=1;
min=label(terminal);
path(1)=terminal;
i=1;
while path(i)~=start
path(i+1)=f(path(i));
i=i+1 ; end

path(i)=start;
最短路径问题
参考书: 1.傅鹂 龚劬 刘琼荪 何中市 《数学实验》科学出版社 2.张绍民 李淑华 《数据结构教程C语言版》中国电力出版社
主要内容
引例1:最短运输路线问题 引例2:最廉价航费表的制定 Dijkstra算法 Floyd算法 两个例子的求解
引例1:最短运输路线问题
如图的交通网络,每条弧上的数字代表车辆在该路段行 驶所需的时间,有向边表示单行道,无向边表示可双向 行驶。若有一批货物要从1号顶点运往11号顶点,问运 货车应沿哪条线路行驶,才能最快地到达目的地?
MATLAB程序(Dijkstra算法)
function [min,path]=dijkstra(w,start,terminal)
n=size(w,1); label(start)=0; f(start)=start;
for i=1:n if i~=start label(i)=inf;
end, end s(1)=start; u=start; while length(s)<n
的路径中权最小者 P*(u,v)称为u到v的最短路径.
2
8 177
33 54
5
6 1 12
9 62
5 10 11
8
8
3 99
7 2 10
2
5
最短路径算法
Dijkstra算法
使用范围:
2
8 177
8
8
3354
5
61 1
9 9
6 2 5 12 11
3
9
7 210Fra bibliotek0 21) 寻求从一固定顶点到其余各点的最短路径;
Floyd算法
使用范围:
2
8 177
8
8
3354
5
61 1
9 9
6 2 5 12 11
3
9
7 2
10
0 2
1) 求每对顶点的最短路径;
2) 有向图、无向图和混合图;
算法思想:
直接在图的带权邻接矩阵中用插入顶点的方法依次
递推地构造出n个矩阵D(1), D(2), …, D(n), D(n)是 图的距离矩阵, 同时引入一个后继点矩阵记录两点 间的最短路径.
调用格式为 [min,path]=dijkstra(w,start,terminal), 其中输入变量w为所求图的带权邻接矩阵,start, terminal分别为路径的起点和终点的号码。返回start 到terminal的最短路径path及其长度min. 注意:顶点的编号从1开始连续编号。
9
最短路径算法

ins=0;
for j=1:length(s)
if i==s(j)
ins=1;
end, end
if ins==0
v=i;
if k>label(v)
k=label(v); v1=v;
end, end, end
s(length(s)+1)=v1;
u=v1;
end
最短路径算法
Dijkstra算法程序的使用说明:
廉价路线航费表。
0 50 40 25 10
50 0 15 20 25
15 0 10 20
40 20 10 0 10 25
25 20 10 0 55
10 25 25 55 0
4
最短路径问题
定义:设P(u,v)是加权图G中从u到v的路径,则该路
径上的边权之和称为该路径的权,记为w(P). 从u到v
2
8 177
8
8
33 54
5
6 1 12
9 62
5 10 11
9
3
9
7 2 10
2
3
引例2:最廉价航费表的制定
某公司在六个城市C1,C2,C3,C4,C5,C6都有分公司, 公司成员经常往来于它们之间,已知从Ci到Cj的直达航 班票价由下述矩阵的第i行,第j列元素给出(表示无
直达航班),该公司想算出一张任意两个城市之间的最
d(i,j)d(i,k)+d(k,j) , path(i,j)path(i,k) , k k+1 3)重复2)直到k=n+1
MATLAB程序(Floyd算法)
function [D,path,min1,path1]=floyd(a,start,terminal)
D=a;n=size(D,1);path=zeros(n,n);
输入加权图的带权邻接矩阵w=[w(vi,vj)]nxm. 1) 初始化 令l(v0)=0,S=; vv0 ,l(v)=; 2) 更新l(v), f(v)
寻找不在S中的顶点u,使l(u)为最小.把u加入到S中, 然后对所有不在S中的顶点v,如l(v)>l(u)+w(u,v),则 更新l(v),f(v), 即 l(v)l(u)+w(u,v),f(v)u; 3) 重复步骤2), 直到所有顶点都在S中为止.
Floyd算法——算法步骤
d(i,j) : i到j的距离; path(i,j): i到j的路径上i的后继点; 输入带权邻接矩阵a(i,j). 1)赋初值
对所有i,j, d(i,j)a(i,j) , path(i,j)j,k=l. 2)更新d(i,j) , path(i,j)
对所有i,j, 若d(i,k)+d(k,j)<d(i,j),则
相关文档
最新文档