吉林省第二实验学校2019-2020年九年级(上)第三次月考数学试卷 解析版

合集下载

2019-2020学年吉林省第二实验学校九年级(上)第二次月考数学试卷解析版

2019-2020学年吉林省第二实验学校九年级(上)第二次月考数学试卷解析版

2019-2020学年吉林省第二实验学校九年级(上)第二次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)2019的相反数是()A.2019B.﹣2019C.D.﹣2.(3分)长春市地铁6号线于2019年9月底开工,工程总投资预计12,400,000,000元,12,400,000,000用科学记数法表示为()A.1.24×1011B.1.24×108C.1.24×1010D.0.124×10113.(3分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣4.(3分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的5.(3分)关于x的一元二次方程x2+4x+k=0有实数解,则k的取值范围是()A.k≥4B.k≤4C.k>4D.k=46.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米7.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=08.(3分)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4D.3二、填空题(共6小题,每小题3分,满分18分)9.(3分)分解因式:a2﹣5a=.10.(3分)不等式1﹣x≥2的解集是.11.(3分)如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.12.(3分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.13.(3分)将抛物线y=x2﹣4x+1向右平移1个单位后,得到新抛物线的解析式为.14.(3分)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为0,则a的取值范围是.三、解答题(共10小题,满分78分)15.(6分)学校在“我和我的祖国”快闪拍摄活动中,为学生租用服装.其中5名男生和3名女生共需服装费190元;3名男生的租服装的费用与2名女生的租服装的费用相同.求每位男生和女生的租服装费用分别为多少元?16.(6分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、y轴的正半轴.抛物线y=﹣x2+bx+c经过B,C两点,点D为抛物线的顶点,连接AC,BD,CD.(1)求此抛物线的解析式;(2)求此抛物线顶点D的坐标和四边形ABDC的面积.17.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70米,∠BOD=64°,求端点A到地面CD的距离(精确到0.1m)【参考数据:sin64°=0.90,cos64°=0.44,tan64°=2.05】.18.(7分)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=60°,BC=4,则▱ABCD的面积是.19.(7分)某课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为24米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(2)当这个苗圃园的面积不小于64平方米时,试结合函数图象,直接写出x的取值范围.20.(7分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.(8分)甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B地出发沿相同路线匀速驶向A地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数.(2)求甲车从B地返回A地的过程中,y与x的函数关系式(不需要写出自变量x的取值范围).(3)直接写出乙车出发多少小时,两车恰好相距80千米.22.(9分)【感知】小亮遇到了这样一道题:已知如图①在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE,小亮仔细分析了题中的已知条件后,如图②过D点作DG∥AC交BC于G,进而解决了该问题.(不需证明)【探究】如图③,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论.【应用】如图④,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1,BF=,∠GEF=90°,则GF的长为.23.(10分)如图,△ABC中,∠C=90°,AC=20,BC=10,动点D从A出发,以每秒10个单位长度的速度向终点C运动.过点D作DF⊥AC交AB于点F,过点D做AB的平行线,与过点F且与AB垂直的直线交于点E,设点D的运动时间为t(秒)(>0)(1)用含t的代数式表示线段DE的长;(2)求当点E落在BC边上时t的值;(3)设△DEF与△ABC重合部分图形的面积为S(平方单位),求S与t的函数关系式;(4)连结EC,若将△DEC沿它自身的某边翻折,翻折前后的两个三角形能形成菱形直接写出此时t的值.24.(12分)新定义:对于关于x的函数y,我们称函数y′=为函数y的m分函数(其中m为常数).例如:对于关于x的一次函数y=x+4的3分函数为y′=.(1)若点P(4,n)在关于x的一次函数y=﹣x+1的2分函数上,求n的值;(2)写出反比例函数y=的4分函数的图象上y随x的增大而减小的x的取值范围:.(3)若y′是二次函数y=x2﹣2x﹣3关于x的1分函数.①当﹣1≤x≤2时,求y′的取值范围;②当0≤x≤k时,﹣4≤y′<4,则k的取值范围为;(4)若点M(﹣2,1),N(4,1),连结MN.当关于x的二次函数y=x2﹣3x﹣3的m分函数,与线段MN有两个交点,直接写出m的取值范围.2019-2020学年吉林省第二实验学校九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【解答】解:2019的相反数是﹣2019.故选:B.2.【解答】解:数字12,400,000,000用科学记数法可简洁表示为:1.24×1010.故选:C.3.【解答】解:A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=﹣a2b,符合题意;D、原式=﹣,不符合题意,故选:C.4.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.5.【解答】解:∵关于x的一元二次方程x2+4x+k=0有实数解,∴b2﹣4ac=42﹣4×1×k≥0,解得:k≤4,故选:B.6.【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.7.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.8.【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.二、填空题(共6小题,每小题3分,满分18分)9.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).10.【解答】解:1﹣x≥2,移项得:﹣x≥2﹣1,合并同类项得:﹣x≥1,系数化为1得:x≤﹣1,故答案为:x≤﹣1.11.【解答】解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.12.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠F AE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.13.【解答】解:抛物线yy=x2﹣4x+1=(x﹣2)2﹣3的顶点坐标为(2,﹣3),向右平移1个单位后顶点坐标为(3,﹣3),所以,得到的新抛物线解析式是y=(x﹣3)2﹣3.故答案为:y=(x﹣3)2﹣3.14.【解答】解:当y=0时,有x2﹣2x+1=0,解得:x1=x2=1.∵当a≤x≤a+1时,函数有最小值0,∴a=1或a+1=1,∴0≤a≤1,故答案为0≤a≤1.三、解答题(共10小题,满分78分)15.【解答】解:设每位男生的租服装费用为x元,每位女生的租服装费用为y元,依题意,得:,解得:.答:每位男生的租服装费用为20元,每位女生的租服装费用为30元.16.【解答】解:(1)∵正方形OABC的边长为4,∴OC=BC=AB=OA=4,∴C(0,4),B(4,4),∵抛物线y=﹣x2+bx+c经过B,C两点,∴,解得,∴抛物线解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴D(2,6),∴D到BC的距离为6﹣4=2,∴S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=12.17.【解答】解:如图,延长AB、DC交于点G,作AE⊥CD于点E,∴BC∥OD∥AE,∴∠GBC=∠GOD=64°,∴cos64°=,∴BG=≈0.34,∵BC∥AE,∴=,∴=∴AE≈1.3答:端点A到地面CD的距离为1.3米.18.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=60°,∵BC=4,∴BG=2,CG=6,∵tan∠CAB=,∴AG=8,∴AB=6,∴▱ABCD的面积=6×6=36,故答案为:36.19.【解答】解:(1)由题意得,2x+y=24,即y=24﹣2x(3≤x<12);设矩形苗圃园的面积为S,则S=xy=x(24﹣2x)=﹣2x2+24x,∴S=﹣2(x﹣6)2+72,∵3≤x<12,∴当x=6时,S最大值=72(平方米),即当矩形苗圃园垂直于墙的一边的长为6米时,这个苗圃园的面积最大,这个最大值为72平方米;(2)∵当这个苗圃园的面积为64平方米,∴﹣2(x﹣6)2+72=64,解得:x1=4,x2=8,∴4≤x≤8时,当这个苗圃园的面积不小于64平方米.即x的取值范围为4≤x≤8.20.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.21.【解答】解:(1)乙车从B地到A地用的时间为:400÷80=5(小时),甲车的速度为:400÷[(3+5+1﹣1)÷2]=100(千米/小时),图中括号内正确的数是3+5+1=9,故答案为:9;(2)设甲车从B地返回A地的过程中,y与x的函数关系式为y=kx+b,∵点D(4,400),点E(8,0)在线段DE上,∴,得,即甲车从B地返回A地的过程中,y与x的函数关系式是y=﹣100x+800;(3)甲到达B地前:设乙车出发t小时,两车恰好相距80千米,80t+100(t+3)=400﹣80,解得,t=;当乙出发1小时时,乙走的路程是1×80=80(千米),此时甲刚好到乙地,甲乙的距离是:80千米;乙出发1小时后,设乙车出发t小时,两车恰好相距80千米,当乙出发2小时时,乙走的路程是1×80=80(千米),甲从B地走的路程是:100×(3+2﹣1)=100(千米),此时甲乙的距离是:100﹣80=20(千米);当甲车从B地返回A地的过程中,设t小时,两车相距80千米,100(t﹣1)﹣80(t﹣1)=80或80(t﹣1)+80=400,解得,t=5或t=5,即乙车出发小时、1小时或5小时时,两车恰好相距80千米.22.【解答】【探究】解:AB=AF+CF.如图1,分别延长DC、AE,交于G点,∵AB∥DC,∴∠B=∠GCE,∠BAE=∠EGC,∵E为BC边的中点,∴BE=CE,∴△ABE≌△GCE(AAS),∴AB=CG,又∵AB∥DC,∴∠BAE=∠G而∠BAE=∠EAF,∴∠G=∠EAF,∴AF=GF,∴AB=CG=GF+CF=AF+CF.【应用】解:如图2,延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM(AAS),∴GE=EM,AG=BM=1,∵EF⊥MG,∴FG=FM,∵BF=,∴MF=BF+BM=1+,∴GF=FM=+1.故答案为:.23.【解答】解:(1)∵DF⊥AC,∴∠ADF=∠C=90°,∴tan∠A====,∵AD=t,∴DF=t,∵EF⊥AB,∴∠EFD+∠AFD=90°,又∵∠AFD+∠A=90°,∴∠EFD=∠A,在Rt△ABC中,AB==10,sin∠A====,∴sin∠EFD==,∴DE=DF=t;(2)当点E落在BC边上时,如图1,∵DE∥AB,∴∠EDC=∠A,∴sin∠EDC==,∴EC=DE=t,∵DE∥BF,BE∥DF,∴四边形DEBF为平行四边形,∴BE=DF=t,∵BE+CE=BC=10,∴t+t=10,解得,t=;(3)当0<t≤时,△DEF在△ABC内部,∴△DEF的面积即为△DEF与△ABC重合部分图形的面积,∴S=S△DEF=DE•EF=×t×t=t2;当<t≤20时,如图2所示,过点E作EH⊥AD交AD的延长线于点H,则EH=DE=t,∴DH=2EH=t,∵DC=AC﹣AD=20﹣t,∴CH=DH﹣DC=t﹣20,∵MN∥ED,∴△EMN∽△EFD,∴==,∵=t2,∴=t2﹣60t+500,∴S四边形MNDF=S△DEF﹣S△EMN=t2﹣(t2﹣60t+500)=﹣t2+60t﹣500,综上所述,S=;(3)当△DEC是等腰三角形时,沿着它的底边翻折,翻折前后的两个三角形形成的四边形的四边相等,即为菱形,①如图3﹣1,当ED=DC时,沿DC翻折,得到菱形EDPC,连接EP交DC于O,则EO=DE=t,∴DO=2EO=t,DC=2DC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;②如图3﹣2,当DE=DC时,沿EC翻折,得到菱形EDCP,则DC=DE=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;③如图3﹣3,当CD=CE时,沿延DE翻折,得到菱形EPDC,连接PC,交DE于O,∵DE=t,∴DO=DE=t,∴OC=DO=t,DC=OC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=,综上所述,t的值为或或.24.【解答】解:(1)一次函数y=﹣x+1的2分函数为y'=,∵点P(4,n)在y=﹣x+1的2分函数上,∴n=3;(2)反比例函数y=的4分函数为y'=,∴y随x的增大而减小时,x≤4,故答案为x≤4;(3)二次函数y=x2﹣2x﹣3关于x的1分函数为y'=,①当﹣1≤x≤2时,﹣1≤x≤1,y'的取值范围为﹣4≤y'≤0,1<x≤2,y'的取值范围为3≤y'<4,∴当﹣1≤x≤2时,y'的取值范围为﹣4≤y'≤0,3≤y'<4;②当﹣x2+2x+3=﹣4时,x=1+2,∴1≤k≤1+2时,﹣4≤y′<4;故答案为,1≤k≤1+2;(4)二次函数y=x2﹣3x﹣3的m分函数为y'=,当x2﹣3x﹣3=1时,x=﹣1或x=4,当﹣x2+3x+3=1时,x=或x=,当y=x2﹣3x﹣3与线段AB没有交点,m<﹣1;当y=x2﹣3x﹣3与线段AB有一个交点,y=﹣x2+3x+3与线段AB有一个交点,<m<;当y=x2﹣3x﹣3与线段AB有两个交点,m≥4;综上所述:m<﹣1或<m<或m≥4.。

【附5套中考模拟试卷】吉林省长春市2019-2020学年中考数学第三次调研试卷含解析

【附5套中考模拟试卷】吉林省长春市2019-2020学年中考数学第三次调研试卷含解析

吉林省长春市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在正八边形ABCDEFGH 中,连接AC ,AE ,则AE AC 的值是( )A .1B .2C .2D .32.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个3.已知抛物线y=(x ﹣1a )(x ﹣11a +)(a 为正整数)与x 轴交于M a 、N a 两点,以M a N a 表示这两点间的距离,则M 1N 1+M 2N 2+…+M 2018N 2018的值是( ) A .20162017 B .20172018C .20182019D .20192020 4.已知252a a -=,代数式()()2221a a -++的值为( )A .-11B .-1C .1D .115.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )A .B .C .D .6.如图,在正方形网格中建立平面直角坐标系,若,,则点C 的坐标为( )A .B .C .D .7.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π8.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①9.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .10.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A .105°B .110°C .115°D .120°11.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =12.下列运算结果正确的是( )A .a 3+a 4=a 7B .a 4÷a 3=aC .a 3•a 2=2a 3D .(a 3)3=a 6 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.14.抛物线243y x x =-+向右平移1个单位,再向下平移2个单位所得抛物线是__________. 1520n n 的最小值为___16.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为___________.17.分解因式:32816a a a -+=__________.18.已知关于x 的不等式组0521x a x f -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y 万元与科研所到宿舍楼的距离xkm 之间的关系式为y =ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km 时,防辐射费用为720万元;当科研所到宿含楼的距离为3km 或大于3km 时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x 2成正比,且比例系数为m 万元,配套工程费w =防辐射费+修路费.(1)当科研所到宿舍楼的距离x =3km 时,防辐射费y =____万元,a =____,b =____;(2)若m =90时,求当科研所到宿舍楼的距离为多少km 时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km ,求m 的范围? 20.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.(6分)如图,⊙O 的直径DF 与弦AB 交于点E ,C 为⊙O 外一点,CB ⊥AB ,G 是直线CD 上一点,∠ADG =∠ABD .求证:AD•CE =DE•DF ;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明. ①∠CDB =∠CEB ;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.22.(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.23.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.24.(10分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.25.(10分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=kx(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.(1)如图,若m=﹣52,n=152,点B的纵坐标为52,①求k的值;②作线段CD,使CD∥AB且CD=AB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),①求m,n的值;②点P(a,b)是双曲线y=kx第一象限上一动点,当S△APC≥24时,则a的取值范围是.26.(12分)小张同学尝试运用课堂上学到的方法,自主研究函数y=21x的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=21x自变量的取值范围是;(2)下表列出了y与x的几组对应值:x …﹣2﹣32m﹣34﹣1212341322 …y …144911694 416914914…表中m的值是;(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=21x 的图象,写出这个函数的性质: .(只需写一个)27.(12分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中a=3+1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】连接AG 、GE 、EC ,易知四边形ACEG 为正方形,根据正方形的性质即可求解.【详解】解:连接AG 、GE 、EC ,则四边形ACEG 为正方形,故AE AC2 故选:B .【点睛】 本题考查了正多边形的性质,正确作出辅助线是关键.2.B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==.∴使得M=2的x 值是1或2+综上所述,正确的有②③2个.故选B .3.C【解析】【分析】代入y=0求出x 的值,进而可得出M a N a =1a -1a+1,将其代入M 1N 1+M 2N 2+…+M 2018N 2018中即可求出结论. 【详解】解:当y=0时,有(x-1a)(x-1a+1)=0, 解得:x 1=1a+1,x 2=1a, ∴M a N a =1a -1a+1, ∴M 1N 1+M 2N 2+…+M 2018N 2018=1-12+12-13+…+12018-12019=1-12019=20182019. 故选C .【点睛】本题考查了抛物线与x 轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a 的值是解题的关键.4.D【解析】【分析】根据整式的运算法则,先利用已知求出a 的值,再将a 的值带入所要求解的代数式中即可得到此题答案.【详解】解:由题意可知:252a a -=,原式24422a a a =-+++226a a =-+56=+11=故选:D .【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值5.C【解析】A 、B 、D 不是该几何体的视图,C 是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.6.C【解析】【分析】根据A 点坐标即可建立平面直角坐标.【详解】解:由A (0,2),B (1,1)可知原点的位置,建立平面直角坐标系,如图,∴C (2,-1)故选:C .【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.7.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,∴∠AOC =90°,∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A .【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.8.B【解析】【分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:DE //BC Q ②, ADE B ∠∠∴=④,①又DF//AC Q ,A BDF ∠∠∴=③,ADE ∴V ∽DBF V .故选B .【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.9.B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限,∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.10.C【解析】【分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO 即可解决问题.【详解】如图,对图形进行点标注.∵直线a ∥b ,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.11.C【解析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.12.B【解析】【分析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【详解】A. a 3+a 4≠a 7 ,不是同类项,不能合并,本选项错误;B. a 4÷a 3=a 4-3=a;,本选项正确;C. a 3•a 2=a 5;,本选项错误;D.(a 3)3=a 9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】如图作PQ ⊥AB 于Q ,PR ⊥BC 于R .由△QPE ∽△RPF ,推出PQ PR =PE PF=2,可得PQ=2PR=2BQ ,由PQ ∥BC ,可得AQ :QP :AP=AB :BC :AC=1:4:5,设PQ=4x ,则AQ=1x ,AP=5x ,BQ=2x ,可得2x+1x=1,求出x 即可解决问题.【详解】如图,作PQ ⊥AB 于Q ,PR ⊥BC 于R .∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR 是矩形,∴∠QPR=90°=∠MPN ,∴∠QPE=∠RPF ,∴△QPE ∽△RPF ,∴PQ PR =PE PF=2,∴PQ=2PR=2BQ . ∵PQ ∥BC ,∴AQ :QP :AP=AB :BC :AC=1:4:5,设PQ=4x ,则AQ=1x ,AP=5x ,BQ=2x ,∴2x+1x=1,∴x=35,∴AP=5x=1. 故答案为:1.【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.14.2(3)3y x =--(或266y x x =-+)【解析】【分析】将抛物线243y x x =-+化为顶点式,再按照“左加右减,上加下减”的规律平移即可. 【详解】解:243y x x =-+化为顶点式得:2(2)1y x =--,∴2(2)1y x =--向右平移1个单位,再向下平移2个单位得:22(21)12(3)3=----=--y x x ,2(3)3y x =--化为一般式得:266y x x =-+,故答案为:2(3)3y x =--(或266y x x =-+).【点睛】此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.15.1【解析】【分析】,则1n 是完全平方数,满足条件的最小正整数n 为1.【详解】∴1n 是完全平方数;∴n 的最小正整数值为1.故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.16.1【解析】【详解】解:由于点C 为反比例函数6y x =-上的一点, 则四边形AOBC 的面积S=|k|=1.故答案为:1.17.a(a -4)2【解析】【分析】首先提取公因式a ,进而利用完全平方公式分解因式得出即可.【详解】32816a a a -+22816()4.)(a a a a a =-+=-故答案为:2()4.a a -【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.18.-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩ 由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.【解析】【分析】(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;(2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=180m,然后讨论:x=180m=3时和x=180m>3时两种情况m取值即可求解.【详解】解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,解得:a=﹣360,b=101,故答案为0,﹣360,101;(2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,∴当x=2时,W min=720;②当x≥3时,W=90x2,W随x最大而最大,当x=3时,W min=810>720,∴当距离为2公里时,配套工程费用最少;(3)∵0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=180 m,当x=180m≤3时,即:m≥60,W min=m(180m)2﹣360(180m)+101,∵W min≤675,解得:60≤m≤1;当x=180m>3时,即m<60,当x=3时,W min=9m<675,解得:0<m<60,故:0<m≤1.【点睛】本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.20.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.21.(1)见解析;(2)见解析.【解析】【分析】连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.【详解】(1)连接AF,∵DF是⊙O的直径,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直线CD是⊙O的切线∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)选取①完成证明∵直线CD是⊙O的切线,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD•CE=DE•DF.【点睛】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.22.(1)200,;(2)a=0.45,b=70;(3)900名.【解析】【分析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=30102000.20+=(名);(2)“非常喜欢”频数90,a=900.45200=b2000.3570=⨯=;(3)20000.45900⨯=.故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.23.(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】【分析】(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE ﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.1024.(1)见解析;(2【解析】【分析】(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到225AD AP【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,90{A BADP BPD PD PD'∠=∠=∠=='∠,∴△ADP≌△BPD′,∴AD=PB=4,AP= BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD=22AD AP+=25,BD′=2∴CD′=BC- BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=2PD=210,∵PQ垂直平分DD′,连接Q D′则DQ= D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=1010210CDDD==''.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.25.(1)①k= 5;②见解析,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①16m n =-⎧⎨=⎩;②0<a <1或a >5 【解析】【分析】(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①求出A ,B 两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC 的面积=24时a 的值,即可判断.【详解】(1)①∵52m =-,152n =, ∴直线的解析式为51522y x =-+, ∵点B 在直线上,纵坐标为52, ∴5515222x =-+, 解得x =2 ∴5(2)2B ,,∴5k =;②如下图,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①∵点(15)A ,在k y x=上, ∴k =5,∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∴A ,B 关于直线y =x 对称,∴(51)B ,, 则有:551m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩; ②如下图,当点P 在点A 的右侧时,作点C 关于y 轴的对称点C′,连接AC ,AC′,PC ,PC′,PA .∵A ,C 关于原点对称,(15)A ,, ∴(1,5)C --,∵PAC ACC AC P PCC S S S S '''+-V V V V =,当24PAC S V =时, ∴111521010(1)2(5)24222a a⨯⨯+⨯⨯--⨯⨯+=, ∴252450a a --=,∴a =5或1-(舍弃),当点P 在点A 的左侧时,同法可得a =1,∴满足条件的a 的范围为01a <<或5a >.【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.26.(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y 轴对称.【解析】【分析】(1)由分母不等于零可得答案;(2)求出y=1时x 的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得.【详解】(1)函数y=21x的定义域是x≠0, 故答案为x≠0; (2)当y=1时,21x =1, 解得:x=1或x=﹣1, ∴m=﹣1,故答案为﹣1;(3)如图所示:(4)图象关于y 轴对称,故答案为图象关于y 轴对称.【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.27.()211a -,13. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解: (221121a a a a a a +----+)÷1a a- =21(1)(1)(1)1a a a a a a a a +---⋅--() =2221(11a a a a a a a --+⋅--) =21(11a a a a a -⋅--)=21(1a ),当时,原式=13. 【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

吉林省长春市2019-2020学年中考第三次适应性考试数学试题含解析

吉林省长春市2019-2020学年中考第三次适应性考试数学试题含解析

吉林省长春市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.42.﹣3的绝对值是()A.﹣3 B.3 C.-13D.133.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.310104.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤6.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.12B.2 C.5D.257.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A .B .C .D .8.81的算术平方根是( ) A .9B .±9C .±3D .39.如图,矩形OABC 有两边在坐标轴上,点D 、E 分别为AB 、BC 的中点,反比例函数y =kx(x <0)的图象经过点D 、E .若△BDE 的面积为1,则k 的值是( )A .﹣8B .﹣4C .4D .810.如图,△ABC 的面积为12,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C 处,P 为直线AD 上的一点,则线段BP 的长可能是( )A .3B .5C .6D .1011.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣112.下列计算正确的是( ) A .x 2+x 2=x 4B .x 8÷x 2=x 4C .x 2•x 3=x 6D .(-x )2-x 2=0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x 元(10≤x≤20且x 为整数)出售,可卖出(20﹣x )件,若使利润最大,则每件商品的售价应为_____元.14.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB 的长为1.74m ,后拉杆AE 的倾斜角∠EAB=53°,篮板MN 到立柱BC 的水平距离BH=1.74m ,在篮板MN 另一侧,与篮球架横伸臂DG 等高度处安装篮筐,已知篮筐到地面的距离GH 的标准高度为3.05m .则篮球架横伸臂DG 的长约为_____m (结果保留一位小数,参考数据:sin53°≈45, cos53°≈35,tan53°≈43).15.如图,已知△ABC ,AB=6,AC=5,D 是边AB 的中点,E 是边AC 上一点,∠ADE=∠C ,∠BAC 的平分线分别交DE 、BC 于点F 、G ,那么AFAG的值为__________.16.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______.17.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数961654919841965发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 18.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,2)画出△ABC 关于点B 成中心对称的图形△A 1BC 1;以原点O 为位似中心,位似比为1:2,在y 轴的左侧画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2的坐标.20.(6分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.21.(6分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.22.(8分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)23.(8分)计算:(π﹣1)0+|﹣1|﹣24÷6+(﹣1)﹣1.24.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.25.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)请判断直线BC与⊙O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长.26.(12分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.27.(12分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答 【详解】将点A(1,0)代入y =x 2﹣4x+m , 得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点, 设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根, ∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|21212)4x x x x ++( =2; 故选B . 【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入. 2.B 【解析】 【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC==3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.4.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状5.C【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:b2a-<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x >b2a-时,y 随着x 的增大而增大,故⑤错误; 故选:C . 【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型. 6.A 【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可. 详解: 连接AC ,由网格特点和勾股定理可知, AC=2,22,10AB BC ==, AC 2+AB 2=10,BC 2=10, ∴AC 2+AB 2=BC 2, ∴△ABC 是直角三角形, ∴tan ∠ABC=21222AC AB ==. 点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解题的关键. 7.D 【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形: 几何体的左视图是:.故选D. 8.D 【解析】 【分析】根据算术平方根的定义求解. 【详解】 ∵81=9, 又∵(±1)2=9, ∴9的平方根是±1, ∴9的算术平方根是1. 即81的算术平方根是1. 故选:D . 【点睛】考核知识点:算术平方根.理解定义是关键. 9.B 【解析】 【分析】根据反比例函数的图象和性质结合矩形和三角形面积解答. 【详解】解:作EH OA H 于⊥,连接AE .22ABE BDE BD AD S S =∴==V V Q∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=||4,04k k k ∴=<∴=-Q故选B . 【点睛】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 10.D 【解析】【分析】过B 作BN ⊥AC 于N ,BM ⊥AD 于M ,根据折叠得出∠C′AB=∠CAB ,根据角平分线性质得出BN=BM ,根据三角形的面积求出BN ,即可得出点B 到AD 的最短距离是8,得出选项即可. 【详解】解:如图:过B 作BN ⊥AC 于N ,BM ⊥AD 于M ,∵将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C′处, ∴∠C′AB=∠CAB , ∴BN=BM ,∵△ABC 的面积等于12,边AC=3, ∴12×AC×BN=12, ∴BN=8, ∴BM=8,即点B 到AD 的最短距离是8, ∴BP 的长不小于8, 即只有选项D 符合, 故选D . 【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B 到AD 的最短距离,注意:角平分线上的点到角的两边的距离相等. 11.B 【解析】 【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围. 【详解】解:∵x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,∴整数解为1,0,-1, ∴-2≤a <-1. 故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.12.D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.14.1.1.【解析】【分析】过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出ABAO=CBDO,再根据已知条件求出AO,则OH=AH-AO=DG.【详解】解:过点D作DO⊥AH于点O,如图:由题意得CB∥DO,∴△ABC∽△AOD,∴ABAO=CBDO,∵∠CAB=53°,tan53°=4 3 ,∴tan∠CAB=CBAB=43,∵AB=1.74m,∴CB=1.31m,∵四边形DGHO为长方形,∴DO=GH=3.05m,OH=DG,∴1.74AO=2.323.05,则AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,则OH=AH-AO≈1.1m,∴DG≈1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.15.3 5【解析】【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE =∠C∴△ADF ~△ACG ∴35AF AD AG AC ==. 故答案为35. 【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.16.k <5且k≠1.【解析】试题解析:∵关于x 的一元二次方程()21410k x x -++=有两个不相等的实数根, ()2104410.k k -≠⎧∴⎨∆=-->⎩解得:5k <且1k ≠.故答案为5k <且1k ≠.17.②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,而B 种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A 种种子发芽率大于B 种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.18.1a ≥-且2a ≠【解析】分式方程去分母得:2(2x-a )=x-2,去括号移项合并得:3x=2a-2, 解得:223a x -=,∵分式方程的解为非负数,∴223a-≥且22203a--≠,解得:a≥1 且a≠4 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【解析】试题分析:()1利用关于点对称的性质得出11,A C的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).20.(1)40;(2)54,补图见解析;(3)330;(4)1 2 .【解析】【分析】(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数;(2)63605440α=⨯︒=︒,由自主学习的时间是0.5小时的人数为40×35%=14;(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【详解】(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为40;(2)63605440α=⨯︒=︒,故答案为54;自主学习的时间是0.5小时的人数为40×35%=14;补充图形如图:(3)600×14840+=330; 故答案为330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A 的有6种可能,∴P (A )=61122=. 21.(1)证明见解析(2)6【解析】【分析】(1)连结AD ,如图,根据圆周角定理,由E 是¶BD 的中点得到2DAB EAB ∠=∠,由于2ACB EAB ∠=∠,则ACB DAB ∠=∠,,再利用圆周角定理得到90ADB ,∠=︒则90DAC ACB ∠+∠=︒,所以90DAC DAB ∠+∠=︒,于是根据切线的判定定理得到AC 是⊙O 的切线; ()2先求出DF 的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD ,如图,∵E 是¶BD 的中点,∴2DAB EAB ∠=∠,∵2ACB EAB ∠=∠,∴ACB DAB ∠=∠,∵AB 是⊙O 的直径,∴90ADB ,∠=︒∴90DAC ACB ∠+∠=︒,∴90DAC DAB ∠+∠=︒, 即90BAC ∠=︒,∴AC 是⊙O 的切线;(2)∵9090EAC EAB DAE AFD EAD EAB ∠+∠=︒∠+∠=︒∠=∠,,,∴62EAC AFD CF AC DF ,,.∠=∠∴==∴= ∵222226420AD AC CD =-=-=, ∴22220226AF AD DF =+=+=【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点. 22.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键. 23.2【解析】【分析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.【详解】解:原式=2+2﹣+2=2﹣2+2=2.【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.24.(1)证明见解析;(2)能;BE=1或116;(3)9625【解析】【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC−EC=6−5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴CE AC AC CB=,∴CE=2256 CBAC=,∴BE=6−256=116;∴BE=1或11 6;(3)解:设BE=x,又∵△ABE∽△ECM,∴CM CEBE AB=,即:65CM xx-=,∴CM =22619(3)5555x x x -+=--+, ∴AM =5−CM 2116(3)55x =-+, ∴当x =3时,AM 最短为165, 又∵当BE =x =3=12BC 时, ∴点E 为BC 的中点,∴AE ⊥BC ,∴AE =224AB BE -=,此时,EF ⊥AC ,∴EM =22125CE CM -=, S △AEM =116129625525创=. 25.(1)BC 与相切;理由见解析;(2)BC=6【解析】 试题分析:(1)BC 与相切;由已知可得∠BAD=∠BED 又由∠DBC=∠BED 可得∠BAD=∠DBC ,由AB 为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC 与相切(2)由AB 为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC 与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO ,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)试题解析:(1)BC 与相切; ∵,∴∠BAD=∠BED ,∵∠DBC=∠BED ,∴∠BAD=∠DBC ,∵AB 为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B 在上,∴BC 与相切 (2)∵AB 为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC 与相切,∴∠CBO=90°,∴∠BDC=∠CBO ,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.26.技术改进后每天加工1个零件.【解析】分析:设技术改进前每天加工x 个零件,则改进后每天加工1.5x 个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.详解:设技术改进前每天加工x 个零件,则改进后每天加工1.5x 个, 根据题意可得5005000500351.5x x-+=, 解得x=100, 经检验x=100是原方程的解,则改进后每天加工1.答:技术改进后每天加工1个零件.点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.27. (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°;故答案为36;(4)根据题意得:3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.。

吉林省吉林市2019-2020学年中考第三次适应性考试数学试题含解析

吉林省吉林市2019-2020学年中考第三次适应性考试数学试题含解析

吉林省吉林市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( ) A .3×109B .3×108C .30×108D .0.3×10102.如图,在△ABC 中,EF ∥BC ,AE 1EB 2=,S 四边形BCFE =8,则S △ABC =( )A .9B .10C .12D .133.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山5.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3B .4C .5D .66.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有( )个A .1个B .2 个C .3 个D .4个7.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 28.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A .3或6B .1或6C .1或3D .4或69.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③10.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .11.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( ) 每周做家务的时间(小时) 0 1 2 3 4 人数(人) 22 311A .3,2.5B .1,2C .3,3D .2,212.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表: 得分(分)60708090100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( ) A .70分,70分B .80分,80分C .70分,80分D .80分,70分二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数y=13x -+1x -的自变量x 的取值范围是_____. 14.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是______.15.如图,在Rt △ABC 中,AC=4,BC=33,将Rt △ABC 以点A 为中心,逆时针旋转60°得到△ADE ,则线段BE 的长度为_____.16.分解因式:2363m m -+=__________.17.关于x 的方程(m ﹣5)x 2﹣3x ﹣1=0有两个实数根,则m 满足_____. 18.如图,在平面直角坐标系中,经过点A 的双曲线y=kx(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为1,∠AOB=∠OBA=45°,则k 的值为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知AC 和BD 相交于点O ,且AB ∥DC ,OA=OB . 求证:OC=OD .20.(6分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?21.(6分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52,请求出该抛物线的顶点坐标.22.(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.(1)如图1,若抛物线经过点A和D(﹣2,0).①求点C的坐标及该抛物线解析式;②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.23.(8分)解不等式组:()()3x1x382x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.24.(10分)解下列不等式组:6152(43) {2112323x xxx++-≥->①②25.(10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.26.(12分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?27.(12分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】将数据30亿用科学记数法表示为9310⨯, 故选A . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.A 【解析】 【分析】由在△ABC 中,EF ∥BC ,即可判定△AEF ∽△ABC ,然后由相似三角形面积比等于相似比的平方,即可求得答案. 【详解】∵AE 1EB 2=, ∴AE AE 11==AB AE+EB 1+23=. 又∵EF ∥BC , ∴△AEF ∽△ABC .∴2AEF ABC S 11=S 39∆∆⎛⎫= ⎪⎝⎭. ∴1S △AEF =S △ABC . 又∵S 四边形BCFE =8, ∴1(S △ABC ﹣8)=S △ABC , 解得:S △ABC =1. 故选A . 3.A 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.5.C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.6.C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC∠=45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE=12ADC∠=45〫.③正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.7.C【解析】【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.8.B【解析】分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.综上所述:h的值为1或1.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.9.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.10.A【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:1 240xx>⎧⎨-≤⎩①②∵不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A. 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键. 11.D 【解析】试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数. 所以本题这组数据的中位数是1,众数是1. 故选D .考点:1.众数;1.中位数. 12.C 【解析】 【分析】 【详解】解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分. 故选C . 【点睛】本题考查数据分析.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x≥1且x≠3 【解析】 【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可. 【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠ 故答案为:1x ≥且 3.x ≠ 【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键. 14.1 【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.15.7【解析】【分析】连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.【详解】解:连接CE,作EF⊥BC于F,由旋转变换的性质可知,∠CAE=60°,AC=AE,∴△ACE 是等边三角形,∴CE=AC=4,∠ACE=60°,∴∠ECF=30°,∴EF=12CE=2,由勾股定理得, =,∴,由勾股定理得, ,.【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.16.3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m 2-6m+3=3(m 2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 17.m≥114且m≠1. 【解析】【分析】根据一元二次方程的定义和判别式的意义得到m ﹣1≠0且()()()234510m =---⨯-≥V ,然后求出两个不等式的公共部分即可.【详解】解:根据题意得m ﹣1≠0且()()()234510m =---⨯-≥V , 解得114m ≥且m≠1. 故答案为: 114m ≥且m≠1. 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.18.152 +【解析】【分析】分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k ﹣1)=k,解方程即可.详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=kx(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=152+(负值已舍去),故答案为152+.点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【详解】请在此输入详解!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质20.(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.21.(1)见解析;(2)顶点为(52,﹣14)【解析】【分析】(1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;(2)结合题意,根据对称轴x =﹣2b a得到m =2,即可得到抛物线解析式为y =x 2﹣5x+6,再将抛物线解析式为y =x 2﹣5x+6变形为y =x 2﹣5x+6=(x ﹣52)2﹣14,即可得到答案. 【详解】(1)证明:a =1,b =﹣(2m+1),c =m 2+m , ∴△=b 2﹣4ac =[﹣(2m+1)]2﹣4×1×(m 2+m )=1>0,∴抛物线与x 轴有两个不相同的交点.(2)解:∵y =x 2﹣(2m+1)x+m 2+m ,∴对称轴x =﹣2b a =(21)21m -+⨯=212m +, ∵对称轴为直线x =52, ∴212m +=52, 解得m =2,∴抛物线解析式为y =x 2﹣5x+6,∵y =x 2﹣5x+6=(x ﹣52)2﹣14, ∴顶点为(52,﹣14 ). 【点睛】 本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.22.(1)①y=﹣13x 2+56x+3;②P P' );(2)18- ≤a<1;【解析】【分析】(1)①先判断出△AOB ≌△GBC ,得出点C 坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.【详解】(1)①如图2,∵A (1,3),B (1,1),∴OA=3,OB=1,由旋转知,∠ABC=91°,AB=CB ,∴∠ABO+∠CBE=91°,过点C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),抛物线经过点A(1,3),和D(﹣2,1),∴1641 {4203a b ca b cc++=-+==,∴135{63abc=-==,∴抛物线解析式为y=﹣13x2+56x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如图1,OP∥BC,∵B(1,1),C(4,1),∴直线BC的解析式为y=13x﹣13,∴直线OP的解析式为y=13 x,∵抛物线解析式为y=﹣13x2+56x+3;联立解得,3317{1174xy+=+=或3317{1174xy-==(舍)∴P 3317+117+;在直线OP上取一点M(3,1),∴点M的对称点M'(3,﹣1),∴直线OP'的解析式为y=﹣13 x,∵抛物线解析式为y=﹣13x2+56x+3;联立解得,7+193{7+19312xy==或7193{719312xy-=-=(舍),∴P'(71934+,﹣719312+);(2)同(1)②的方法,如图3,∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴1641{421a b ca b c++=++=,∴6{81b ac a=-=+,∴抛物线y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=81aa+∵符合条件的Q点恰好有2个,∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,∴x1×x2=81aa+≤1,∵a<1,∴8a+1≥1,∴a≥﹣18,即:﹣18≤a<1.【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.23.0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集. 详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.24.﹣2≤x<92.【解析】【分析】先分别求出两个不等式的解集,再求其公共解.【详解】()6152432112323x x x x ⎧++⎪⎨-≥-⎪⎩f ①②, 解不等式①得,x <92, 解不等式②得,x≥﹣2, 则不等式组的解集是﹣2≤x <92. 【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).25.(1)BD=CD=52;(2)BD=5,BC=53.【解析】【分析】(1)利用圆周角定理可以判定△DCB 是等腰直角三角形,利用勾股定理即可解决问题;(2)如图②,连接OB ,OD .由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD 是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE 即可解决问题.【详解】(1)∵BC 是⊙O 的直径,∴∠CAB=∠BDC=90°.∵AD 平分∠CAB ,∴»»DCBD =, ∴CD=BD .在直角△BDC 中,BC=10,CD 2+BD 2=BC 2,∴BD=CD=52,(2)如图②,连接OB ,OD ,OC ,∵AD 平分∠CAB ,且∠CAB=60°,∴∠DAB=12∠CAB=30°, ∴∠DOB=2∠DAB=60°.又∵OB=OD ,∴△OBD 是等边三角形,∴BD=OB=OD .∵⊙O 的直径为10,则OB=5,∴BD=5,∵AD 平分∠CAB ,∴»»DCBD =, ∴OD ⊥BC ,设垂足为E ,∴,∴【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型. 26.(1)10750;(2)220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元. 【解析】【分析】(1)根据“利润=销售总额-总成本”结合两种T 恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++ ⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴==②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤,综上,最大利润为10750元.【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.27.解:(1)y A=27x+270,y B=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.。

吉林省名校调研2019-2020学年九年级上学期第三次月考试卷数学试题(教师版)

吉林省名校调研2019-2020学年九年级上学期第三次月考试卷数学试题(教师版)

吉林省名校调研2020届九年级上第三次月考试卷数学试题一、选择题(每小题2分,共12分)1.下列图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知⊙O的半径为2,点P在⊙O内,则OP的长可能是()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】根据点在圆内,点到圆心的距离小于圆的半径进行判断.【详解】解:∵⊙O的半径为2,点P在⊙O内,∴OP<2.故选:A.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.下列一元二次方程中,有两个不相等实数根的是( )A. x2=-xB. x2+4x+4=0C. x2+2=2xD. (x-1) 2+2=0【答案】A【解析】【分析】根据一元二次方程根的判别式判断即可.【详解】A、由原方程得到:x2+x=0,则△=12−4×1×0=1>0,即该方程有两个不相等实数根,故本选项正确;B、△=42−4×1×4=0,即该方程有两个相等实数根,故本选项错误;C、由原方程得到:x2−2x+2=0,则△=(−2)2−4×1×2=−4<0,即该方程没有实数根,故本选项错误;D、由原方程得到:x2−2x+3=0,则△=(−2)2−4×1×3=−8<0,即该方程没有实数根,故本选项错误;故选:A.【点睛】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.4.下列关于抛物线y=(x+1) 2+2的说法,正确的是( )A. 开口向下B. 对称轴是直线x=1C. 当x=-1时,y有最小值2D. 当x>-1时,y随x的增大而减小【答案】C【解析】【分析】根据题目中的函数解析式和二次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】∵y=(x+1)2+2,∴该函数开口向上,顶点坐标为(−1,2),故选项A错误,C正确;当x>−1时,y随x的增大而增大,故选项D错误,对称轴是直线x=−1,故选项B错误,故选:C.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5.如图,一个圆锥的母线长为13cm,高为12cm,则这个圆锥的侧面积为( )A. 25cm2B. 60πcm2C. 65πcm2D. 90πcm2【答案】C【解析】【分析】圆锥的母线AB=13cm,圆锥的高BO=12cm,圆锥的底面半径OA=r,在Rt△AOB中,利用勾股定理计算出r,然后根据扇形的面积公式计算即可.【详解】圆锥的母线AB=13cm,圆锥的高BO=12cm,圆锥的底面半径OC=r,在Rt△AOB中,r5=(cm),∴S=πrl=π×5×13=65πcm2.故选C.【点睛】本题考查了圆锥的有关计算,要理解圆锥的有关概念;也考查了勾股定理以及圆的周长公式.6.某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主人通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主人随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为( )A. 34B.12C.27D.314【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】由题意可得,草鱼的条数为200+150(条) ∴捞到鲤鱼的概率为20020015015002720++=+ 故选C【点睛】此题主要考查概率的求解,解题的关键是根据题意求出鱼塘中鱼的总数量. 二、填空题(每小题3分,共24分)7.若一个一元二次方程的二次项系数为1,常数项为0,其中一个根为x=3,则该方程的一般形式为____________ 。

吉林省吉林市2019-2020学年中考数学仿真第三次备考试题含解析

吉林省吉林市2019-2020学年中考数学仿真第三次备考试题含解析

吉林省吉林市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.|﹣3|=()A.1 3B.﹣13C.3 D.﹣32.3的倒数是()A.3B.3-C.13D.13-3.不等式组123122xx-<⎧⎪⎨+≤⎪⎩的正整数解的个数是()A.5 B.4 C.3 D.24.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°5.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1066.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.下列计算结果等于0的是()A.11-+B.11--C.11-⨯D.11-÷8.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A .①②④B .①②⑤C .②③④D .③④⑤9.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( ) A .1.23×106 B .1.23×107 C .0.123×107 D .12.3×10510.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .611.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( )A .()2,4--B .()2,4-C .()2,4D .()4,2-12.菱形的两条对角线长分别是6cm 和8cm ,则它的面积是( )A .6cm 2B .12cm 2C .24cm 2D .48cm 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某水库大坝的横断面是梯形ABCD ,坝顶宽6AD =米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1∶2,那么坝底BC 的长度等于________米(结果保留根号)14.如图,若正五边形和正六边形有一边重合,则∠BAC =_____.15.如图,已知点A(4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、A),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于______.16.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30°角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.17.若不等式(a ﹣3)x >1的解集为13x a <-,则a 的取值范围是_____. 18.分解因式:22a 4a 2-+=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表: 车型 目的地A 村(元/辆)B 村(元/辆)大货车800900 小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.20.(6分)如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,OD ⊥AB ,与AC 交于点E ,与过点C 的⊙O的切线交于点D .若AC=4,BC=2,求OE 的长.试判断∠A 与∠CDE 的数量关系,并说明理由.21.(6分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?22.(8分)小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B 、C 两点的俯角分别为45°、35°.已知大桥BC 与地面在同一水平面上,其长度为100m ,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)23.(8分)计算:2cos30°+27-33 -(12)-2 24.(10分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.25.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.26.(12分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm .为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).27.(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)求抛物线的解析式.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE 上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.2.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.C【解析】【分析】先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x<3,得:x>-1,解不等式12x≤2,得:x≤3,则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选C.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出一元一次不等式组的解集. 4.B【解析】【分析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.5.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.6.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.7.A【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A.【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.8.A【解析】【分析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab <2,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2,∴a ﹣(﹣2a )+c=3a+c <2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于2.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(2,c ).9.A【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.10.C【解析】【分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD 、DE 长,根据三角形周长公式即可求得答案.【详解】解:∵在△ABC 中,AB=AC=3,AE 平分∠BAC ,∴BE=CE=12BC=2, 又∵D 是AB 中点,∴BD=12AB=32, ∴DE 是△ABC 的中位线, ∴DE=12AC=32, ∴△BDE 的周长为BD+DE+BE=32+32+2=5, 故选C .【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键. 11.C【解析】【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点()2,4P -,与点P 关于y 轴对称的点的坐标是()2,4,故选:C .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.C【解析】【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【详解】根据对角线的长可以求得菱形的面积,根据S=12ab=12×6cm×8cm=14cm 1. 故选:C .【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(46203)+ 【解析】 【分析】 过梯形上底的两个顶点向下底引垂线AE 、DF ,得到两个直角三角形和一个矩形,分别解Rt ABE ∆、Rt DCF ∆求得线段BE 、CF 的长,然后与EF 相加即可求得BC 的长.【详解】如图,作AE BC ⊥,DF BC ⊥,垂足分别为点E ,F ,则四边形ADFE 是矩形.由题意得,6EF AD ==米,20AE DF ==米,30B°?,斜坡CD 的坡度为1∶2, 在Rt ABE ∆中,∵30B°?, ∴3203BE AE ==米.在Rt △DCF 中,∵斜坡CD 的坡度为1∶2,∴12=DF CF , ∴240CF DF ==米,∴20364046203BC BE EF FC =++=++=+(米).∴坝底BC 的长度等于(46203)+米.故答案为(463)+.【点睛】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.14.132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.155【分析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.【详解】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=2,DE= 5,设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF DE = ,OF CM AM OE DE AE=,代入求出BF 和CM ,相加即可求出答案. 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA= 12OA=2, 由勾股定理得:DE=22OD OE -=5,设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴,BF OF CM AM DE OE DE AE==, ∵AM=PM= 12(OA-OP )= 12(4-2x )=2-x , 即2,2255x x -==, 解得:55BF x,CM 5x ==- ∴BF+CM= 5.5考核知识点:二次函数综合题.熟记性质,数形结合是关键.16.(14+23)米 【解析】 【分析】 过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F ,根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,再根据勾股定理求出CE ,然后根据同时同地物高与影长成正比列式求出EF ,再求出BF ,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F .∵CD=8,CD 与地面成30°角,∴DE=12CD=12×8=4, 根据勾股定理得:CE=22CD DE -=2242-2284-=43. ∵1m 杆的影长为2m ,∴DE EF =12, ∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+43+8=(28+43).∵AB BF =12, ∴AB=12(28+43)=14+23. 故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB 的影长若全在水平地面上的长BF 是解题的关键.17.3a <.【解析】∵(a−3)x>1的解集为x<13a -, ∴不等式两边同时除以(a−3)时不等号的方向改变,∴a−3<0,∴a<3.故答案为a<3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.18.()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】【分析】(1)设大货车用x 辆,小货车用y 辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(8-x )辆,前往A 村的小货车为(10-x )辆,前往B 村的小货车为[7-(10-x )]辆,根据表格所给运费,求出y 与x 的函数关系式;(3)结合已知条件,求x 的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15{128152x y x y +=+= 解得:8{7x y ==.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x )+400(10-x )+600[7-(10-x )]=100x+1.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10-x )≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y 随x 的增大而增大,∴当x=5时,y 最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A 村;3辆大货车、2辆小货车前往B 村.最少运费为9900元.20.(1;(2)∠CDE=2∠A .【解析】【分析】(1)在Rt △ABC 中,由勾股定理得到AB 的长,从而得到半径AO .再由△AOE ∽△ACB ,得到OE 的长;(2)连结OC ,得到∠1=∠A ,再证∠3=∠CDE ,从而得到结论.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB=90°,在Rt △ABC 中,由勾股定理得:==∴AO=12 ∵OD ⊥AB ,∴∠AOE=∠ACB=90°,又∵∠A=∠A ,∴△AOE ∽△ACB , ∴OE AO BC AC=,∴OE=BC AO AC ⋅==. (2)∠CDE=2∠A .理由如下:连结OC ,∵OA=OC ,∴∠1=∠A ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD ⊥AB ,∴∠2+∠3=90°,∴∠3=∠CDE .∵∠3=∠A+∠1=2∠A ,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.21.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.热气球离地面的高度约为1米.【解析】【分析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可.【详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°,在Rt △ADB 中,∠ABD=45°,∴DB=x ,在Rt △ADC 中,∠ACD=35°,∴tan ∠ACD=AD CD, ∴ 100x x + = 710 , 解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.23.37【解析】【分析】根据实数的计算,先把各数化简,再进行合并即可.【详解】原式=32333342⨯+- 37【点睛】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.24.足球单价是60元,篮球单价是90元.【解析】【分析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.25.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P (恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.26.44cm【解析】解:如图,设BM 与AD 相交于点H ,CN 与AD 相交于点G ,由题意得,MH=8cm ,BH=40cm ,则BM=32cm ,∵四边形ABCD 是等腰梯形,AD=50cm ,BC=20cm , ∴()1AH AD BC 15cm 2=-=. ∵EF ∥CD ,∴△BEM ∽△BAH . ∴EM BM AH BH =,即EM 321540=,解得:EM=1. ∴EF=EM +NF +BC=2EM +BC=44(cm ).答:横梁EF 应为44cm .根据等腰梯形的性质,可得AH=DG ,EM=NF ,先求出AH 、GD 的长度,再由△BEM ∽△BAH ,可得出EM ,继而得出EF 的长度.27.(1)y =﹣x 2+2x+3;(2)当t =1511或t =913时,△PCQ 为直角三角形;(3)当t =2时,△ACQ 的面积最大,最大值是1.【解析】【分析】(1)根据抛物线的对称轴与矩形的性质可得点A 的坐标,根据待定系数法可得抛物线的解析式; (2)先根据勾股定理可得CE ,再分两种情况:当∠QPC =90°时;当∠PQC =90°时;讨论可得△PCQ为直角三角形时t 的值;(3)根据待定系数法可得直线AC 的解析式,根据S △ACQ =S △AFQ +S △CPQ 可得S △ACQ =1FQ AD 2⋅=﹣14(t ﹣2)2+1,依此即可求解.【详解】解:(1)∵抛物线的对称轴为x =1,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4),点A 在DE 上,∴点A 坐标为(1,4),设抛物线的解析式为y =a (x ﹣1)2+4,把C (3,0)代入抛物线的解析式,可得a (3﹣1)2+4=0,解得a =﹣1.故抛物线的解析式为y =﹣(x ﹣1)2+4,即y =﹣x 2+2x+3;(2)依题意有:OC =3,OE =4,∴CE 5,当∠QPC =90°时,∵cos ∠QPC ==PC OC CQ CE, ∴3325-=t t ,解得t =1511; 当∠PQC =90°时,∵cos ∠QCP ==CQ OC CP CE, ∴2335=-t t ,解得t =913. ∴当t =1511或 t =913时,△PCQ 为直角三角形; (3)∵A (1,4),C (3,0),设直线AC 的解析式为y =kx+b ,则有:k b 43k b 0+=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩.故直线AC 的解析式为y =﹣2x+2. ∵P (1,4﹣t ),将y =4﹣t 代入y =﹣2x+2中,得x =1+2t , ∴Q 点的横坐标为1+2t ,将x =1+2t 代入y =﹣(x ﹣1)2+4 中,得y =4﹣24t . ∴Q 点的纵坐标为4﹣24t , ∴QF =(4﹣24t )﹣(4﹣t )=t ﹣24t , ∴S △ACQ =S △AFQ +S △CFQ=12FQ•AG+12FQ•DG,=12FQ(AG+DG),=12 FQ•AD,=12×2(t﹣24t),=﹣14(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.【点睛】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.。

吉林省长春市第二实验学校2019-2020学年中考数学模拟学业水平测试试题

吉林省长春市第二实验学校2019-2020学年中考数学模拟学业水平测试试题

吉林省长春市第二实验学校2019-2020学年中考数学模拟学业水平测试试题一、选择题1.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272- 2.下列计算正确的是( )A .a+a =a 2B .6a 3﹣5a 2=aC .(2x 5)2=4x 10D .a 6÷a 2=a 33.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t =32或t =72,其中正确的结论有( )A .1个B .2个C .3个D .4个 4.若反比例函数3k y x +=的图像经过点()3,2-,则k 的值为( ) A.9- B.3 C.6- D.95.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统表,若一天产生的垃圾的为300kg ,估计该小区一个月(按30天计)产生的可回收垃圾重量约是( )A.900kgB.105kgC.3150kgD.5850kg6.已知,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是AB ,BC 的中点,延长AC 到F ,使得CF =AC ,连接EF .若EF =4,则AB 的长为()A.8B.C.4D. 7.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°8.如图,矩形ABCD 的顶点A 和对称中心在反比例函数(0,0)k y k x x=≠>上,若矩形ABCD 的面积为8,则k 的值为( )A .4B .C .D .89.如图,△ABC 是一张顶角为120°的三角形纸片,AB =AC ,BC =6,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则DE 的长为( )A .1B .2C .D .310.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限11.如图,在△ABC 中,∠ACB =90°,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使CD =13BD ,连接DM 、DN 、MN 、CM .若AB =6,则DN 的值为( )A.6B.3C.2D.412.如图,抛物线()20y ax bx c a =++≠过点()1,0和点()0,2-,且顶点在第三象限,设m a b c =-+,则m 的取值范围是( )A .10m -<<B .20m -<<C .40m -<<D .42m -<<-二、填空题13.如图,当小明沿坡度i=1A 到B 行走了6米时,他实际上升的高度BC=______米.14.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为______15.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.16.计算: __________.17.如图,A 、B 是反比例函数y=图象上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5).若△ABC 的面积为7,则点B 的坐标为 .18.如图,将一块30°角的直角三角板ACB (∠B =30°)绕直角顶点C 逆时针旋转到△A′CB′的位置,此时点A′刚好在AB 上,若AC =3,则点B 与点B'的距离为_____.三、解答题19.先化简,再求值:22121()111x x x x x -+÷+--,其中x 满足方程x (x ﹣1)=2(x ﹣1). 20.某幼儿园购买了A ,B 两种型号的玩具,A 型玩具的单价比B 型玩具的单价少9元,已知该幼儿园用了3120元购买A 型玩具的件数与用4200元购买B 型玩具的件数相等.(1)该幼儿园购买的A ,B 型玩具的单价各是多少元?(2)若A ,B 两种型号的玩具共购买200件,且A 型玩具数量不多于B 型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?21.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2.(1)求BE长;(2)求tanC的值.22.如图,半圆O的直径AB=6,弦CD=3,AD的长为34π,求BC的长.23.2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):b.关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 1111 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:(1)表中m的值为______;(2)在此次采访中,参会教师更感兴趣的问题是______(填“面向未来的教育”或“家庭教育”),理由是______;(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有______位.24.如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.(1)将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;(2)以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;(3)填空:222A B C ∆面积为.25.如图,在等腰直角三角形ABC 中,∠ACB =90°,在△ABC 内一点P ,已知∠1=∠2=∠3,将△BCP 以直线PC 为对称轴翻折,使点B 与点D 重合,PD 与AB 交于点E ,连结AD ,将△APD 的面积记为S 1,将△BPE 的面积记为S 2,则21S S 的值为_____.【参考答案】***一、选择题13.314.5815.7×1010.16.117.(,3).18三、解答题19.x 2+1,5【解析】【分析】找出原式括号中两项的最简公分母,通分并利用同分母分式的加法法则计算,除式的分母利用平方差公式分解因式,并利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,然后将已知的方程移项提取公因式x −1,左边化为积的形式,右边化为0,利用两数相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程,求出方程的解得到x 的值,将满足题意x 的值代入化简后的式子中计算,即可得到原式的值.【详解】解:原式=()()()()()2121x 111x x x x x -++-+- =x 2﹣2x+1+2x=x 2+1,方程x (x ﹣1)=2(x ﹣1),移项变形得:(x ﹣1)(x ﹣2)=0,解得:x =1或x =2,当x =1时,原式没有意义;则当x =2时,原式=22+1=5.【点睛】此题考查了分式的化简求值,以及利用因式分解法解一元二次方程,分式的加减运算关键是通分,通分的关键是找最简公分母,分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.20.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元.【解析】【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题.【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元, 312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解,∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元,w =26a+35(200﹣a )=﹣9a+7000,∵a≤3(200﹣a ),∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650,答:购买这些玩具的总费用最少需要5650元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答.21.(1)BE =8;(2)tanC=4.【解析】【分析】(1)连接AD,由圆周角定理可知∠AEB=∠ADB=90°,由等腰三角形的性质可得BD=CD,再利用中位线求出CE的长,然后根据勾股定理求出BE的长;(2)在直角三角形CEB中,根据正切的定义求解即可.【详解】解:(1)连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是ABC的中位线,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE8;(2)在直角三角形CEB中,∵CE=4,BE=8,∴tanC=82BECE==4.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形中位线判定与性质,勾股定理及锐角三角函数的知识.证明OD是ABC的中位线是解(1)的关键,熟记锐角的正切等于对边比邻边是解(2)的关键.22.5 4π【解析】【详解】连接OD、OC,∵CD=OC=OD=3,∴△CDO是等边三角形,∴∠COD=60°,∴CD的长=603180ππ⋅⨯=,又∵半圆弧的长度为:1632ππ⨯=, ∴BC =35344ππππ--=. 【点睛】 本题考查圆了弧长的计算,等边三角形的性质等知识.23.(1)11;(2)家庭教育问题,理由见解析;(3)210位.【解析】【分析】(1)根据频数(率)分布直方图中数据即可得到结论;(2)根据表中数据即可得到结论;(3)所有参会教师人数×在“家庭教育”这个问题上发言次数超过8次的参会教师占在“家庭教育”这个问题上发言的参会教师的人数即可得到结论.【详解】解:(1)根据题意可知关于“家庭教育”问题发言次数的中位数落在8≤x<12这一组,∴m=11,故答案为:11;(2)在此次采访中,参会教师更感兴趣的问题是家庭教育问题,理由:“家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数; 故答案为:家庭教育,家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数;(3)300×4260=210位, 答:发言次数超过8次的参会教师有210位.【点睛】本题考查了频数(率)分布直方图,正确的理解题意是解题的关键.24.(1)详见解析;(2)详见解析;(3)6.【解析】【分析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C 面积=4×4-12×2×4-12×2×2-12×2×4=6. 【点睛】 本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形. 25.12【解析】【分析】首先证明∠APC =90°,∠BPC =∠APB =∠ADB =135°,再证明△PDB ,△ADP 都是等腰直角三角形即可解决问题.【详解】如图,连接BD .∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°,∵∠1=∠2,∠2+∠ACP =90°,∴∠1+∠ACP =90°,∴∠APC =90°,∵∠2=∠3,∠3+∠PBC =45°,∴∠2+∠PBC =45°,∴∠BPC =∠DPC =135°,∴∠APD =45°,∠DPB =90°,∵PD =PB ,∴△PDB 是等腰直角三角形,同法可知:∠APB =135°,∴∠APD =45°,∵CA =CD =CB ,∴∠CAD =∠CDA ,∠CDB =∠CBD ,∵∠ACD+2∠CDA =180°,∠DCB+2∠CDB =180°,∠ACD+∠DCB =90°,∴2∠ADC+2∠CDB =270°,∴∠ADP =∠ADC+∠CDB =135°,∵∠PDB =45°,∴∠ADP =90°,∵∠APD =45°,∴△APD 是等腰直角三角形,∴AD =PD =PB ,∵∠ADP =∠DPB =90°, ∴AD ∥PB ,∴四边形ADBP 是平行四边形, ∴PE =DE ,∴S 2=12S △DPB 12S △ADP =12S 1. ∴21S S =12, 故答案为12. 【点睛】此题考查等腰直角三角形,平行四边形的判定,解题关键在于作辅助线。

吉林省长春市2019-2020学年中考三诊数学试题含解析

吉林省长春市2019-2020学年中考三诊数学试题含解析

吉林省长春市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .92.计算(x -2)(x+5)的结果是A .x 2+3x+7B .x 2+3x+10C .x 2+3x -10D .x 2-3x -103.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件4.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( )A .B .C .D .5.下列实数中是无理数的是( )A .227B .2﹣2C .5.15&&D .sin45°6.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y=1x7.下列函数中,y 关于x 的二次函数是( )A .y =ax 2+bx+cB .y =x(x ﹣1)C .y=21xD .y =(x ﹣1)2﹣x 2 8.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D .9.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k>-14 B .k>-14且0k ≠ C .k<-14 D .k ≥-14且0k ≠ 10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D 等于( )A.2 B.3 C.23D.3211.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°12.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.写出一个大于3且小于4的无理数:___________.14.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.15.已知关于x的一元二次方程2x2x a0+-=有两个相等的实数根,则a的值是______.16.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.17.观察下列各等式:-+=231--++=56784---+++=1011121314159----++++=171819202122232416……根据以上规律可知第11行左起第一个数是__.18.使21x-有意义的x的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当C,B两点均在直线MN的上方时,①直接写出线段AE,BF与CE的数量关系.②猜测线段AF,BF与CE的数量关系,不必写出证明过程.(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.20.(6分)已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.21.(6分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据图中信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.22.(8分)计算:201()(π7)3---+3〡-2〡+6tan30︒23.(8分)计算:27÷3+8×2﹣1﹣(2015+1)0+2•sin60°. 24.(10分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C 级所占的圆心角的度数.25.(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.(12分)如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.27.(12分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物y=x2+bx+c线的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63 =84;当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a ≈1.6,取最大整数,即a=1.故选C.2.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可. 【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.3.D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.4.C【解析】分析:估计11的大小,进而在数轴上找到相应的位置,即可得到答案.详解:49 911,4 <<Q由被开方数越大算术平方根越大,49911,4∴<<即7 311,2 <<故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计11的大小. 5.D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.6.D【解析】【分析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【详解】A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=-3x+1与x轴交于(13,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D .反比例函数y=1x与x 轴没有交点,符合题意; 故选D .7.B【解析】【分析】 判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax 2+bx+c= bx+c ,不是二次函数,故不符合题意;B. y=x (x ﹣1)=x 2-x ,是二次函数,故符合题意;C. 21y x 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x ﹣1)2﹣x 2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的函数叫做二次函数,据此求解即可.8.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A 、是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、不是轴对称图形.故选:A .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 9.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14-且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.10.A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.12.C【解析】【分析】众数,中位数,方差等概念分析即可.【详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.二、填空题:(本大题共6个小题,每小题4分,共24分.),等,答案不唯一.1310π【解析】【分析】【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为22==,故而9和1610,11,12,1539,416L都是无理数.14.215【解析】【分析】如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt △OHC 中,利用勾股定理计算得到CH=15,即CD=2CH=215.【详解】 解:如图,作OH ⊥CD 于H ,连结OC ,∵OH ⊥CD ,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2,在Rt △OPH 中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1, 在Rt △OHC 中,∵OC=4,OH=1,∴22OC OH 15-=∴15故答案为15【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可15.1-.【解析】试题分析:∵关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,∴()2241a 0a 1∆=-⋅⋅-=⇒=-. 考点:一元二次方程根的判别式.16.1.【解析】【详解】设P (0,b ),∵直线APB ∥x 轴,∴A ,B 两点的纵坐标都为b ,而点A 在反比例函数y=4x -的图象上, ∴当y=b ,x=-4b ,即A 点坐标为(-4b,b ), 又∵点B 在反比例函数y=2x的图象上, ∴当y=b ,x=2b ,即B 点坐标为(2b,b ), ∴AB=2b -(-4b )=6b, ∴S △ABC =12•AB•OP=12•6b •b=1. 17.-1.【解析】【分析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n 行=n 2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.18.12x ≥ 【解析】【分析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:210x -≥,解得:12x ≥. 所以答案为12x ≥. 【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①AE+BF =EC ;②AF+BF=2CE ;(2)AF ﹣BF=2CE ,证明见解析;(3)FG=65. 【解析】【分析】(1)①只要证明△ACE ≌△BCD (AAS ),推出AE=BD ,CE=CD ,推出四边形CEFD 为正方形,即可解决问题;②利用①中结论即可解决问题;(2)首先证明BF-AF=2CE .由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG ∥EC ,可知FG AF EC AE=,由此即可解决问题;【详解】解:(1)证明:①如图1,过点C 做CD ⊥BF ,交FB 的延长线于点D ,∵CE ⊥MN ,CD ⊥BF ,∴∠CEA=∠D=90°,∵CE ⊥MN ,CD ⊥BF ,BF ⊥MN ,∴四边形CEFD 为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB ,即∠ACE=∠BCD ,又∵△ABC 为等腰直角三角形,∴AC=BC ,在△ACE 和△BCD 中,90ACE BCD AEC BDC AC BC ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACE ≌△BCD (AAS ),∴AE=BD ,CE=CD ,又∵四边形CEFD 为矩形,∴四边形CEFD 为正方形,∴CE=EF=DF=CD ,∴AE+BF=DB+BF=DF=EC .②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE ,(2)AF-BF=2CE图2中,过点C 作CG ⊥BF ,交BF 延长线于点G ,∵AC=BC可得∠AEC=∠CGB ,∠ACE=∠BCG ,在△CBG 和△CAE 中,AEC CGB ACE BCG AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBG ≌△CAE (AAS ),∴AE=BG ,∵AF=AE+EF ,∴AF=BG+CE=BF+FG+CE=2CE+BF ,∴AF-BF=2CE ;(3)如图3,过点C 做CD ⊥BF ,交FB 的于点D ,∵AC=BC可得∠AEC=∠CDB ,∠ACE=∠BCD ,在△CBD 和△CAE 中,AEC CDB ACE BCD AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBD ≌△CAE (AAS ),∴AE=BD ,∵AF=AE-EF ,∴AF=BD-CE=BF-FD-CE=BF-2CE ,∴BF-AF=2CE .∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG ∥EC , ∴FG AF EC AE=, ∴325FG =, ∴FG=65. 【点睛】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 20.(1)答案见解析;(2)证明见解析.【解析】【分析】(1)如图,在⊙O 上依次截取六段弦,使它们都等于OA ,从而得到正六边形ABCDEF ;(2)连接BE ,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA ,»»»»»»AB BC CD DE EF AF =====,则判断BE 为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF 为矩形.【详解】解:(1)如图,正六边形ABCDEF 为所作;(2)四边形BCEF 为矩形.理由如下:连接BE ,如图,∵六边形ABCDEF为正六边形,∴AB=BC=CD=DE=EF=FA,∴»»»»»»=====,AB BC CD DE EF AF∴»»»»»»++=++,BC CD DE EF AF AB∴¼¼BAE BCE=,∴BE为直径,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四边形BCEF为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.21.(1)126;(2)作图见解析(3)768【解析】试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人;(3)用部分估计整体.试题解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考点:统计图22.10 3【解析】【分析】根据实数的性质进行化简即可计算.【详解】3原式3+6×323=10 3【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.23.6+3. 【解析】 【分析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式=273 +8×12﹣1+2×3=3+4﹣1+3=6+3. 【点睛】 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.(1)200,(2)图见试题解析 (3)540【解析】【详解】试题分析:(1)根据A 级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C 级的人数,然后补全条形统计图即可;(3)1减去A 、B 两级所占的百分比乘以360°即可得出结论.试题解析::(1)调查的学生人数为:5025%=200名; (2)C 级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.答:求出图②中C 级所占的圆心角的度数为54°.考点:条形统计图和扇形统计图的综合运用25.(1)y =x 2+2x ﹣3;(2)点P 的坐标为(2,21)或(﹣2,5);(3)94. 【解析】【分析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12•OC•|a|=2×12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+94﹣94)=﹣(x+32)2+94,∴当x=﹣32时,QD有最大值,QD的最大值为94.【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.26.(1)AC=10;(2)35AD BD =. 【解析】 【分析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A 作AE ⊥BC ,在Rt △ABE 中,tan ∠ABC=34AE BE =,AB=5, ∴AE=3,BE=4,∴CE=BC ﹣BE=5﹣4=1,在Rt △AEC 中,根据勾股定理得:AC=2231+=10;(2)∵DF 垂直平分BC ,∴BD=CD ,BF=CF=52, ∵tan ∠DBF=34DF BF =, ∴DF=158, 在Rt △BFD 中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=258, ∴AD=5﹣258=158, 则35AD BD =.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.27.(1)246y x x =-+;(2)以点N 为圆心,半径长为4的圆与直线2l 相离;理由见解析;(3)点H 、F 的坐标分别为()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --.【解析】【分析】(1)分别把A ,B 点坐标带入函数解析式可求得b ,c 即可得到二次函数解析式(2)先求出顶点P 的坐标,得到直线1l 解析式,再分别求得MN 的坐标,再求出NC 比较其与4的大小可得圆与直线2l 的位置关系.(3)由题得出tan ∠BAO=13,分情况讨论求得F,H 坐标. 【详解】(1)把点()0,6A 、()1,3B 代入2y x bx c =++得631c b c =⎧⎨=++⎩, 解得,46b c =-⎧⎨=⎩, ∴抛物线的解析式为246y x x =-+.(2)由246y x x =-+得()222y x =-+,∴顶点P 的坐标为()2,2P , 把()2,2P 代入1l 得22k =解得1k =,∴直线1l 解析式为y x =,设点()2,M m ,代入2l 得4m =-,∴得()24M -,, 设点(),4N n -,代入1l 得4n =-,∴得()44N --,, 由于直线2l 与x 轴、y 轴分别交于点D 、E∴易得()2,0D -、()0.2E -,∴OC ==CE ==∴OC CE =,∵点C 在直线y x =上,∴45COE ∠=o ,∴45OEC ∠=o ,180454590OCE ∠=--=o o o o 即2NC l ⊥,∵4NC ==>,∴以点N 为圆心,半径长为4的圆与直线2l 相离.(3)点H 、F 的坐标分别为()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --. C(-1,-1),A(0,6),B(1,3)可得tan ∠BAO=13, 情况1:tan ∠CF 1M= 1CM CF = 13,∴ CF 1M F 1∴H 1F 1,∴ F 1(8,8),H 1(3,3);情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.。

吉林省吉林市2019-2020学年中考数学三模考试卷含解析

吉林省吉林市2019-2020学年中考数学三模考试卷含解析

吉林省吉林市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x a=2,x b=3,则x3a﹣2b等于()A.89B.﹣1 C.17 D.722.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.303.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是().A.36°B.54°C.72°D.30°4.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒5.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过96.计算4×(–9)的结果等于 A .32B .–32C .36D .–367.下列图形不是正方体展开图的是( ) A .B .C .D .8.若实数m 满足22210⎛⎫++= ⎪⎝⎭m m ,则下列对m 值的估计正确的是( )A .﹣2<m <﹣1B .﹣1<m <0C .0<m <1D .1<m <29.方程2131x x +=-的解是( ) A .2-B .1-C .2D .410.如果一组数据1、2、x 、5、6的众数是6,则这组数据的中位数是( ) A .1B .2C .5D .611.方程()21k 1x 1kx+=04---有两个实数根,则k 的取值范围是( ). A .k≥1B .k≤1C .k>1D .k<112.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A .35°B .45°C .55°D .65°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.化简11-(1)1m m ⎛⎫⋅-= ⎪-⎝⎭__________.14.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.15.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是 _______.16.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.17.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.18.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.20.(6分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21.(6分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.22.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B 在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.23.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.24.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.25.(10分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.26.(12分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.27.(12分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x≤100 b c合计■ 1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵x a=2,x b=3,∴x3a−2b=(x a)3÷(x b)2=8÷9= 89,故选A. 2.D 【解析】【分析】【详解】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.3.A【解析】【分析】由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC 可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.4.B【解析】【分析】如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O 点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.5.D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.6.D【解析】【分析】根据有理数的乘法法则进行计算即可.【详解】()494936.⨯-=-⨯=-故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 7.B【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.8.A【解析】试题解析:∵222(1)0mm++=,∴m2+2+4m=0,∴m2+2=-4m,∴方程的解可以看作是函数y=m2+2与函数y=-4m,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-4m的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-4m=-42-=2,∵6>2,∴交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-4m=-41-=4,∵3<4,∴交点横坐标小于-1,∴-2<m<-1.故选A.考点:1.二次函数的图象;2.反比例函数的图象.9.D【解析】【分析】按照解分式方程的步骤进行计算,注意结果要检验. 【详解】解:2131xx+= -213(1)x x+=-2133x x+=-2313x x-=--4x-=-4x=经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.10.C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数. 11.D 【解析】当k=1时,原方程不成立,故k≠1,当k≠1时,方程()21k 1x =04-为一元二次方程. ∵此方程有两个实数根,∴221b 4ac 4k 11k k 122k 04-=-⨯-⨯=---=-≥(()(),解得:k≤1. 综上k 的取值范围是k <1.故选D . 12.C 【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC 与∠B 所对的弧相同, ∴∠B=∠ADC=35°, ∵AB 是⊙O 的直径, ∴∠ACB=90°, ∴∠CAB=90°-∠B=55°, 故选C .点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2-m 【解析】 【分析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解. 【详解】 解:法一、()11-11m m ⎛⎫⋅- ⎪-⎝⎭=(11m m --- 11m -) ()1m ⋅- =21m m -- ()1m ⋅- = 2-m .故答案为:2-m .法二、原式=()1111m m ⎛⎫+⋅- ⎪-⎝⎭= =1-m+1 =2-m .故答案为:2-m . 【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律. 14.1. 【解析】 【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案. 【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数. ∵14岁的有1人,1岁的有21人, ∴这个班同学年龄的中位数是1岁. 【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键. 15.60° 【解析】 【分析】根据题意可得AOD AOB BOD ∠=∠+∠,根据已知条件计算即可. 【详解】根据题意可得:AOD AOB BOD ∠=∠+∠Q 15AOB ∠=︒,45BOD ︒∠=451560AOD ︒︒︒∴∠=+=故答案为60° 【点睛】本题主要考查旋转角的有关计算,关键在于识别那个是旋转角. 16.1. 【解析】依据调和数的意义,有15-1x=13-15,解得x=1.17.1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.18.224πcm【解析】解:它的侧面展开图的面积=12•1π•4×6=14π(cm1).故答案为14πcm1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25,25;213,27;(2)2a+2b=52c;(1)AF=2.【解析】试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH 和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考点:相似形综合题.20.(1) 80、72;(2) 16人;(3) 50人【解析】【分析】(1) 用步行人数除以其所占的百分比即可得到样本总人数:8÷10%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即m=80⨯25%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360⨯(1-10%-25%-45%)=72o.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.【详解】解:(1)样本中的总人数为8÷10%=80人,∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°(2)骑自行车的人数为80×20%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x , 解得:x≥50,∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数. 【点睛】本题主要考查统计图表和一元一次不等式的应用。

2021-2022学年吉林省第二实验学校九年级(上)第三次月考数学试卷(附详解)

2021-2022学年吉林省第二实验学校九年级(上)第三次月考数学试卷(附详解)

2021-2022学年吉林省第二实验学校九年级(上)第三次月考数学试卷一、选择题(本大题共8小题,共24.0分) 1. 如图,数轴上蝴蝶所在点表示的数可能为( )A. 3B. 2C. 1D. −12. 据统计2021年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为375000000人次,375000000这个数用科学记数法表示为( )A. 37.5×107B. 3.75×108C. 0.375×109D. 3.75×1093. 如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和俯视图4. 不等式组{x −1≤02x −5<1的解集为( )A. x <−2B. x ≤−1C. x ≤1D. x <35. 《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是( )A. {8y −x =37y −x =4B. {8y −x =37y −x =−4C. {y −8x =−37y −x =−4D. {8y −x =37y −y =46. 如图,点A ,B ,C 在⊙O 上,∠ABC =29°,过点C 作⊙O 的切线交OA 的延长线于点D ,则∠D 的大小为( )A. 29°B. 32°C. 42°D. 58°7.如图小张同学的尺规作图步骤,其具体做法如下:①在射线AD上顺次截取AB=BC=a,②分别以B、C为圆心,以a为半径作圆弧,两弧交于点E,③连接AE、BE、CE,则下列说法错误的是()A. △BCE为等边三角形B. △ACE的面积为√3a24D. ∠AEC=3∠AC. sinA=128.如图,点A在反比例函数y=k上,点B在x轴上,连接AB交y轴于点E,将AB沿x轴x向右平移至CD,其中C在x轴上,D在y轴上,连接CE,若△CDE的面积为3,则k的值为()A. −3B. 3C. −6D. 6二、填空题(本大题共6小题,共18.0分)9.因式分解:m2−3m=______ .10.分式x−1的值为0,则x的值是______.x11.为增强学生体质,感受中国的传统文化,某学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间.某同学“抖空竹”的一个瞬间如图①所示,若将图①抽象成图②的数学问题:AB//CD,∠EAB=70°,∠ECD=110°,则∠E的大小是______度.12.如图,为了绿化荒山,在坡角∠BAC为31°的山坡上修建扬水站,扬水站中出水口B的高度BC为50m,现在打算从山脚下的机井房A沿山坡铺设水管,则铺设水管AB的长度约为______m(结果精确到1m)(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60)13.如图,△ABO中,AB⊥OB,OB=2√3,AB=2,把△ABO绕点O顺时针旋转150°后得到△A1B1O,则点B1的坐标为______.14.有一个抛物线形桥拱的最大高度为16m,跨度为40m,把它放在如图所示的直角坐标系里,若要在离跨度中心点M的距离5m处垂直竖一根铁柱支撑这个拱顶,铁柱的长为______m.三、解答题(本大题共6小题,共52.0分)15.小明在化简代数式(x+2)2−(x+1)(x−1)时出现了错误,他的解答步骤如下:原式=x2+4−(x2−1)(第一步)=x2+4−x2+1(第二步)=5(第三步)(1)小明的解答过程是从第______步开始出错的;(2)写出正确的解答过程,再求出当x=−1时代数式的值.216.为了调查学生对防溺水知识的了解情况,甲、乙两校进行了相关知识测试,在两校各随机抽取20名学生的测试成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图:甲校学生样本成绩频数分布表(表1)b.甲校成绩在80≤m<90的这一组的具体成绩是:8686878788898989c.甲、乙两校成绩的统计数据如下表所示(表2):根据以如图表提供的信息,解答下列问题:(1)表1中a=______ ;表2中m=______ ;(2)补全甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是86分,在他所属学校排在前10名,由表中数据可知该学生是______ 校的学生(填“甲”或“乙”);(4)若甲校共有1200人,成绩不低于80分为“优秀”,则甲校成绩“优秀”的人数约为多少人?17.目前全国各地都在积极开展新冠肺炎疫苗接种工作,某市接到批量生产疫苗任务,要求5天内加工完成22万支疫苗,某药厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲乙两车间各自生产疫苗y(万支)与甲车间加工时间x(天)之间的关系如图1所示;未生产疫苗w(万只)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天生产疫苗______ 万支,a=______ .(2)求乙车间维修设备后,乙车间生产疫苗数量y(万支)与x(天)之间函数关系式.(3)若5.5万疫苗恰好装满一辆货车,那么加工多长时间装满第一辆货车?再加工多长时间恰好装满第二辆货车?18.【教材回顾】如图①,点D、E分别是△ABC的边AB、边AC的中点,连结DE,则DE是△ABC的一条中位线.则DE和BC的数量关系是______,位置关系是______.【提出问题】如图④,AB是以MN为直径的⊙O的一条弦,连结OA、OB,点M在AB 的上方,点N在AB的下方,MP⊥AB于P,NQ⊥AB于Q,点P、Q均在弦AB上.已知MN=5,∠OAB=30°,求MP−NQ的值.为了解决上面的问题,进行了如下的探究:【分析问题】先看两种特殊情况:(1)如图②,当点N与点B重合时,点Q也与点B重合,点P与点A重合,此时MP=MA,NQ=0(点看成是长度为0的线段),则MP−NQ=______.(写出具体的数值)(2)如图③,当MN⊥AB时,P、Q重合,此时MP−NQ与OP的数量关系是______,先根据条件易求OP的长度,则MP−NQ=______.(写出具体的数值)【解决问题】结合图④对应的一般情况和你的感知,请用严谨的数学方法求MP−NQ的值.19.在△ABC中,AB=7,∠A=45°,sinB=3,P为线段AB上一动点,设AP=x,过5P作AB垂线交射线AC于点Q,将△APQ绕PQ中点旋转180°得到△DQP.(1)点C到AB的距离为______;(2)求出点D在△ABC内部时x的取值范围.(3)当D点在△ABC外部时,边PD与边BC交点为E,当图形中存在全等三角形时(除△APQ与△DQP全等外),求BE的长.(4)点F为BC中点,作点B关于PD的对称点B′,连结B′F,当B′F与△ABC的边平行时,直接写出x值.20.在平面直角坐标系xoy中,抛物线y=x2+2mx+m2−2m−1(m是常数)的顶点为A,与y轴交于点B.(1)m=−1时,点A的坐标是______,点B的坐标是______.(2)连结OA、AB,当OA=AB时,求此抛物线所对应的二次函数表达式.(3)已知点P在此抛物线上,横坐标为1−m,当点P不在坐标轴上时,设点P关于x轴的对称点为Q,过点P、Q分别作y轴的垂线,垂足分别为点N、M,连结PQ,得到矩形PQMN,当此抛物线与矩形PQMN的边仅有两个不同的交点时,设抛物线位于矩形PQMN内部(包括边界)的部分的最高点与最低点的纵坐标的差值为d,解答下列两个问题:①当m<0时,求d与m的函数关系式并写出相应的m的取值范围.②设抛物线与矩形PQMN的另一个交点为R,当点P到直线x=−1的距离是点R到2的距离的3倍时,直接写出m的值.直x=−12答案和解析1.【答案】D【解析】【分析】本题考查了数轴,关键是掌握数轴上原点左边的点表示的数是负数.直接利用数轴得出结果即可.【解答】解:数轴上蝴蝶所在点表示的数是负数,可能为−1,故选D.2.【答案】B【解析】解:375000000=3.75×108.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.3.【答案】B【解析】解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图.故选:B.主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.此题主要考查了平移的性质和应用,以及简单组合体的三视图,要熟练掌握,解答此题的关键是掌握主视图、俯视图以及左视图的观察方法.4.【答案】C【解析】解:{x −1≤0 ①2x −5<1 ②解不等式①得:x ≤1, 解不等式②得:x <3, ∴不等式组的解集为x ≤1, 故选:C .先求出每个不等式的解集,再求出每个解集的公共部分即可.本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.5.【答案】B【解析】解:设该物品的价格是x 钱,共同购买该物品的有y 人, 依题意,得:{8y −x =37y −x =−4.故选:B .设该物品的价格是x 钱,共同购买该物品的有y 人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x ,y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.【答案】B【解析】解:作直径B′C ,交⊙O 于B′,连接AB′,则∠AB′C =∠ABC =29°, ∵OA =OB′,∴∠AB′C =∠OAB′=29°. ∴∠DOC =∠AB′C +∠OAB′=58°. ∵CD 是⊙的切线, ∴∠OCD =90°.∴∠D =90°−58°=32°.作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,由等腰三角形的性质和三角形的外角的性质可求得∠DOC=54°,接下来,由切线的性质可证明∠OCD=90°,最后在Rt△OCD中根据两锐角互余可求得∠D的度数.本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠ABC=∠OAB′=29°是解题的关键.7.【答案】B【解析】解:由题意得AB=BC=BE=CE=a,∴△BCE为等边三角形,故A选项正确.∴△BCE的面积为√3a2,故B选项错误.4∵BE=BA,∠EBC=60°,∴∠A=∠BEA=30°,∴sinA=sin30°=1,故C选项正确.2∴∠AEC=∠BEA+∠BEC=30°+60°=90°,∴∠AEC=3∠A,故D选项正确.故选:B.由题意可得△BCE为等边三角形,根据直角三角形及等边三角形依次判断.本题考查等边三角形的性质、直角三角形的性质及锐角三角函数.解题关键是熟练掌握三角形的性质及解直角三角形的方法.8.【答案】C【解析】解:过点A作AH⊥x轴于点H,∵AB平移至CD,∴四边形ABCD是平行四边形,四边形AHOD是矩形,∵△DEC的面积是3,∴S▱ABCD=2S△DEC=6,=S▱ABCD=6,∴S矩形AHOD∵函数图象过第二象限,∴k=−6.故选:C.过点A作H⊥x轴于点H,利用△DEC的面积推出平行四边形ABCD的面积,从而得到矩形AHOD的面积,利用反比例函数系数k的几何意义求出k的值.本题考查了平行四边形的面积和等底等高的矩形面积之间的关系、反比例函数系数k的几何意义.解题的突破点是找到△DEC的面积和▱ABCD的面积之间的关系.9.【答案】m(m−3)【解析】解:m2−3m=m(m−3).故答案为:m(m−3).直接找出公因式m,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.【答案】1【解析】【分析】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.根据分式的值为零的条件得到x−1=0且x≠0,易得x=1.【解答】的值为0,解:∵分式x−1x∴x−1=0且x≠0,∴x=1.故答案为1.11.【答案】40【解析】解:如图所示:延长DC交AE于点F,∵AB//CD,∠EAB=70°,∠ECD=110°,∴∠EAB=∠EFC=70°,∴∠E=110°−70°=40°.故答案为:40.直接利用平行线的性质得出∠EAB=∠EFC=70°,进而利用三角形的外角得出答案.此题主要考查了平行线的性质,正确的作出辅助线是解题关键.12.【答案】96【解析】解:在△ABC中,∵∠BAC=31°,BC=50m,∴sin31°=BC,AB∴AB=50≈96(m),0.52故答案为96.计算即可;在△ABC中,∵∠BAC=31°,根据sin31°=BCAB本题考查解直角三角形的应用−坡度坡角问题,解题的关键是记住锐角三角函数的定义,属于中考常考题型.13.【答案】(−3,−√3)【解析】解:如图,过点B1作B1H⊥x轴于H.∵∠BOB1=150°,∴∠HOB1=180°−150°=30°,∴B1H=1OB′=√3,2∴OH=√3B′H=3,∴B1(−3,−√3).故答案为:(−3,−√3).图,过点B1作B1H⊥x轴于H.求出OH,B1H即可.本题考查坐标与图形变化−性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.【答案】15【解析】解:由题意,知抛物线的顶点坐标为(20,16),点B(40,0),∴可设抛物线的关系为y=a(x−20)2+16.∵点B(40,0)在抛物线上,∴a(40−20)2+16=0,∴a=−1.25∴y=−1(x−20)2+16.25∵竖立柱柱脚的点为(15,0)或(25,0),×(15−20)2+16=15(m);∴当x=15时,y=−125×(25−20)2+16=15(m).当x=25时,y=−125∴铁柱的长为15m,故答案为:15.根据抛物线形的拱桥在坐标系中的位置,找出抛物线上顶点和另一个点的坐标,代入抛物线的顶点式求出抛物线的解析式,再根据铁柱所在地的横坐标求出纵坐标,就是铁柱的高度.本题主要考查二次函数的应用,知道抛物线在直角坐标系中的位置,选择适当的方法求出二次函数的解析式,运用解析式求出铁柱的高度.15.【答案】一【解析】解:(1)小明的解答过程是从第一步开始出错的;故答案为:一;(2)原式=x2+4x+4−(x2−1)=x2+4x+4−x2+1=4x+5,当x=−1时,2)+5原式=4×(−12=−2+5=3.(1)直接利用乘法公式判断错误原因;(2)直接利用乘法公式结合整式的混合运算法则计算,再把已知数据代入得出答案.此题主要考查了整式的混合运算—化简求值,正确运用乘法公式计算是解题关键.16.【答案】187.5乙【解析】解:(1)由题意可得,a=20×0.05=1,b=20−(1+3+8+6)=2,∴m=(87+88)÷2=87.5,故答案为:1,87.5;(2)补全的频数分布直方图如右图所示;(3)由表2可得,在此次测试中,某学生的成绩是86分,在他所属学校排在前10名,由表中数据可知该学生是乙校学生,理由是乙校的中位数85<86<甲校的中位数87.5,故答案为:乙;(4)1200×(0.40+0.30)=1200×0.70=840(人),即甲校成绩“优秀”的人数约为840人.(1)根据表1中的数据,可以求得a 、b 的值,继而由中位数的定义可得m 的值;(2)根据以上所求数据即可将频数分布直方图补充完整;(3)根据表2中的数据,可以得到该名学生是哪个学校的,并说明理由;(4)根据表1中的数据,可以计算出甲校成绩“优秀”的人数约为多少人.本题考查频数分布表、频数分布直方图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】2 1.5【解析】解:(1)由图象可知,第一天甲乙共加工22−18.5=3.5(万支),第二天,乙停止工作,甲单独加工18.5−16.5=2(万支),则乙一天加工3.5−2=1.5(万支).a =1.5,故答案为:2,1.5;(2)设乙车间维修设备后,乙车间生产疫苗数量y(万支)与x(天)之间函数关系式为y =kx +b ,把(2,1.5),(5,12)代入,得{1.5=2k +b 12=5k +b, 解得{k =3.5b =−5.5, ∴y =3.5x −5.5;(3)由图2可知,当y =22−5.5=16.5时,恰好是第二天加工结束.当2≤x ≤5时,两个车间每天加工速度为16.55−2=5.5(万支),∴加工两天装满第一辆货车,再过1天装满第二辆货车.(1)根据题意,由图2得出两个车间同时加工和甲单独加工的速度;(2)用待定系数法解决问题;(3)求出两个车间每天加工速度分别计算两个5.5万疫苗完成的时间.本题为一次函数实际应用问题,应用了待定系数法.解答要注意通过对边两个函数图象实际意义对比分析得到问题答案.18.【答案】DE=12BC DE//BC52MP−NQ=2OP52【解析】解:(1)如图②,根据题意,MP−NQ=AM,∵MN是直径,∴AM⊥AB,∵OA=OB,∴∠OBA=∠OAB=30°,∴AM=12AN=52;故答案为:52;(2)如图③,∵MN是直径,∴OB=OM=ON=52,∵MN⊥AB,∠OBA=∠OAB=30°,∴OP=12OB=54,PN=ON−OP=54,∴OP=ON,∵MP=OM+OP,NQ=OM−PN,∴MP−NQ=OM+OP−(ON−OP)=2OP=52,∴MP−NQ=52;故答案为:MP−NQ=2OP;52;【解决问题】如图④,延长MP交⊙O于点C,连接CN,过点O作OD⊥PM于点D,过点O作OH⊥AB于点H,∵MN是直径,∴MC⊥NC,OB=12MN=52,∵MP⊥AB,NQ⊥AB,∴四边形PQNC是矩形,∴PC=NQ,∵MP⊥AB,OD⊥PM,OH⊥AB,∴四边形ODPH是矩形,∴PD=OH;∵OD⊥PM,∴CD=MD,∵MP=MD+PD,NQ=PC=CD−PD,∴MP−NQ=2PD,∴MP−NQ=2OH;∵OH⊥AB,∠OBA=∠OAB=30°,∴OH=12OB,∴MP−NQ=OB=52.【教材回顾】根据三角形中位线定理可直接得到;【分析问题】(1)如图②,根据题意,MP−NQ=AM,在Rt△MAN中,根据三角形三边比可得出结论;(2)由30°角的直角三角形可得OP=12OB=54,PN=ON−OP=54,则OP=PN,所以MP−NQ=OM+OP−(ON−OP)=2OP=52,得到结论;【解决问题】延长MP交⊙O于点C,连接CN,过点O作OD⊥PM于点D,过点O作OH⊥AB 于点H,借助分析问题中的结论可得.本题在圆的背景下的类比探究问题,主要考查含30°角的直角三角形的三边关系,类比探究思想等知识,关键是由特殊到一般的类比的思想方法的应用.19.【答案】3【解析】解:(1)如图1,作CH⊥AB于H,∵sinB=CHBC =35,∴设CH=3k,BC=5k,∴BH=4k,∵∠A=45°,∴∠ACH=90°−∠A=45°,∴∠ACH=∠A,∴AH=CH=3k,∵AH+BH=AB,∴3k+4k=7,∴k=1,∴CH=3k=3,BC=5,故答案是:3;(2)如图2,∵将△APQ绕PQ中点旋转180°得到△DQP,∴DQ=AP,AQ=PD,∴四边形APDQ是平行四边形,当D在BC上时,∵DQ//AB,∴△CDQ∽△CBA,∴DQAB =CQAC,∴x7=√2−√2x3√2,∴x=2110,∴点D在△ABC内部时,0<x<2110;(3)如图3,当PQ被BC平分时,△CQF≌△EPF,∵PF=12x,PB=7−x,tanB=PFBP=34,∴4⋅PF=3⋅PB,∴2x=3(7−x),∴x=215,∴PB=7−215=145,∵PD//AQ,∴BEBC =PBAB,∴BE5=1457,∴BE=2;(4)如图4,当FB′//AC时,在Rt△BGB′中,BG=12AB=72,∠BGB′=45°,∵B与B′关于PD对称,∴BP=12BG=74,∴x=AP=AB−BP=7−74=214,如图5,当FB′//AB时,作CK//AB交BB′于K,可得等腰梯形ABKC,∴BB′=12AC=3√22,∴OB=12BB′=3√24,∴PB=√2OB=32,∴AP=AB−PB=7−32=112,∴x=112,综上所述:x=214或112.(1)作CH⊥AB,解斜三角形ABC(解Rt△ACH和Rt△BCH);(2)先求临界:点D在BC上,根据△CDQ∽△CBA可解得此时x值,进而求出x范围;(3)只需PQ的中点在BC上即可,然后解Rt△BPF求得BE;(4)由两种情形:FB′//AB和FB′//AC,当FB′//AC时,BG是△ABC的中位线,FB′//AB,B′是BG的中点,O是BB′的中点,从而求得x的值.本题考查了解直角三角形,平行四边形的判定和性质,相似三角形判定和性质,轴对称性质,三角形中位线定理等知识,解决问题的关键是找到图形的特征和特殊位置.20.【答案】(1,1)(0,2)【解析】解:(1)当m=−1时,抛物线y=x2−2x+2=(x−1)2+1,∴A(1,1).令x=0,则y=2,∴B(0,2).故答案为:(1,1);(0,2);(2)∵y=x2+2mx+m2−2m−1=(x+m)2−2m−1,∴A(−m,−2m−1).令x=0,则y=m2−2m−1,∴B(0,m2−2m−1).∴OA2=(0+m)2+(0+2m+1)2=5m2+4m+1,AB2=(0+m)2+[(−2m−1)−(m2−2m−1)]2=m4+m2.∵OA=AB,∴OA2=AB2.∴5m2+4m+1=m4+m2.∴m4=(2m+1)2.∴m2=−2m−1或m2=2m+1.解得:m1=m2=−1,m3=1+√2,m4=1−√2.∴此抛物线所对应的二次函数表达式为:y=x2−2x+2或y=x2+2(1+√2)x或y= x2+2(1−√2)x.(3)①当m<0时,∵y=x2+2mx+m2−2m−1=(x+m)2−2m−1,∴该抛物线的对称轴为直线x=−m,∵点P的横坐标为1−m,∴当x=1−m时,y=(1−m+m)2−2m−1=−2m.∴P(1−m,−2m).∵点P关于x轴的对称点为Q,∴Q(1−m,2m).由(1)知:点A(−m,−2m−1).∵四边形PQMN是矩形,∴PQ⊥x轴,QM⊥y轴,PN⊥y轴.∴M(0,2m),N(0,−2m).∵抛物线与矩形PQMN 的边仅有两个不同的交点,∴抛物线的顶点A 在矩形PQMN 的QM 边的上方,∴−2m −1>2m .∴m <−14. ∵抛物线位于矩形PQMN 内部(包括边界)的部分的最高点与最低点的纵坐标的差值为d , 又∵抛物线位于矩形PQMN 内部(包括边界)的部分的最高点为P ,其纵坐标为−2m , 抛物线位于矩形PQMN 内部(包括边界)的部分的最低点为A ,其纵坐标为:−2m −1, ∴d =−2m −(−2m −1)=1,且满足m <−14.综上,d 与m 的函数关系式为d =1,相应的m 的取值范围为:m <−14.②∵抛物线与矩形PQMN 的另一个交点为R ,R 在线段PN 上,PN ⊥y 轴,∴P ,R 关于直线x =−m 对称.∴P ,R 的纵坐标相同.设点R 的横坐标为r ,∵P(1−m,−2m),∴r+1−m 2=−m ,∴r =−m −1.∴R(−m −1,−2m).∵点P 到直线x =−12的距离是点R 到直x =−12的距离的3倍,∴|1−m −(−12)|=3|−m −1−(−12)|.∴|32−m|=3|−m −12|.∴(32−m)2=9(−m −12)2.解得:m =0或m =−32.∵m <−14,∴m =−32.(1)将m =−1代入抛物线解析式,利用配方法求得点A 坐标,令x =0,求得y 值即可得到点B 坐标;(2)利用(1)中的方法求得点A ,B 的坐标,根据勾股定理利用两点坐标求得OA 2和AB 2,由已知条件列出方程,解方程求得m 的值即可得出结论;(3)①利用抛物线的解析式求得点P 的坐标,利用对称性求出点Q 的坐标,利用此抛物线与矩形PQMN 的边仅有两个不同的交点,列出关于m 的不等式,解不等式即可求得m 的取值范围;通过分析找出最高点与最低点,将它们的纵坐标相减即可得出结论; ②利用P 与R 关于直线x =−m 对称求出点R 的坐标,利用它们的横坐标分别表示点P 到直线x =−12的距离和点R 到直x =−12的距离,根据已知条件列出方程,解方程即可求得m 的值.本题是一道二次函数的综合题,主要考查了二次函数的性质,抛物线上点的坐标的特征,函数的极值,配方法求抛物线的顶点坐标,勾股定理,一元二次方程的解法,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.。

吉林省长春市第二实验中学2024届九年级上学期第三月考数学试卷(含答案)

吉林省长春市第二实验中学2024届九年级上学期第三月考数学试卷(含答案)

吉林省第二实验学校2023—2024学年度上学期九年级第三次月考数学试题一、选择题(本大题共8小题,每小题3分,共24分)1. 下列实数中,属于无理数的是( )A. ﹣2B. 0C.D. 5答案:C2. 预计在2023—2024年雪季,吉林省“北大湖”滑雪场接待游客人次,将用科学记数法表示为()A. B. C. D.答案:C3. 下列几何体中,三视图的三个视图完全相同的几何体是( )A. B.C. D.答案:D4. 不等式的解集在数轴上表示正确的是()A. B.C. D.答案:C5. 如图,某大桥主塔的正面示意图是一个轴对称图形,小明测得桥面宽度米,,则点O到桥面的距离(单位:米)是()A. B. C. D. 答案:D6. 如图,四边形是的内接四边形.若,则的度数为( )A. 138°B. 121°C. 118°D. 112°答案:C7. 如图,是的外接圆,在弧上找一点M ,使点M 平分弧.以下是甲乙丙三种不同的作法:作法正确的个数是( )A. 0个B. 1个C. 2个D. 3个答案:D8. 如图,在四边形中,点在轴正半轴上,轴,为边中点,双曲线经过两点,若的面积是2,则的值为( )A. 6B. 8C. 10D. 12答案:B二、填空题(本大题共6小题,每小题3分,共18分)9. 买单价3元的圆珠笔m支,应付______元.答案:3m10. 分解因式:______.答案:11. 关于x的一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值是__.答案:12. 如图,l1∥l2,将一个三角板直角顶点O放在直线l1上,三角板的两条直角边与l2交于A、B两点,若∠1=35°,则∠2的度数为________°.答案:5513. 如图,点C、D分别是半圆AOB上的三等分点,若半圆的半径OA的长为3,阴影部分的面积是________.答案:14. 掷实心球是滨州市中考体育测试中的一个项目,如图所示,一名男生掷实心球,实心球行进的路线是一段抛物线,已知实心球出手时离地面2米,当实心球行进的水平距离为4米时达到最高点,此时离地面米,这名男生此次抛掷实心球的成绩是______米.答案:三、解答题(本大题共10小题,共78分)15. 先化简再求值:,其中.答案:;-2解:,,,,∴原式;16. 为迎接五•一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.答案:B种服装每件的进价为40元.解:设B种服装每件的进价为x元,由题意可得:=解得:x=40经检验得:x=40为原方程的解,且符合题意答:B种服装每件的进价为40元.17. 已知二次函数的图象经过点.(1)求该二次函数的表达式.(2)若该函数图象上的两点,当时,直接写出的取值范围______.答案:(1)(2)或解:将代入二次函数得:,解得:,∴二次函数的表达式为;【小问2详解】,∴抛物线的对称轴为,∵,∴抛物线开口向下,点关于对称的点为,∵,∴或,故答案为:或.18. 如图,在中,,平分交于点,点在线段上,点在的延长线上,且,连接,,,.(1)求证:四边形是菱形;(2)若,,,则______.答案:(1)证明过程见详解(2)证明:∵,∴是等腰三角形,∵平分,∴,且,即是的垂直平分线,∵,∴四边形是平行四边形,且,,∴平行四边形是菱形.【小问2详解】解:由(1)得,,,,,∴,∵四边形是菱形,∴,,∵,即,∴,,∴,∴,∴,∴,,,∴,则,在中,∴.故答案为:.19. 如图,⊙是的外接圆,圆心O在AC上.过点B作直线交AC的延长线于点D,使得.过点A作于点E,交⊙于点F.(1)求证:BD是⊙的切线;(2)若,,则AE的长为________.答案:(1)见解析;(2)【小问1详解】证明:如图,连接OB,∵是的外接圆,圆心O在AC上∴AC是的直径∴∵=AC=2∴∵,∴∴∵OB是的半径∴BD是的切线,【小问2详解】解:AE的长为,理由如下:如图,连接CF交OB于点H,∵AC是直径,∴∠AFC=90°,∵AE⊥BD,∴∠AED=90°,∴∠AFC=∠AED,∴CF DE,∴∠D=∠ACF,在Rt△ACF中,∴sin∠ACF=,∵AC=4,∴AF=,由勾股定理可得:CF=,∵∠AEB=∠EFC=∠OBE=90°,∴四边形EFHB是矩形,∴BH=FE,∠OHC=90°,∴CH=在Rt△OCH中,\∴∴BH=OB-OH=2-=∴FE=BH=∴AE=AF+FE=+=故答案为:20. 如图,在边长为1的8×8正方形网格中,点A、B、C均在格点上,(用无刻度的直尺作图,并保留作图痕迹).(1)在图①中,作的中线.(2)在图②中,作的高线.(3)在图③中,作以为直径的圆O的切线.答案:(1)见解析(2)见解析(3)见解析【小问1详解】解:如图中,线段即所求;【小问2详解】解:如图中,线段即为所求;【小问3详解】解:如图中,线段即为所求;21. 在一条笔直的公路上有三地,地位于两地之间,甲车从A地沿这条公路匀速驶向地,甲车出发1小时后,乙车从地沿这条公路匀速驶向A地,在甲车出发至甲车到达地的过程中,甲、乙两车与地的距离与甲车行驶时间之间的函数关系如图.请根据所给图像解答下列问题:(1)甲车的行驶速度为______,乙车的行驶速度为______.(2)当时,求乙车与地的距离与甲车行驶时间之间的函数关系式.(3)请直接写出当乙车出发多少小时时,两车相遇.答案:(1)60,80;(2)(3)小时【小问1详解】解:甲车行驶速度是,乙车行驶速度是,∴甲车行驶速度是,乙车行驶速度是;故答案为:60,80;【小问2详解】解:当时,∵,∴图象过点,设,∵图象过点,,∴,∴,∴;【小问3详解】解:设乙车出发m小时,两车相遇,由题意得:,解得:.∴当乙车出发小时,两车相遇.22. 【推理】如图①,在边长为8的正方形中,点是上一动点,将正方形沿着折叠,点落在点处,连结,延长交于点,求证:.【运用】如图②,在【推理】条件下,延长交于点,若点是的中点,则线段______.【拓展】如图③,在【推理】条件下,交于点,连结,则的最小值是______.答案:推理:见详解运用:2拓展:解析:推理:证明:∵四边形是正方形,,,,根据折叠可知垂直平分,,.在和中,.运用:如图,连接由题意得,.∵点是中点,,.在和中,,.由题意得,.,.,,.,,.故答案为:2拓展:如图,取的中点O,连接,,O为的中点,,∴点M在以O为圆心,长为半径的圆上运动.当点E运动到点D时,点G运动到A点,此时M点是、的交点,此时最小,∵在正方形中,于点M,且平分,,故答案为:.23. 如图,在中,是中点,是中点.点从A出发以每秒2个单位速度沿向终点运动,连接,作点A关于直线的对称点,连接,设点的运动时间为.(1)用含的代数式表示线段的长.(2)求点到的距离.(3)当是钝角三角形时,求的取值范围.(4)当与的一边平行,直接写出的值.答案:(1)(2)(3)或(4)或或【小问1详解】解:∵,是中点,∴,∴当点P在上运动时,即时,,当点P在上运动时,即时,;综上可得:;【小问2详解】连接,过点C作,如图所示:∵,,是中点,∴,∴,∴即,解得,∴到的距离为;【小问3详解】∵点A关于直线的对称点,∴是钝角三角形时,是钝角三角形,当时,过点C作,如图所示:∴,∴,∵O是中点,∴,由(2)得,∴,∴,∴,∴当时,是钝角三角形;当时,如图所示:∵,∴,∵O是中点,∴,∴,解得,∴,∴当时,是钝角三角形;综上可得:当或时,是钝角三角形;【小问4详解】当时,如图所示:此时点与点D重合,∴,∴;如图所示:当时,连接,过点P作,,过点B作,同理得:,,∴,∵AP=2t,∴,∵折叠,∴,∵,∴,∴,∴,解得:;如图所示:当时,连接交于点M,连接,,∴,∵,∴,∴,∴,∴,∴综上可得:t的值为或或.24. 在平面直角坐标系中,抛物线(为常数)经过点,点A在抛物线上,其横坐标为,将此抛物线上两点间的部分(包括两点)记为图象.(1)求此抛物线的解析式.(2)当垂直于轴时,求的值.(3)当图像与直线有且只有一个交点时,求的取值范围.(4)已知点,顺次连结得到矩形,当图象与该矩形的边有且只有两个公共点时,直接写出的取值范围.答案:(1)(2)(3)的取值范围为或或(4)或【小问1详解】解:∵抛物线(为常数)经过点,∴,解得,,∴抛物线解析式为.【小问2详解】,∴对称轴为,∵抛物线上两点间的部分,且垂直于轴,∴点A、B关于抛物线的对称轴对称,∴,解得:或(不符合题意舍去),∴;【小问3详解】解:当点A在抛物线上,其横坐标为时,对应函数值为,即点,图像与直线有一个交点,当时,即,如图所示,,则,∴当图像与直线有一个交点时,;令,则,解得,,,∴当时,即,如图所示,∴,则,解得,∴当图像与直线有一个交点时,;当,即时,如图所示,∴,整理得,,解得,或,∴当图像与直线有一个交点时,;综上所述,当图像与直线有一个交点时,的取值范围为或或.【小问4详解】解:当图形与该矩形的边有两个公共点时,如图所示,,,,,当在抛物线顶点上方时,即,则点的坐标,∴,解得,;当在抛物线顶点下方时,即,如图所示,∴点的纵坐标的范围是,点的纵坐标的范围是,∴,解得,,∴;综上所述,当图形与该矩形的边有两个公共点时,的取值范围为或.。

【附5套中考模拟试卷】吉林省长春市2019-2020学年中考第三次质量检测数学试题含解析

【附5套中考模拟试卷】吉林省长春市2019-2020学年中考第三次质量检测数学试题含解析

吉林省长春市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <12.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)3.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A .B .C .D .4.方程x (x -2)+x -2=0的两个根为( )A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-5.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为( )A .16B .15C .13D .126.在实数﹣3.5、、0、﹣4中,最小的数是( ) A .﹣3.5 B . C .0 D .﹣47.下列计算正确的是( )A .2224()39b b c c =B .0.00002=2×105C .2933x x x -=--D .3242·323x y y x x= 8.若等式(-5)□5=–1成立,则□内的运算符号为( )A .+B .–C .×D .÷9.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D .10.若代数式2x 2+3x ﹣1的值为1,则代数式4x 2+6x ﹣1的值为( )A .﹣3B .﹣1C .1D .311.下列运算结果正确的是( )A .(x 3﹣x 2+x )÷x=x 2﹣xB .(﹣a 2)•a 3=a 6C .(﹣2x 2)3=﹣8x 6D .4a 2﹣(2a )2=2a 2 12.-2的绝对值是()A .2B .-2C .±2D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程21x x =-的解是__________. 14.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .15.小华到商场购买贺卡,他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡.若小华先买了3张3D 立体贺卡,则剩下的钱恰好还能买______张普通贺卡.16.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____. 17.分式方程34x x +=1的解为_________. 18.若式子2x x +有意义,则x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人? 20.(6分)如图,在平行四边形ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,连接AF ,∠AFE=∠D .(1)求证:∠BAF=∠CBE ;(2)若AD=5,AB=8,sinD=45.求证:AF=BF .21.(6分)先化简代数式:222111a a a a a +⎛⎫-÷ ⎪---⎝⎭,再代入一个你喜欢的数求值. 22.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?23.(8分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?24.(10分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.25.(10分)2000tan 604tan 60422sin 45-+-.26.(12分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P 1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A ,B ,C ,D 表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P 2,并指出她与嘉嘉抽到勾股数的可能性一样吗?27.(12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 2.A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A 、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确; B 、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误; C 、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误; D 、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误. 故选:A .【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.3.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A .4.C【解析】【分析】根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x 1=-1,x 2=2,故选:C .【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.5.D【解析】【分析】连接CD ,再利用勾股定理分别计算出AD 、AC 、BD 的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.【详解】连接CD ,如图:222222AD =+=,CD=22112+=,AC=223110+=.∵22222210+=()()(),∴∠ADC=90°,∴tan ∠BAC=222CD AD ==12. 故选D .【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°. 6.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D .【点睛】掌握实数比较大小的法则7.D【解析】【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误; D 、原式=223x ;故本选项正确; 故选:D .【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.8.D【解析】【分析】根据有理数的除法可以解答本题.【详解】解:∵(﹣5)÷5=﹣1, ∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D .【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.9.C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体, 后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C .本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.10.D【解析】【分析】由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.【详解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,则4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键.11.C【解析】【分析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.【详解】A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;B、(-a2)•a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C.【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.12.A【解析】【分析】根据绝对值的性质进行解答即可解:﹣1的绝对值是:1.故选:A .【点睛】此题考查绝对值,难度不大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2x =.【解析】【分析】根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:21x x =(﹣), 解得:2x =,当2x =时,110x ≠﹣=,所以2x =是原分式方程的解,故答案为:2x =.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.15.1【解析】【分析】根据已知他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡得:1张3D 立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡,根据3张3D 立体贺卡y +张普通贺卡5=张3D 立体贺卡,可得结论.【详解】解:设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡.则1张普通贺卡为:5x 1x 204=元,。

吉林省长春市2019-2020学年第三次中考模拟考试数学试卷含解析

吉林省长春市2019-2020学年第三次中考模拟考试数学试卷含解析

吉林省长春市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个2.计算-5x2-3x2的结果是( )A.2x2B.3x2C.-8x2D.8x23.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.5.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克6.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球7.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)8.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >09.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )A .91,88B .85,88C .85,85D .85,84.510.如图,在ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA P ,DF BA P .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o ,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .411.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2)12.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154B .14C .1515D .41717二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 14.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣232t .在飞机着陆滑行中,最后4s 滑行的距离是_____m .15.分解因式39a a -=________,221218x x -+=__________.16.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .17.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.18.已知反比例函数k y x=的图像经过点(-2017,2018),当0x >时,函数值y 随自变量x 的值增大而_________.(填“增大”或“减小”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,点O 和矩形CDEF 的边CD 都在直线l 上,以点O 为圆心,以24为半径作半圆,分别交直线l 于,A B 两点.已知: 18CD =,24CF =,矩形自右向左在直线l 上平移,当点D 到达点A 时,矩形停止运动.在平移过程中,设矩形对角线DF 与半圆»AB 的交点为P (点P 为半圆上远离点B 的交点).如图2,若FD 与半圆»AB 相切,求OD 的值;如图3,当DF 与半圆»AB 有两个交点时,求线段PD 的取值范围;若线段PD 的长为20,直接写出此时OD 的值.20.(6分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.21.(6分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.22.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.23.(8分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)24.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.25.(10分)解方程组:113311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩26.(12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?27.(12分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB =80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】等腰直角三角形纸片ABC 中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB ,故①正确;由折叠可得,DE=AE=3,∴=,∴BD=BC ﹣DC=4﹣1,∴BD >CE ,故②正确;∵BC=4CD=4,∴CD ,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE 的周长,由折叠可得,DF=AF ,∴△BDF 的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣),∴△DCE 与△BDF 的周长相等,故④正确;故选D .点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.C【解析】【分析】利用合并同类项法则直接合并得出即可.【详解】解:222538.x x x --=-故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.3.D【解析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .4.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A 既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B 不是中心对称图形,是轴对称图形,故本选项错误;选项C 既是中心对称图形,也是轴对称图形,故本选项错误;选项D 既是中心对称图形,也是轴对称图形,故本选项错误.故选A .考点:中心对称图形;轴对称图形.5.C【解析】【分析】设每个小箱子装洗衣粉x 千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x 千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C .【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键. 6.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.7.D【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AD=AB AC BC ⋅BD=2AB BC .∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.8.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.9.D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题10.D【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.11.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a (x ﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.12.A【解析】∵在Rt △ABC 中,∠C=90°,AB=4,AC=1,∴,则cosB=BC AB , 故选A二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-12【解析】【分析】令y=0,得方程24=0-+x x k ,1x 和2x 即为方程的两根,利用根与系数的关系求得12x x +和12x x ⋅,利用完全平方式并结合128x x -=即可求得k 的值.【详解】解:∵二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,令y=0,得方程24=0-+x x k ,则1x 和2x 即为方程的两根,∴124x x +=,12x x k ⋅=, ∵128x x -=,两边平方得:212()64-=x x ,∴21212()464+-⋅=x x x x , 即16464-=k ,解得:12k =-,故答案为:12-.【点睛】本题考查了一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.14.24【解析】【分析】先利用二次函数的性质求出飞机滑行20s 停止,此时滑行距离为600m ,然后再将t=20-4=16代入求得16s 时滑行的距离,即可求出最后4s 滑行的距离.【详解】y=60t ﹣23t 2=32-(t-20)2+600,即飞机着陆后滑行20s 时停止,滑行距离为600m , 当t=20-4=16时,y=576,600-576=24,即最后4s 滑行的距离是24m ,故答案为24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.15.(3)(3)a a a +- 22(3)x -【解析】此题考查因式分解329(9)(3)(3),a a a a a a a -=-=+-222212182(69)2(3)x x x x x -+=-+=-答案点评:利用提公因式、平方差公式、完全平方公式分解因式16.3【解析】【分析】首先证明PB =BC ,推出∠C =30°,可得PC =2PA ,求出PA 即可解决问题.【详解】解:在Rt △PAB 中,∵∠APB =30°,∴PB =2AB ,由题意BC =2AB ,∴PB =BC ,∴∠C =∠CPB ,∵∠ABP =∠C+∠CPB =60°,∴∠C =30°,∴PC =2PA ,∵PA =AB•tan60°,∴PC =2×20×3=3km ),故答案为【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB =BC ,推出∠C =30°.17.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.18.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k 值的正负确定函数值的增减性.【详解】∵反比例函数kyx=的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)30OD=;(2)144185PD<…;(3)8512+或8512-【解析】【分析】(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用cosDH CDODPOD FD∠==,求出72HD5=,则144DP2HD5==;DF与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m,则:22OG24m,DG20m,=-=-OGtan FDCDG∠=22424m320m-==-,求出64245m5±=,利用DGODcosα=,即可求解.【详解】(1)如图,连接OP∵FD与半圆相切,∴OP FD⊥,∴90OPD︒∠=,在矩形CDEF中,90FCD∠=o,∵18,24CD CF==,根据勾股定理,得2222182430FD CD CF=++=在OPD∆和FCD∆中,9024OPD FCDODP FDCOP CF︒⎧∠=∠=⎪∠=∠⎨⎪==⎩∴OPD FCD≅∆V∴30OD DF ==(2)如图,当点B 与点D 重合时,过点O 作OH DF ⊥与点H ,则2DP HD = ∵cos DH CD ODP OD FD ∠== 且18,24CD OD ==,由(1)知:30DF = ∴182430DH =,∴725DH =, ∴14425DP HD DH === 当FD 与半圆相切时,由(1)知:18PD CD ==, ∴144185PD <… (3)设半圆与矩形对角线交于点P 、H ,过点O 作OG ⊥DF ,则PG=GH ,244tan FDC tan 183α∠===,则3cos 5α=, 设:PG=GH=m ,则:22OG 24m ,DG 20m =-=-,22OG 424m tan FDC DG 320m-∠===-, 整理得:25m 2-640m+1216=0,解得:64245m 5±=, DG 20m OD 85123cos 5α-===. 【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.20.(1)见解析;(2)BG=BC+CG=1.【解析】【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14 DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.21.(1)30°;(2)20°;【解析】【分析】(1)利用圆切线的性质求解;(2) 连接OQ,利用圆的切线性质及角之间的关系求解。

吉林省长春市2019-2020学年中考数学三模考试卷含解析

吉林省长春市2019-2020学年中考数学三模考试卷含解析

吉林省长春市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.2a2+3a2=5a4B.(﹣12)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2D.8ab÷4ab=2ab2.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.4.化简16的结果是()A.±4 B.4 C.2 D.±25.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)6.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A .24π cm 2B .48π cm 2C .60π cm 2D .80π cm 27.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A .abc >0B .a+b+c >0C .a+c >bD .2a+b=08.在平面直角坐标系中,将点P (4,﹣3)绕原点旋转90°得到P 1,则P 1的坐标为( )A .(﹣3,﹣4)或(3,4)B .(﹣4,﹣3)C .(﹣4,﹣3)或(4,3)D .(﹣3,﹣4)9.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AC 、BC .若∠ABC=67°,则∠1=( )A .23°B .46°C .67°D .78°10.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等11. “车辆随机到达一个路口,遇到红灯”这个事件是( )A .不可能事件B .不确定事件C .确定事件D .必然事件12.当函数y=(x-1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是( )A .x 0>B .x 1<C .x 1>D .x 为任意实数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.14.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.15.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.16.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).18.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?20.(6分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。

长春市精选九年级上第三次月考数学试卷(含答案)

长春市精选九年级上第三次月考数学试卷(含答案)

2019-2020学年吉林省长春市九年级(上)第三次月考数学试卷一、选择题(共8小题,每小题3分,满分24分) 1.下列根式中,与是同类二次根式的是( )A .B .C .D .2.方程x 2=2x 的解是( )A .x=0B .x=2C .x=0或x=2D .x=±3.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则cosA 的值是( )A .B .C .D . 4.下列事件是随机事件的是( ) A .晴天的早晨,太阳从东方升起 B .测量某天的最低气温,结果为﹣150℃ C .打开数学课本时刚好翻到第60页D .在一次体育考试中,小王跑100米用了4秒钟5.如图,l 1∥l 2∥l 3,如果AB=2,BC=3,DF=4,那么DE=( )A .B .C .D .26.已知Rt △ABC 中,∠C=90°,∠A=50°,AB=2,则AC=( )A.2sin50°B.2sin40°C.2tan50°D.2tan40°7.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=1208.如图,菱形ABCD的周长为40cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的有()①DE=6cm;②BE=2cm;③菱形面积为60cm2;④BD=cm.A.1个B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)9.将化为最简二次根式是.10.若关于x的方程x2﹣8x+3m=0有两个相等的实数根,则m= .11.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB= .12.如图,已知∠1=∠2,添加条件后,使△ABC∽△ADE.13.如图,在△ABC中,点D、E分别是AB、AC的中点,AH⊥DE于点H,已知AH=3,BC=10,则S= .△ABC14.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,边D点作AB的垂线交AC于点E,AC=8,cosA=,则DE= .三、解答题(共10小题,满分78分)15.(2﹣3)×16.用适当的方法解方程:(x﹣1)2=3(x﹣1).17.如图,在5×2的正方形网格中,小正方形的边长为1,△ABC与△ADE的顶点都在格点上.(1)求证:△ADE∽△ABC;(2)填空:sin∠BAC= .18.如图所示,有三张背面完全相同的精美卡片,正面分别是一张“白雪公主”和两张“小矮人”,将它们背面向上放在桌面上.(1)小明从中随机抽出一张卡片,抽到“白雪公主”的概率是;(2)小明从中任意抽取两张卡片,用列表法或画树状图法求两张卡片都是“小矮人”的概率.19.如图,点D ,E 分别是△ABC 的边AB ,AC 的中点,BE 交CD 于G 点, (1)找出图中的所有相似三角形,并选一对相似加以证明 (2)求证:CG=2DG .20.如图,某栋楼顶部有一信号发射塔,在矩形建筑物ABCD 的D 、C 两点处测得该塔顶端F 的仰角分别为∠α=30°、∠β=60°,矩形建筑物高度DC=30m .计算该信号发射塔顶端到地面的高度FG .21.如图,△ABC 的三个顶点均在格点上,且A (﹣1,3),B (﹣3,1). (1)点C 的坐标为( , );(2)在网格内把△ABC 以原点O 为位似中心放大,使放大前后对应边的比为1:2,画出位似图形△A 1B 1C 1.22.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、2的三个小球(除数字不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,记下扇形所对应的数,小红任意摸出一个小球,记下小球上所对应的数,然后计算这两个数的乘积.(1)请你用画树状图或列表的方法,求这两个数的乘积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?23.如图所示,成渝高铁全长308km.计划于2015年10月1日通车运营,成渝两地迈入1小时经济圈.经测量,森林保护区中心M在成都的南偏东80°和重庆的南偏西53°的方向上.已知森林保护区的范围在以M点为圆心,40km为半径的圆形区域内.(1)请问:成渝高铁会不会穿越保护区?为什么?(2)求重庆到森林保护区中心BM的距离.(精确到0.1)(tan80°≈5.67,tan53°≈1.33,cos53°≈0.60,sin53°≈0.80)24.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求点B的坐标和过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.2019-2020学年吉林省长春市农安九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分) 1.下列根式中,与是同类二次根式的是( )A .B .C .D .【考点】同类二次根式.【分析】把B 、C 、D 选项化为最简二次根式,然后根据同类二次根式的定义判断即可. 【解答】解:A 、与不是同类二次根式,故本选项错误;B 、=3与不是同类二次根式,故本选项错误;C 、=3与不是同类二次根式,故本选项错误;D 、=与是同类二次根式,故本选项准确.故选D .2.方程x 2=2x 的解是( )A .x=0B .x=2C .x=0或x=2D .x=±【考点】解一元二次方程﹣因式分解法.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【解答】解:方程变形得:x 2﹣2x=0, 分解因式得:x (x ﹣2)=0, 解得:x 1=0,x 2=2. 故选C3.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则cosA 的值是( )A .B .C .D . 【考点】锐角三角函数的定义.【分析】根据锐角的余弦等于邻边比斜边求解即可. 【解答】解:∵AB=5,BC=3, ∴AC=4,∴cosA==.故选D .4.下列事件是随机事件的是( ) A .晴天的早晨,太阳从东方升起 B .测量某天的最低气温,结果为﹣150℃ C .打开数学课本时刚好翻到第60页D .在一次体育考试中,小王跑100米用了4秒钟 【考点】随机事件.【分析】根据确定事件和随机事件的定义对各选项进行判断.【解答】解:A 、晴天的早晨,太阳从东方升起,它是必然事件,所以A 选项错误; B 、测量某天的最低气温,结果为﹣150℃,它是不可能事件,所以B 选项错误; C 、打开数学课本时刚好翻到第60页,它是随机随机,所以C 选项正确;D 、在一次体育考试中,小王跑100米用了4秒,它是不可能事件,所以D 选项错误. 故选C .5.如图,l 1∥l 2∥l 3,如果AB=2,BC=3,DF=4,那么DE=( )A .B .C .D .2 【考点】平行线分线段成比例.【分析】由l 1∥l 2∥l 3,根据平行线分线段成比例定理,可得=,又由AB=2,BC=3,DF=4,即可求得答案.【解答】解:∵l 1∥l 2∥l 3,∴=,∵AB=2,BC=3,DF=4, ∴AC=AB+BC=5,∴,解得:DE=. 故选C .6.已知Rt △ABC 中,∠C=90°,∠A=50°,AB=2,则AC=( )A .2sin50°B .2sin40°C .2tan50°D .2tan40° 【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,可得答案.【解答】解:由Rt △ABC 中,∠C=90°,∠A=50°,得 ∠B=40°,由sin∠B=,得AC=ABsin∠B=2sin40°,故选:B.7.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=120【考点】由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选D.8.如图,菱形ABCD的周长为40cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的有()①DE=6cm;②BE=2cm;③菱形面积为60cm2;④BD=cm.A.1个B.2个 C.3个 D.4个【考点】解直角三角形.【分析】根据角的正弦值与三角形边的关系,可求出各边的长,运用验证法,逐个验证从而确定答案.【解答】解:∵菱形ABCD的周长为40cm,∴AD=AB=BC=CD=10.∵DE⊥AB,垂足为E,sinA===,∴DE=6cm,AE=8cm,BE=2cm.∴菱形的面积为:AB×DE=10×6=60cm2.在三角形BED中,BE=2cm,DE=6cm,BD=2cm,∴①②③正确,④错误;=2∴结论正确的有三个.故选C.二、填空题(共6小题,每小题3分,满分18分)9.将化为最简二次根式是4.【考点】最简二次根式.【分析】直接利用二次根式的性质化简求出答案.【解答】解:==4.故答案为:4.10.若关于x的方程x2﹣8x+3m=0有两个相等的实数根,则m= .【考点】根的判别式.【分析】若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m 的取值.【解答】解:∵关于x的方程x2﹣8x+3m=0有两个相等的实数根,∴△=(﹣8)2﹣4×3m=0,∴m=.故题答案为:.11.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB= .【考点】锐角三角函数的定义.【分析】先在图中找出∠AOB所在的直角三角形,再根据三角函数的定义即可求出tan∠AOB 的值.【解答】解:过点A作AD⊥OB垂足为D,如图,在直角△ABD中,AD=1,OD=2,则tan∠AOB==.故答案为:.12.如图,已知∠1=∠2,添加条件∠B=∠D 后,使△ABC∽△ADE.【考点】相似三角形的判定.【分析】先证出∠BAC=∠DAE,再由∠B=∠D,即可得出ABC∽△ADE.【解答】解:添加条件∠B=∠D后,△ABC∽△ADE.理由如下:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠BAC=∠DAE,又∵∠B=∠D,∴ABC∽△ADE.故答案为∠B=∠D.13.如图,在△ABC中,点D、E分别是AB、AC的中点,AH⊥DE于点H,已知AH=3,= 30 .BC=10,则S△ABC【考点】相似三角形的判定与性质.【分析】延长AH交BC于G,先证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,得出△ADE∽△ABC,由相似三角形的性质得出,求出AG,即可得出结果.【解答】解:延长AH交BC于G,如图所示:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴,∴AG=2AH=6,=BC•AG=×10×6=30;∴S△ABC故答案为:30.14.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,边D点作AB的垂线交AC于点E,AC=8,cosA=,则DE= .【考点】解直角三角形.【分析】根据在Rt△ABC中,∠ACB=90°,AC=8,cosA=,cosA=,可得AB、BC的长,从而求得AD的长,由ED⊥AB,从而可以推得DE的长.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=8,cosA=,cosA=,∴AB=10,BC=.∴tanA=.∵D是AB的中点,∴AD==5.∵ED⊥AB,∴∠EDA=90°.∵tanA=,AD=5,∴DE=.三、解答题(共10小题,满分78分)15.(2﹣3)×【考点】二次根式的混合运算.【分析】观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:原式=(4×=3×=9.16.用适当的方法解方程:(x﹣1)2=3(x﹣1).【考点】解一元二次方程﹣因式分解法.【分析】方程移项变形后,利用因式分解法求出解即可.【解答】解:方程整理得:(x﹣1)2﹣3(x﹣1)=0,分解因式得:(x﹣1)(x﹣1﹣3)=0,解得:x=1或x=4.17.如图,在5×2的正方形网格中,小正方形的边长为1,△ABC与△ADE的顶点都在格点上.(1)求证:△ADE∽△ABC;(2)填空:sin∠BAC= .【考点】相似三角形的判定与性质.【分析】(1)先利用勾股定理计算出△ABC与△ADE的所有边长,则==,于是根据相似三角形的判定方法即可得到△ADE∽△ABC;(2)先根据相似三角形的性质得∠A=∠DAE,然后利用网格特点和正弦的定义求出sin∠DAE=,从而可得到sin∠BAC的值.【解答】(1)证明:∵AB=,AC==,BC=2,AD==,DE==,AE=5,∴==,==,=,∴==,∴△ADE∽△ABC;(2)∵△ADE∽△ABC,∴∠A=∠DAE,而sin∠DAE==.故答案为.18.如图所示,有三张背面完全相同的精美卡片,正面分别是一张“白雪公主”和两张“小矮人”,将它们背面向上放在桌面上.(1)小明从中随机抽出一张卡片,抽到“白雪公主”的概率是;(2)小明从中任意抽取两张卡片,用列表法或画树状图法求两张卡片都是“小矮人”的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由有三张背面完全相同的精美卡片,正面分别是一张“白雪公主”和两张“小矮人”,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片都是“小矮人”的情况,再利用概率公式即可求得答案.【解答】解:(1)∵有三张背面完全相同的精美卡片,正面分别是一张“白雪公主”和两张“小矮人”,∴小明从中随机抽出一张卡片,抽到“白雪公主”的概率是:;故答案为:;(2)画树状图得:∵共有6种等可能的结果,两张卡片都是“小矮人”的有2种情况,∴两张卡片都是“小矮人”的概率为:=.19.如图,点D,E分别是△ABC的边AB,AC的中点,BE交CD于G点,(1)找出图中的所有相似三角形,并选一对相似加以证明(2)求证:CG=2DG.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】(1)由条件可得出DE∥BC,则可得出相似的三角形;(2)由△GDE∽△GBC,根据相似三角形的性质可证明CG=2DG.【解答】(1)解:相似的三角形有△ADE∽△ABC,△GDE∽△GBC.选择证明△GDE∽△GBC.证明如下:∵D、E分别是△ABC的边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴∠EDG=∠GCB,∠DEG=∠CBG,∴△GDE∽△GBC;(2)证明:由(1)可知△GDE∽△GBC,∴==,∴CG=2DG.20.如图,某栋楼顶部有一信号发射塔,在矩形建筑物ABCD的D、C两点处测得该塔顶端F 的仰角分别为∠α=30°、∠β=60°,矩形建筑物高度DC=30m.计算该信号发射塔顶端到地面的高度FG.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】延长AD 交FG 于点E ,在Rt △FDE 中,根据tanα=,tanβ=,得到FG=FE+EG ,列方程解答即可.【解答】解:如图,延长AD 交FG 于点E . 设DE=x ,由题意得EG=DC=30,CG=DE=x .在Rt △FDE 中,tanα=,∴FE=DE•tanα=x ,在Rt △FCG 中,tanβ=, ∴FG=CG•tanβ=x ,∵FG=FE+EG ,∴x=x+30,解得,x=15,FG=45m .答:该信号塔发射顶端到地面的高度FG 为45m .21.如图,△ABC 的三个顶点均在格点上,且A (﹣1,3),B (﹣3,1). (1)点C 的坐标为( 0 , 1 );(2)在网格内把△ABC 以原点O 为位似中心放大,使放大前后对应边的比为1:2,画出位似图形△A 1B 1C 1.【考点】作图﹣位似变换.【分析】(1)观察平面直角坐标系,即可求得点C 的坐标;(2)由在网格内把△ABC 以原点O 为位似中心放大,使放大前后对应边的比为1:2,即可得A 1(2,﹣6),B 1(6,﹣2),C 1(0,﹣2),则可画出图形. 【解答】解:(1)如图,点C 的坐标为(0,1); 故答案为:0,1;(2)如图,画出△A 1B 1C 1.∵把△ABC 以原点O 为位似中心放大,使放大前后对应边的比为1:2,∴对应的坐标为:(﹣2,6),(﹣6,2),(0,2)或(2,﹣6),(6,﹣2),(0,﹣2), ∵在网格内把△ABC 以原点O 为位似中心放大, ∴A 1(2,﹣6),B 1(6,﹣2),C 1(0,﹣2).22.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、2的三个小球(除数字不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,记下扇形所对应的数,小红任意摸出一个小球,记下小球上所对应的数,然后计算这两个数的乘积.(1)请你用画树状图或列表的方法,求这两个数的乘积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个数的乘积为0的情况,再利用概率公式即可求得答案;(2)首先由(1)中的树状图求得小亮赢与小红赢的概率,比较概率的大小,即可知该游戏是否公平.【解答】解:(1)画树状图得:∵共有12种等可能的结果,这两个数的乘积为0的有4种情况,∴P(乘积为0)==;(2)游戏不公平.∵这两个数的积为奇数的有2种情况,不为奇数的有10种情况,∴P(小亮赢)==,P(小红赢)==,∴P(小亮赢)≠P(小红赢),∴游戏不公平.23.如图所示,成渝高铁全长308km.计划于2015年10月1日通车运营,成渝两地迈入1小时经济圈.经测量,森林保护区中心M在成都的南偏东80°和重庆的南偏西53°的方向上.已知森林保护区的范围在以M点为圆心,40km为半径的圆形区域内.(1)请问:成渝高铁会不会穿越保护区?为什么?(2)求重庆到森林保护区中心BM的距离.(精确到0.1)(ta n80°≈5.67,tan53°≈1.33,cos53°≈0.60,sin53°≈0.80)【考点】解直角三角形的应用﹣方向角问题.【分析】(1)过M作MD⊥AB于D,直角△AMD与直角△MBD有公共边MD,根据三角函数即可利用MD表示出AD与BD,根据AB=AD+BD即可列出关于MD的方程,从而求得MD的长,与40km比较大小即可判断;(2)在直角△MBD中,根据三角函数定义得出BM=,代入数值计算即可.【解答】解:(1)过M作MD⊥AB于D,设DM=xkm.在直角△AMD中,tan∠AMD=,则AD=DM•tan∠AMD=x•tan80°≈5.67x,同理:BD=DM•tan53°≈1.33x,∵AB=AD+BD,∴308=5.67x+1.33x,∴x=44>40,故成渝高铁不会穿越保护区;(2)∵在直角△MBD中,∠BDM=90°,∠BMD=53°,DM=44km,∴BM=≈≈73.3(km).即重庆到森林保护区中心BM的距离约为73.3km.24.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求点B的坐标和过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.【考点】一次函数综合题.【分析】(1)根据点A、B的坐标求出AC的长度,再根据tan∠BAC=求出BC的长度,然后即可写出点B的坐标,设过点A,B的直线的函数表达式为y=kx+b,利用待定系数法求解即可得到直线AB的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,D点为所求.又tan∠ADB=tan∠ABC=,CD=BC÷tan∠ADB=3÷,可求OD=OC+CD=,所以D(,0);(3)在Rt△ABC中,由勾股定理得AB=5,当PQ∥BD时,△APQ∽△ABD,解得;当PQ⊥AD时,△APQ∽△ADB,则解得.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,BC=tan∠BAC×AC=×4=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为y=kx+b,由,解得k=,b=,∴直线AB的函数表达式为y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,在Rt△ABC和Rt△ADB中,∵∠BAC=∠DAB,∴Rt△ABC∽Rt△ADB,∴D点为所求,又tan∠ADB=tan∠ABC=,∴CD=BC÷tan∠ADB=3÷,∴OD=OC+CD=1+=,∴D(,0);(3)这样的m存在.在Rt△ABC中,由勾股定理得AB=5,如图1,当PQ∥BD时,△APQ∽△ABD,则=,解得m=,如图2,当PQ⊥AD时,△APQ∽△ADB,则=,解得m=.故存在m的值是或时,使得△APQ与△ADB相似.2017年4月13日。

吉林省吉林市2019-2020学年第三次中考模拟考试数学试卷含解析

吉林省吉林市2019-2020学年第三次中考模拟考试数学试卷含解析

吉林省吉林市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°2.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .22C .24D .2233.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长:学*科*网]4.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ). A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=5.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =kx的图象恰好经过点A′、B ,则k 的值是( )A.9 B.133C.16915D.336.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种7.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1078.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是()A.无法求出B.8 C.8πD.16π9.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>310.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.411.计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.2412.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.15.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.16.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB 边的点E处,折痕为BD.则△AED的周长为____cm.17.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.18.如图,函数y=kx(x<0)的图像与直线y=-33x交于A点,将线段OA绕O点顺时针旋转30°,交函数y=kx(x<0)的图像于B点,得到线段OB,若线段AB=32-6,则k= _______________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.20.(6分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF 的长.21.(6分)如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF=CE=AE .(1)说明四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由. 22.(8分)解不等式()()41223x x --->,并把它的解集表示在数轴上.23.(8分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下: 收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:八年级7886748175768770759075 79 81 70 74 80 86 69 83 77 九年级9373888172819483778380817081737882807040整理、描述数据将成绩按如下分段整理、描述这两组样本数据: 成绩(x ) 40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级人数 0 0 1 11 7 1 九年级人数17102(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 a 52.1(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)24.(10分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.25.(10分)计算:2sin30°﹣|1﹣3|+(12)﹣126.(12分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.27.(12分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒13个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质2.C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.3.D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象4.B【解析】【分析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可. 【详解】由题意得,绿化面积平均每年的增长率为x ,则2015年的绿化面积为300(1+x ),2016年的绿化面积为300(1+x )(1+x ),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x )2=363.故选B. 【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键. 5.C 【解析】 【分析】设B (2k,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k .【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°, ∴OC 222232OD CD ++13 由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CDOA OC=, ∴AE =213213k CD OA OC ⨯⋅,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°, ∴∠OAE =∠OCD , ∴sin ∠OAE =EF ODAE OC==sin ∠OCD , ∴EF =1331313OD AE k OC ⋅==,∵cos∠OAE=AF CDAE OC==cos∠OCD,∴213CDAF AE k OC=⋅==,∵EF⊥x轴,A′G⊥x轴,∴EF∥A′G,∴12 EF AF AEA G AG AA==='',∴6213A G EF k'==,4213AG AF k==,∴14521326 OG OA AG k k k =-=-=,∴A′(526k,613k),∴562613k k k⋅=,∵k≠0,∴169=15 k,故选C.【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.6.B【解析】【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.7.D【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数8.D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×8=4cm.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.故选D.考点:1.垂径定理的应用;2.切线的性质.9.B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.10614410.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.11.D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.详解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.12.B【解析】【分析】由折线统计图和条形统计图对各选项逐一判断即可得.【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.20【解析】先求出半径为30cm 且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.【详解】24030180π⨯=40π. 设这个圆锥形纸帽的底面半径为r .根据题意,得40π=2πr ,解得r=20cm .故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.14.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.15.1【解析】【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验. 16.7【分析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.17.先将图2以点A为旋转中心逆时针旋转90 ,再将旋转后的图形向左平移5个单位.【解析】【分析】变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.【解析】【分析】作AC⊥x轴于C,BD⊥x轴于D,AE⊥BD于E点,设A点坐标为(3a,a),则OC=-3a,a,利用勾股定理计算出a,得到∠AOC=30°,再根据旋转的性质得到OA=OB,∠BOD=60°,易证得Rt△OAC≌Rt△BOD,,BD=OC=-3a,于是有,BE=BD-AC=-3a+3a,即AE=BE,则△ABE为等腰直角三角形,利用等腰直角三角形的性质得到32-6=2(-3a+3a),求出a=1,确定A点坐标为(3,-3),然后把A(3,-3)代入函数y=kx即可得到k的值.【详解】作AC⊥x轴与C,BD⊥x轴于D,AE⊥BD于E点,如图,点A在直线3上,可设A点坐标为(3a,3a),在Rt△OAC中,OC=-3a,3a,∴22AC OC3,∴∠AOC=30°,∵直线OA绕O点顺时针旋转30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴3,BD=OC=-3a,∵四边形ACDE为矩形,∴3a,3,∴AE=BE,∴△ABE为等腰直角三角形,∴2AE,即262(3),解得a=1,∴A点坐标为(3,3),而点A在函数y=kx的图象上,∴k=3×(33故答案为3【点睛】本题是反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性质进行线段的转换与计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y能反映该公司员工的月工资实际水平.20.(1)见解析;(2)23【解析】【分析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可; 方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;(2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.【详解】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠3【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。

吉林省第二实验学校2019-2020年九年级(上)第三次周考数学试卷 含解析

吉林省第二实验学校2019-2020年九年级(上)第三次周考数学试卷 含解析

2019-2020学年九年级(上)第三次周考数学试卷一.选择题(共8小题)1.在实数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣12.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×1053.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.如图,AB∥CD,点E在BC上.且CD=CE,若∠B=36°,则∠D的大小为()A.36°B.72°C.65°D.67°5.将抛物线y=﹣2x2向左平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣1 6.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7 B.7.5 C.8 D.8.57.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(5,2)B.(2,5)C.(2,﹣5)D.(5,﹣2)8.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(5,0),对称轴为直线x=2,则下列结论中正确的是()A.当x>2时,y随x增大而减小B.4a=bC.图象过点(﹣1,0)D.9a+3b+c>0二.填空题(共6小题)9.=.10.如图,一山坡的坡度i=3:4,小明从山脚A出发,沿山坡AB向上走了200米到达点B,则小明上升了(BC)米.11.抛物线y=x2﹣2x+m与x轴有两个不同交点,请写出一个符合条件的m值为.12.如图,若点P在反比例函数y=(x<0)的图象上,过点P作PM⊥y轴于点M,N为x轴上一点,若△PNM的面积为3,则k=.13.如图,Rt△ABC中,∠ACB=90°,分别以点A、点B为圆心,大于AB的长为半径作弧,两弧交于点M、N,直线MN交BC于点D,若AC=2,BC=3,则CD的长为.14.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为m,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m处达到最高,高度为6m,之后落在水池边缘,那么这个喷水池的直径AB为m.三.解答题(共5小题)15.某市为治理污水,需要铺设一段长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天铺设的速度是原来的1.5倍,结果共用11天完成这一任务,求原计划每天铺设管道的长度.16.在如图所示的网格中,每个小正方形的边长都为1,点A、B、C均为格点.(1)△ABC的面积等于.(2)请借助无刻度的直尺,在如图所示的网格中画出△ABC的角平分线BD.17.如图,点A、B为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所成的角度约为67°,半径OC所在的直线与放置平面垂直,垂足为点E.DE=15cm,AD=14cm.求半径OA的长.(精确到0.1cm)(参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)18.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计).设小李与甲地的路程为y(km),所用的时间为x(h),y与x之间的函数图象如图所示(1)求m的值.(2)当m≤x≤3时,求y与x的之间的函数关系式;(3)若小李中途不换成汽车,继续骑摩托车前往乙地,当汽车到达乙地时,求此时小李距乙地的路程.19.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于C点,且A(1,0),C (0,3),抛物线的对称轴为x=﹣1(1)求抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使得M到A、C距离之和最小?若存在,求出点M的坐标:若不存在,请说明理由;(3)该抛物线在第二象限的图象上是否存在一点P,使四边形BOCP的面积最大?若存在,求出点P的坐标:若不存在,请说明理由;(4)E、F分别在抛物线和x轴上,以E、F、B、C为顶点的四边形为平行四边形,求E,F坐标.参考答案与试题解析一.选择题(共8小题)1.在实数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣1【分析】找出实数中最小的数即可.【解答】解:在实数﹣2,2,0,﹣1中,最小的数是﹣2,故选:A.2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×105【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28000=2.8×104.故选:C.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.4.如图,AB∥CD,点E在BC上.且CD=CE,若∠B=36°,则∠D的大小为()A.36°B.72°C.65°D.67°【分析】首先根据平行线的性质求出∠C的度数,再根据等腰三角形的性质求出∠D的度数.【解答】解:∵AB∥CD,∠B=36°,∴∠C=∠B=36°,又∵点E在BC上,且CD=CE,∴∠D=∠CED,∴在△CED中,∠C+∠D+∠CED=180°,∴36°+2∠D=180°,∴∠D=72°.故选:B.5.将抛物线y=﹣2x2向左平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣1 【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,把抛物线y=﹣2x2向左平移1个单位,则平移后的抛物线的表达式为y=﹣2(x+1)2,故选:A.6.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7 B.7.5 C.8 D.8.5【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【解答】解:∵a∥b∥c,∴,∵AC=4,CE=6,BD=3,∴,解得:DF=,∴BF=BD+DF=3+=7.5.故选:B.7.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(5,2)B.(2,5)C.(2,﹣5)D.(5,﹣2)【分析】根据旋转的性质和点A(﹣2,5)可以求得点A′的坐标.【解答】解:作AD⊥x轴于点D,作A′D′⊥x轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,∴△OAD≌△A′OD′(SSS),∵A(﹣2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A.8.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(5,0),对称轴为直线x=2,则下列结论中正确的是()A.当x>2时,y随x增大而减小B.4a=bC.图象过点(﹣1,0)D.9a+3b+c>0【分析】根据二次函数的性质对A进行判断;根据抛物线的对称轴方程可对B进行判断;根据抛物线与x轴的交点问题和抛物线的对称性可判断抛物线与x轴的另一个交点坐标为(﹣1,0),则可对C进行判断;利用x=3所对应的函数值为负数可对D进行判断.【解答】解:A、抛物线的对称轴为直线x=2,则x>2时,y随x增大而增大,所以A 选项错误;B、抛物线的对称轴为直线x=﹣=2,则b=﹣4a,所以B选项错误;C、抛物线与x轴的一个交点坐标为(5,0),而对称轴为直线x=2,则抛物线与x轴的另一个交点坐标为(﹣1,0),所以C选项正确;D、当x=3时,y<0,即9a+3b+c<0,所以D选项错误.故选:C.二.填空题(共6小题)9.=3.【分析】根据×=和二次根式的性质求出即可.【解答】解:×==3.故答案为:3.10.如图,一山坡的坡度i=3:4,小明从山脚A出发,沿山坡AB向上走了200米到达点B,则小明上升了(BC)120 米.【分析】设BC=3x,根据坡度的概念得到AC=4x,根据勾股定理求出x,得到BC的长.【解答】解:设BC=3x,∵山坡的坡度i=3:4,∴AC=4x,由勾股定理得,AB===5x,则5x=200,解得,x=40,∴BC=3x=120(米),故答案为:120.11.抛物线y=x2﹣2x+m与x轴有两个不同交点,请写出一个符合条件的m值为0(答案不唯一).【分析】根据抛物线与x轴有两个不同的交点可知b2﹣4ac=4﹣4m>0,解不等式得到m 取值范围,在其取值范围内选取数据即可.【解答】解:根据题意可得b2﹣4ac=4﹣4m>0,解得m<1.m可以取小于1的所有实数.例如m=0等.故答案为0(答案不唯一).12.如图,若点P在反比例函数y=(x<0)的图象上,过点P作PM⊥y轴于点M,N为x轴上一点,若△PNM的面积为3,则k= 6 .【分析】连接OP,由PM⊥y轴于点M,得到PM∥x轴,于是得到S△OPM=S△PNM=3,根据反比例函数系数k的几何意义即可得到结论.【解答】解:连接OP,∵PM⊥y轴于点M,∴PM∥x轴,∴S△OPM=S△PNM=3,∴k=2S△OPM=6,故答案为:6.13.如图,Rt△ABC中,∠ACB=90°,分别以点A、点B为圆心,大于AB的长为半径作弧,两弧交于点M、N,直线MN交BC于点D,若AC=2,BC=3,则CD的长为.【分析】利用基本作法得到MN垂直平分AB,则AD=BD,再利用勾股定理计算出AB,然后根据直角三角形斜边上的中线确定CD的长.【解答】解:由作法得MN垂平分AB,所以AD=BD,因为AB==,所以CD=AB=.故答案为.14.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为m,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m处达到最高,高度为6m,之后落在水池边缘,那么这个喷水池的直径AB为20 m.【分析】直接利用顶点式求出二次函数解析式进而得出答案,利用y=0时,进而得出x 的值即可得出答案.【解答】解:∵喷出的水柱中心4m处达到最高,高度为6m,∴抛物线的顶点坐标为(4,6)或(﹣4,6),∵在喷水池的中心安装一个大的喷水头,高度为m,∴抛物线与y轴的交点坐标为(0,),设抛物线解析式为y=a1(x﹣4)2+6或y=a2(x+4)2+6,由x=0,y=得,16a1+6=,解得a1=﹣,由x=0,y=得,16a2+6=,解得a2=﹣,所以,函数解析式为y=﹣(x﹣4)2+6或y=﹣(x+4)2+6,当y=0时,0=﹣(x﹣4)2+6,解得:x=10,即这个喷水池的直径AB为20m,故答案为:20.三.解答题(共5小题)15.某市为治理污水,需要铺设一段长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天铺设的速度是原来的1.5倍,结果共用11天完成这一任务,求原计划每天铺设管道的长度.【分析】设原计划每天铺设xm管道,加快施工进度后每天铺设1.5x米,根据题意可得等量关系:铺设120m所用时间+(600﹣120)所用时间=11,根据等量关系列出方程即可.【解答】解:设原计划每天铺设xm管道,由题意得:+=11,解得x=.经检验x=是所列方程的根,答:原计划每天铺设m管道.16.在如图所示的网格中,每个小正方形的边长都为1,点A、B、C均为格点.(1)△ABC的面积等于 6 .(2)请借助无刻度的直尺,在如图所示的网格中画出△ABC的角平分线BD.【分析】(1)利用三角形的面积公式计算即可.(2)取公式T,Q,连接AQ,CT交于点R,连接BR交AC于点D,线段BD即为所求.【解答】解:(1)S△ABC=×3×4=6.故答案为6.(2)线段BD即为所求.17.如图,点A、B为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所成的角度约为67°,半径OC所在的直线与放置平面垂直,垂足为点E.DE=15cm,AD=14cm.求半径OA的长.(精确到0.1cm)(参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)【分析】在Rt△ODE中,DE=15,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD即为OA.【解答】解:在Rt△ODE中,DE=15,∠ODE=67°,∵cos∠ODE=,∴OD≈≈38.46(cm),∴OA=OD﹣AD≈38.46﹣14≈24.5(cm).答:半径OA的长约为24.5cm.18.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计).设小李与甲地的路程为y(km),所用的时间为x(h),y与x之间的函数图象如图所示(1)求m的值.(2)当m≤x≤3时,求y与x的之间的函数关系式;(3)若小李中途不换成汽车,继续骑摩托车前往乙地,当汽车到达乙地时,求此时小李距乙地的路程.【分析】(1)利用时间=路程÷速度,可求出m的值;(2)根据点的坐标,利用待定系数法即可求出:当1≤x≤3时,y与x的之间的函数关系式;(3)利用路程=速度×时间可求出当x=3时小李骑摩托车行驶的路程,再利用3小时后小李距乙地的路程=甲、乙两地的路程﹣小李骑摩托车3小时行驶的路程,即可求出结论.【解答】解:(1)25÷25=1(h).∴m的值为1.(2)设当1≤x≤3时,y与x的之间的函数关系式为y=kx+b,将(1,25),(3,145)代入y=kx+b,得:,解得:,∴当1≤x≤3时,y与x的之间的函数关系式为y=60x﹣35.(3)25×3=75(km),145﹣75=70(km).答:当汽车到达乙地时,小李距乙地的路程为70km.19.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于C点,且A(1,0),C (0,3),抛物线的对称轴为x=﹣1(1)求抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使得M到A、C距离之和最小?若存在,求出点M的坐标:若不存在,请说明理由;(3)该抛物线在第二象限的图象上是否存在一点P,使四边形BOCP的面积最大?若存在,求出点P的坐标:若不存在,请说明理由;(4)E、F分别在抛物线和x轴上,以E、F、B、C为顶点的四边形为平行四边形,求E,F坐标.【分析】(1)A(1,0),抛物线的对称轴为x=﹣1,则点B(﹣3,0),即可求解;(2)作点C关于对称轴的对称点C′(﹣2,3),连接AC′交函数对称轴与点M,点M 为所求,即可求解;(3)四边形BOCP的面积=△BCO的面积+△BPC的面积,而△BCO的面积是定值,故四边形BOCP的面积最大,只需要圈定△BPC的最大面积即可;(4)分BC是平行四边形的边、BC为平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)A(1,0),抛物线的对称轴为x=﹣1,则点B(﹣3,0),抛物线的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;(2)作点C关于对称轴的对称点C′(﹣2,3),连接AC′交函数对称轴与点M,点M 为所求,将点A、C′的坐标代入一次函数表达式并解得:直线AC′的表达式为:y=﹣x+1,当x=﹣1时,y=2,故点M(﹣1,2);(3)四边形BOCP的面积=△BCO的面积+△BPC的面积,而△BCO的面积是定值,故四边形BOCP的面积最大,只需要圈定△BPC的最大面积即可,故点P作y轴的平行线交BC于点H,同理可得直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),则点H(x,x+3),S△BPC=PH×OB=(﹣x2﹣2x+3﹣x﹣3)=﹣x(x+1),∵﹣<0,故S有最大值,即四边形BOCP的面积有最大值,此时x=﹣,故点P(﹣,);(4)设点E(m,n),n=﹣m2﹣2m+3,点F(s,0),①当BC是平行四边形的边时,点B向右平移3个单位向上平移3个单位得到C,同样,点E(F)向右平移3个单位向上平移3个单位得到点F(E),则m+3=s,n+3=0或m﹣3=s,n﹣3=0,解得:m=﹣1或m=0或2(舍去0),故:点E、F的坐标为:(﹣1+,﹣3)、(2+,0)或(﹣1﹣,﹣3)或(2﹣,0)或(2,3)、(﹣1,0);②当BC为平行四边形的对角线时,由中点公式得:m+s=﹣3,n=3,解得:m=0或2(舍去0),故点E、F的坐标为:(2,﹣3)、(﹣5,0);综上,点E、F的坐标为:(﹣1+,﹣3)、(2+,0)或(﹣1﹣,﹣3)或(2﹣,0)或(2,3)、(﹣1,0)或:(2,﹣3)、(﹣5,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年九年级(上)第三次月考数学试卷一.选择题(共8小题)1.《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”规定向东为正,向西为负.若向东走70m,记作+70m,则﹣20m表示()A.向西走20m B.向东走20m C.向西走50m D.向东走50m2.28cm接近于()A.七年级数学课本的厚度B.特型演员王峰军身高C.六层教学楼的高度D.长白山主峰的高度3.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.4.不等式组中的两个不等式的解集在同一数轴上表示正确的是()A.B.C.D.5.如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连结BD.若BD=10,BC=8,则AB的长为()A.8 B.6 C.4 D.26.如图,A、B、C、D四个点均在⊙O上,顺次连结A、B、C、O、D.若OD∥BC,∠COD=40°,则∠A的大小为()A.40°B.50°C.60°D.70°7.如图,某学校操场旗杆上高高飘扬着五星红旗,数学兴趣小组想测量旗杆的高度.在离旗杆底部am的A处,用高1.5m的测角仪DA测得旗杆顶角C的仰角为α,则下列计算旗杆的高度BC正确的是()A.(a sinα+1.5)m B.(a cosα+1.5)mC.(a tanα+1.5)m D.(+1.5)m8.如图,点A在函数y=(x>0)的图象上,过点A作x轴、y轴的垂线分别交函数y =(x>0,k>2)的图象于点B、C,过点C作x轴的垂线交y=(x>0)的图象于点D,连结BC、OC、OD.若点A、C的横坐标分别为1和2,则△ABC与△OCD的面积之和为()A.2 B.3 C.4 D.6二.填空题(共7小题)9.与+1最接近的整数是.10.若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m的值是.11.如图,将△ABC绕点A顺时针旋转40°得到△ADE,AE与BC交于点F,若∠C=20°,则∠CFE的大小是.12.如图,⊙O是正五边形ABCDE的外接圆,连结BD、BE,则∠BDE的大小为.13.如图,O是等边△ABC外接圆的圆心,连结OA、OB、OC,以点A为圆心,以⊙O的直径为半径画弧分别交AB、AC的延长线于点D、E.若OA=2,则图中阴影部分图形的面积和为(结果保留根号和π).14.如图,在平直角坐标系中,O为坐标原点,抛物线y=x2﹣mx﹣1的对称轴为直线x=1.若关于x的一元二次方程x2﹣mx﹣1﹣n=0(n为实数)在0<x<3的范围内有解,则n的取值范围是.15.【教材呈现】下图是华师版九年级上册数学教材第79页的部分内容.请根据教材内容,结合图①,写出完整的解题过程.【结论应用】(1)在图①中,若AB=2,∠AOD=120°,则四边形EFGH的面积为.(2)如图②,在菱形ABCD中,∠BAD=120°,O是其内任意一点,连接O与菱形ABCD 各顶点,四边形EFGH的顶点E、F、G、H分别在AO、BO、CO、DO上,EO=2AE,EF∥AB ∥GH,且EF=GH,若△EFO与△GHO的面积和为4,则菱形ABCD的周长为.三.解答题(共9小题)16.题目:若a2+a﹣4=0,求代数式(a+2)2+3(a+1)(a﹣1)的值.小明的解法如下:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣1(第二步)=4a2+4a+3(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+3=4(a2+a)+3=4×4+3=19(第五步)根据小明的解法解答下列问题:(1)小明的解答过程在第步上开始出现了错误,错误的原因是;(2)请你借鉴小明的解题方法,写出此题的正确解答过程.17.如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF,BE、CF相交于点G.求证:BE⊥CF.18.甲、乙两地相距300km,乘高铁列车从甲地到乙地比乘特快列车少用0.5h,已知高铁列车的平均行驶速度是特快列车的1.5倍,求特快列车平均行驶的速度.19.图①、图②都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,仅用无刻度的直尺,分别按下列要求画图,保留作图痕迹.(1)在图①中画出一个以AB为一边的等腰△ABC,使点C在格点上,且面积为;(2)在图②中画出一个以AB为一边的等腰△ABD,使点D在格点上,且tan∠DAB=3,并直接写出△ABD底边上的高.20.某小区有一半径为8m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m处达到最高,高度为5m,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x轴,喷水池中心为原点建立如图所示的平面直角坐标系.(1)求水柱所在抛物线对应的函数关系式;(2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m的王师傅站立时必须在离水池中心多少米以内?21.如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A作AD∥OC,交BC的延长线于点D.(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.22.周末,小明匀速步行去省图书馆看书,当出发15min后距家1800m时,爸爸驾车匀速从家沿相同路线追赶小明,追上小明后,二人驾车继续按原速前行到达图书馆,小明留在图书馆看书,爸爸驾车继续按原速去单位办事设小明与爸爸之间的路程y(m)与小明出发的时间x(min)之间的函数图象如图所示.(1)小明步行速度是m/min,爸爸驾车速度是m/min:(2)当爸爸从省图书馆到单位时,求y与x之间的函数关系式;(3)当爸爸与省图书馆之间的路程为2160m时,直接写出爸爸驾车行驶的时间.23.如图,在△ABC中,∠ACB=90°,AB=10,AC=6.动点P从点A出发,沿折线AC﹣CB运动,在边AC上以每秒3个单位长度的速度运动,在边BC上以每秒4个单位长度的速度运动,到点B停止,当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB于点Q;以Q为直角顶点向PQ右侧作Rt△PQD,且QD=PQ.设△PQD与△ABC 重叠部分图形的面积为S,点P运动的时间为t(s)(1)当点P在边AC上时,求PQ的长(含t的代数式表示);(2)点D落在边BC上时,求t的值;(3)求S与t之间的函数关系式;(4)设PD的中点为E,作直线CE.当直线CE将△PQD的面积分成1:5两部分时,直接写出t的值.24.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)Q(m,y0),m为任意实数.若y0=,则称点Q是点P的变换点.例如:若点P(1,y)在直线y=x上,点P的变换点Q在函数y=的图象上设点P(m,y)在函数y=﹣x2+2x+3的图象上,点P的变换点Q所在的图象记为G(1)求图象G对应的函数关系式;(2)设图象G与x轴的交点为A、B(点A在点B的左侧)与y轴交于点C,连结AC、BC,求△ABC的面积;(3)当﹣2≤x≤m时,若图象G的最高点与最低点之间的距离不大于,直接写出m的取值范围;(4)设点P(,y)在函数y=ax2﹣3ax﹣4a(a≠0)的图象上,点P的变换点Q所在的图象记为G1,图象G1与x轴的交点为M、N(点M在点N的左侧),连结MN,将MN 沿y轴向上平移一个单位得到线段M'N',当图象G1与线段M'N'只有一个交点时,求a 的取值范围.参考答案与试题解析一.选择题(共8小题)1.《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”规定向东为正,向西为负.若向东走70m,记作+70m,则﹣20m表示()A.向西走20m B.向东走20m C.向西走50m D.向东走50m【分析】根据正负数的意义得出答案,正负数表示具有相反意义的量.【解答】解:根据正负数表示数的意义得,﹣20n表示向西走20m,故选:A.2.28cm接近于()A.七年级数学课本的厚度B.特型演员王峰军身高C.六层教学楼的高度D.长白山主峰的高度【分析】28cm=256cm,数学课本的厚度远远小于这个数,姚明的身高为2.3m左右,则比较接近;旗杆的高度和十层楼的高度都大于这个数.【解答】解:28cm=256cm≈特型演员王峰军身高.故选:B.3.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.4.不等式组中的两个不等式的解集在同一数轴上表示正确的是()A.B.C.D.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≥﹣1,由②得,x<2,故不等式组的解集为:﹣1≤x<2.在数轴上表示为:.故选:C.5.如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连结BD.若BD=10,BC=8,则AB的长为()A.8 B.6 C.4 D.2【分析】如图,连接OC,在Rt△OBC中,求出OB即可解决问题.【解答】解:如图,连接OC.∵四边形OBCD是矩形,∴∠OBC=90°,BD=OC=OA=10,∴OB===6,∴AB=OA﹣OB=4,故选:C.6.如图,A、B、C、D四个点均在⊙O上,顺次连结A、B、C、O、D.若OD∥BC,∠COD=40°,则∠A的大小为()A.40°B.50°C.60°D.70°【分析】连接OB,平行线的性质得到∠C=∠COD=40°,根据等腰三角形和圆周角定理即可得到结论.【解答】解:连接OB,∵OD∥BC,∠COD=40°,∴∠C=∠COD=40°,∵OB=OC,∴∠OBC=∠C=40°,∴∠BOC=100°,∴∠BOD=140°,∴∠A=BOD=70°,故选:D.7.如图,某学校操场旗杆上高高飘扬着五星红旗,数学兴趣小组想测量旗杆的高度.在离旗杆底部am的A处,用高1.5m的测角仪DA测得旗杆顶角C的仰角为α,则下列计算旗杆的高度BC正确的是()A.(a sinα+1.5)m B.(a cosα+1.5)mC.(a tanα+1.5)m D.(+1.5)m【分析】首先分析图形:根据题意构造直角三角形△DEC,解其可得DE的长,进而借助BC=EC+EB可解即可求出答案.【解答】解:过点D作DE⊥BC交BC于E,在△CDE中,有CE=tanα×DE=a tanα,故BC=BE+CE=(1.5+a tanα)m,答:旗杆的高度BC是(a tanα+1.5)m.故选:C.8.如图,点A在函数y=(x>0)的图象上,过点A作x轴、y轴的垂线分别交函数y =(x>0,k>2)的图象于点B、C,过点C作x轴的垂线交y=(x>0)的图象于点D,连结BC、OC、OD.若点A、C的横坐标分别为1和2,则△ABC与△OCD的面积之和为()A.2 B.3 C.4 D.6【分析】依据反比例函数图象上点的坐标特征,即可得到点A,B,C,D的坐标,再根据三角形面积计算公式,即可得到△ABC与△OCD的面积之和.【解答】解:∵点A在函数y=(x>0)的图象上,点A的横坐标为1,∴点A的坐标为(1,2),又∵AC⊥y轴,点C的横坐标为2,∴点C的坐标为(2,2),即k=4,又∵CD⊥x轴,点D在函数y=的图象上,∴D(2,1),∵AB⊥x轴,∴B(1,4),∴△ABC与△OCD的面积之和为×(4﹣2)×(2﹣1)+×(2﹣1)×2=2,故选:A.二.填空题(共7小题)9.与+1最接近的整数是 4 .【分析】先求出的范围是在3和4之间,再求出的范围是在4和5之间,再判断4和5谁最接近即可.【解答】解:∵<<,∴3<<4,∴4<+1<5,∵9和16中比较接近11的是9,∴与+1最接近的整数是4.故答案为:4.10.若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m的值是 1 .【分析】由于关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4m=0,∴m=1,故答案为:1.11.如图,将△ABC绕点A顺时针旋转40°得到△ADE,AE与BC交于点F,若∠C=20°,则∠CFE的大小是60°.【分析】先根据旋转的性质得∠CAE=60°,再利用三角形内角和定理计算出∠AFC=100°,然后根据邻补角的定义易得∠CFE=60°.【解答】解:∵△ABC绕点A顺时针旋转40°得△ADE,∴∠CAE=40°,∵∠C=20°,∴∠AFC=120°,∴∠CFE=60°.故答案为:60°.12.如图,⊙O是正五边形ABCDE的外接圆,连结BD、BE,则∠BDE的大小为72°.【分析】根据圆内接四边形的性质和正五边形的内角解答即可;【解答】解:∵正五边形ABCDE,∴∠A=108°,∴∠BDE=180°﹣108°=72°,故答案为:72°.13.如图,O是等边△ABC外接圆的圆心,连结OA、OB、OC,以点A为圆心,以⊙O的直径为半径画弧分别交AB、AC的延长线于点D、E.若OA=2,则图中阴影部分图形的面积和为π﹣3(结果保留根号和π).【分析】求出BC=2,利用对称性可知:阴影部分的面积=扇形ADE的面积﹣△ABC 的面积.【解答】解:作OM⊥BC于M,如图所示:则CM=BM,∠OBM=30°,OB=OA=2,∴OM=OB=1,BM=OM=,∴BC=2BM=2,利用对称性可知:阴影部分的面积=扇形ADE的面积﹣△ABC的面积=﹣×(2)2=π﹣3,故答案为:=π﹣3.14.如图,在平直角坐标系中,O为坐标原点,抛物线y=x2﹣mx﹣1的对称轴为直线x=1.若关于x的一元二次方程x2﹣mx﹣1﹣n=0(n为实数)在0<x<3的范围内有解,则n的取值范围是﹣2≤n<2 .【分析】根据给出的对称轴求出函数解析式为y=x2﹣2x﹣1,将一元二次方程x2﹣mx﹣1﹣n=0的实数根可以看做y=x2﹣2x﹣1与函数y=n的有交点,再由0<x<3的范围确定y的取值范围即可求解;【解答】解:∵抛物线y=x2﹣mx﹣1的对称轴为直线x=1,∴m=2,∴y=x2﹣2x﹣1,∴一元二次方程x2﹣mx﹣1﹣n=0的实数根可以看做y=x2﹣2x﹣1与函数y=n的有交点,∵方程在0<x<3的范围内有实数根,当x=0时,y=﹣1;当x=3时,y=2;函数y=x2﹣2x﹣1在x=1时有最小值﹣2;∴﹣2≤n<2;故答案为﹣2≤n<2.15.【教材呈现】下图是华师版九年级上册数学教材第79页的部分内容.请根据教材内容,结合图①,写出完整的解题过程.【结论应用】(1)在图①中,若AB=2,∠AOD=120°,则四边形EFGH的面积为.(2)如图②,在菱形ABCD中,∠BAD=120°,O是其内任意一点,连接O与菱形ABCD 各顶点,四边形EFGH的顶点E、F、G、H分别在AO、BO、CO、DO上,EO=2AE,EF∥AB ∥GH,且EF=GH,若△EFO与△GHO的面积和为4,则菱形ABCD的周长为24 .【分析】【教材呈现】由矩形的性质得出OA=OB=OC=OD,再证出OE=OF=OG=OH,即可得出结论.【结论应用】(1)证明△OEF为等边三角形,得出∠EFO=60°,可求出EF=1,EH=,则答案可求出;(2)过点G作GN⊥EF于点N,由条件可知四边形EFGH为平行四边形,可得∠EFG=60°,设EF=x,则NG=,由△EFO与△GHO的面积和为4列出方程求出x,证明△OEF ∽△OAB,可得=,可求出AB的长.则答案可求出.【解答】【教材呈现】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OC=OB=OD,∵AO,BO,CO,DO的中点E,F,G,H,∴OE=OF=OG=OH,∴四边形EFGH是矩形,∵EG=FH,∴四边形EFGH是矩形.【结论应用】(1)解:∵AB=2,∴EF=,∵∠BAD=90°,∴∠FEH=90°,∵∠AOD=120°,∴∠EOF=60°,∴△OEF为等边三角形,∴∠EFO=60°,∴,∴四边形EFGH的面积为1×,故答案为:.(2)过点G作GN⊥EF于点N,∵EF∥GH,且EF=GH,∴四边形EFGH为平行四边形,∴FG∥BC,∵∠BAD=120°,∴∠ABC=∠EFG=60°,设EF=x,则NG=,∵△EFO与△GHO的面积和为4,∴,解得x=4,∴EF=4,∵EF∥AB,∴△OEF∽△OAB,∴,∵EO=2AE,∴,∴AB=6,∴菱形ABCD的周长为24.故答案为:24.三.解答题(共9小题)16.题目:若a2+a﹣4=0,求代数式(a+2)2+3(a+1)(a﹣1)的值.小明的解法如下:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣1(第二步)=4a2+4a+3(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+3=4(a2+a)+3=4×4+3=19(第五步)根据小明的解法解答下列问题:(1)小明的解答过程在第二步上开始出现了错误,错误的原因是去括号时,未将﹣1也乘以3 ;(2)请你借鉴小明的解题方法,写出此题的正确解答过程.【分析】(1)直接利用整式的混合运算法则判断即可;(2)直接利用整式的混合运算法则计算,进而将已知代入求出答案.【解答】解:(1)小明的解答过程在第二步上开始出现了错误,错误的原因是:去括号时,未将﹣1也乘以3;故答案为:二,去括号时,未将﹣1也乘以3;(2)原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣3(第二步)=4a2+4a+1(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+1=4(a2+a)+1=4×4+1=17(第五步).17.如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF,BE、CF相交于点G.求证:BE⊥CF.【分析】根据正方形的性质和全等三角形的判定和性质定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠D=∠BCE=90°,BC=CD,∵CE=DF,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠BCG+∠DCF=90°,∴∠BCG+∠CBG=90°,∴∠BGC=90°,∴BE⊥CF.18.甲、乙两地相距300km,乘高铁列车从甲地到乙地比乘特快列车少用0.5h,已知高铁列车的平均行驶速度是特快列车的1.5倍,求特快列车平均行驶的速度.【分析】设特快列车平均行驶的速度为xkm/h,则高铁列车的平均行驶速度为1.5xkm/h,根据时间=路程÷速度结合乘高铁列车从甲地到乙地比乘特快列车少用0.5h,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设特快列车平均行驶的速度为xkm/h,则高铁列车的平均行驶速度为1.5xkm/h,依题意,得:﹣=0.5,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:特快列车平均行驶的速度为200km/h.19.图①、图②都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,仅用无刻度的直尺,分别按下列要求画图,保留作图痕迹.(1)在图①中画出一个以AB为一边的等腰△ABC,使点C在格点上,且面积为;(2)在图②中画出一个以AB为一边的等腰△ABD,使点D在格点上,且tan∠DAB=3,并直接写出△ABD底边上的高.【分析】(1)根据勾股定理可知AC为3×4格对角线,即可在图①中画出一个以AB为一边的等腰△ABC,使点C在格点上,且面积为;(2)根据tan∠DAB=3,即可在图②中画出一个以AB为一边的等腰△ABD,使点D在格点上,且tan∠DAB=3,△ABD底边上的高为3的三角形.【解答】解:(1)如图①:S△ABC=×5×3=.∴△ABC即为所求作的图形;(2)如图②:△ABD即为所求作的图形.作DE⊥AD于点D,DF⊥AB于点F,∴S△ABD=DA•BE=AB•DF∴•BE=5×3∴BE=.所以△ABD底边上的高为.20.某小区有一半径为8m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m处达到最高,高度为5m,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x轴,喷水池中心为原点建立如图所示的平面直角坐标系.(1)求水柱所在抛物线对应的函数关系式;(2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m的王师傅站立时必须在离水池中心多少米以内?【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论.【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.21.如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A作AD∥OC,交BC的延长线于点D.(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.【分析】(1)连接AO,根据圆周角定理和平行线的性质以及切线的判定定理即可得到结论;(2)连接OB,根据已知条件得到∠OAB=15°,根据三角形的内角和得到∠AOB=150°,根据弧长的计算公式即可得到结论.【解答】(1)证明:连接AO,∵∠ABC=45°,∴∠AOC=2∠B=90°,∵OC∥AD,∴∠OAD=90°,∴AD是⊙O的切线;(2)解:连接OB,∵∠BAD=105°,∠OAD=90°,∴∠OAB=15°,∵OB=OA,∴∠ABO=15°,∴∠AOB=150°,∴劣弧AB的长==π.22.周末,小明匀速步行去省图书馆看书,当出发15min后距家1800m时,爸爸驾车匀速从家沿相同路线追赶小明,追上小明后,二人驾车继续按原速前行到达图书馆,小明留在图书馆看书,爸爸驾车继续按原速去单位办事设小明与爸爸之间的路程y(m)与小明出发的时间x(min)之间的函数图象如图所示.(1)小明步行速度是120 m/min,爸爸驾车速度是720 m/min:(2)当爸爸从省图书馆到单位时,求y与x之间的函数关系式;(3)当爸爸与省图书馆之间的路程为2160m时,直接写出爸爸驾车行驶的时间.【分析】(1)根据“速度=路程÷时间”解答即可;(2)利用待定系数法解答即可;(3)根据爸爸驾车速度求出小明家到图书馆的距离,即可求出当爸爸与省图书馆之间的路程为2160m时,爸爸驾车行驶的时间.【解答】解:(1)小明步行速度是:1800÷15=120(m/min),爸爸驾车速度是:3600÷(25﹣20)=720(m/min),故答案为:120;720;(2)设y与x之间的函数关系式为y=kx+b,根据题意得,解得,∴y与x之间的函数关系式为:y=720x﹣1440;(3)小明家到图书馆的距离为:720×(20﹣15)=3600(m),(3600﹣2160)÷720=2(min),(3600+2160)÷720=8(min),答:当爸爸与省图书馆之间的路程为2160m时,爸爸驾车行驶的时间为2min或8min.23.如图,在△ABC中,∠ACB=90°,AB=10,AC=6.动点P从点A出发,沿折线AC﹣CB运动,在边AC上以每秒3个单位长度的速度运动,在边BC上以每秒4个单位长度的速度运动,到点B停止,当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB于点Q;以Q为直角顶点向PQ右侧作Rt△PQD,且QD=PQ.设△PQD与△ABC 重叠部分图形的面积为S,点P运动的时间为t(s)(1)当点P在边AC上时,求PQ的长(含t的代数式表示);(2)点D落在边BC上时,求t的值;(3)求S与t之间的函数关系式;(4)设PD的中点为E,作直线CE.当直线CE将△PQD的面积分成1:5两部分时,直接写出t的值.【分析】(1)由PQ∥BC,推出△APQ∽△ACB,可得=,由此构建关系式即可解决问题.(2)当点D落在BC上时,四边形PCDQ是矩形,根据PC=DQ,构建方程解决问题即可.(3)分三种情形:①如图3﹣1中,当0<t≤时,重叠部分是△PQD.②如图3﹣2中,当<t<2时,重叠部分是四边形PQMN.③如图3﹣3中,当2<t<4时,重叠部分是△PQN,分别求解即可.(4)分两种情形:①如图4﹣1中,设直线CE交DQ于N,连接OE.当QN=2DN时,直线CE将△PQD的面积分成1:5两部分.②如图4﹣2中,如图4﹣2中,设直线CE交PQ 于N,连接OE,延长QD交CE于M.当QN=2PN时,直线CE将△PQD的面积分成1:5两部分,分别求解即可.【解答】解:(1)如图1中,当点P在AC上时,在Rt△ABC中,∵∠C=90°,AB=10,AC=6,∴BC===8,∵PQ∥BC,∴△APQ∽△ACB,∴=,∴=,∴PQ=4t.(2)当点D落在BC上时,四边形PCDQ是矩形,∴PC=DQ,∵PQ=4t,DQ=PQ,∴DQ=6t,∴6﹣3t=6t,解得t=.(3)①如图3﹣1中,当0<t≤时,重叠部分是△PQD.S=•PQ•DQ=×4t×6t=12t2.②如图3﹣2中,当<t<2时,重叠部分是四边形PQMN,S=S△PQD﹣S△DMN=12t2﹣.×(9t﹣6)×(9t﹣6)=﹣15t2+36t﹣12.③如图3﹣3中,当2<t<4时,重叠部分是△PQN,由题意PC=4(t﹣2),PB=BC﹣PC=16﹣4t=4(4﹣t),∴PQ=3(4﹣t),DQ=(4﹣t),∵PB∥DQ,∴PN:DN=PB:DQ=8:9,∴S=•S△PQD=••3(4﹣t)•(4﹣t)=(4﹣t)2.综上所述,S=.(4)①如图4﹣1中,设直线CE交DQ于N,连接OE.当QN=2DN时,直线CE将△PQD的面积分成1:5两部分,∵PE=DE,PC∥DN,∴==1,∴PC=DN,∴QN=2PC,DQ=3PC,∴6t=3(6﹣3t),∴t=.②如图4﹣2中,如图4﹣2中,设直线CE交PQ于N,连接OE,延长QD交CE于M.当QN=2PN时,直线CE将△PQD的面积分成1:5两部分,∵PC∥QM,PE=ED,∴==1,==,∴PC=DM=4(t﹣2),QM=2PC,∴(4﹣t)+4(t﹣2)=2×4(t﹣2),解得t=,综上所述,满足条件的t的值为或.24.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)Q(m,y0),m为任意实数.若y0=,则称点Q是点P的变换点.例如:若点P(1,y)在直线y=x上,点P的变换点Q在函数y=的图象上设点P(m,y)在函数y=﹣x2+2x+3的图象上,点P的变换点Q所在的图象记为G(1)求图象G对应的函数关系式;(2)设图象G与x轴的交点为A、B(点A在点B的左侧)与y轴交于点C,连结AC、BC,求△ABC的面积;(3)当﹣2≤x≤m时,若图象G的最高点与最低点之间的距离不大于,直接写出m的取值范围;(4)设点P(,y)在函数y=ax2﹣3ax﹣4a(a≠0)的图象上,点P的变换点Q所在的图象记为G1,图象G1与x轴的交点为M、N(点M在点N的左侧),连结MN,将MN 沿y轴向上平移一个单位得到线段M'N',当图象G1与线段M'N'只有一个交点时,求a 的取值范围.【分析】(1)由题意得:函数G的表达式为:y=,(2)点A、B的坐标分别为(﹣1,0)、(3,0),点C(0,3)或(0,﹣),故△ABC的面积=×AB×OC=6或3;(3)分m≤﹣1、﹣1≤m≤1、1≤m≤3、m≥3三种情况,分别求解即可;(4)分当a<0、a>0两种情况求解即可.【解答】解:(1)由题意得:函数G的表达式为:y=,(2)如图1,令y=0,解得:x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0),函数对称轴为:x=1,点C(0,3)或(0,﹣);故△ABC的面积=×AB×OC=6或3;(3)①当m≤﹣1时,如图2,当﹣2≤x≤m时,图象G的最高点为R,最低点B,点R(﹣2,),则y R﹣y B,即﹣(﹣m2+2m+3),解得:1﹣≤m≤1+,故1﹣≤m≤﹣1;②当﹣1≤m≤1时,如图3所示,点A(﹣2,)当点A为最高点时,y A﹣y C≤,即+(﹣m2+2m+3),解得:m为任意实数;点B是高点时,y B﹣y C,即(﹣m2+2m+3),解得:m≥2或m≤0,故﹣1≤m≤0;③当1≤m≤3时,如图4所示,点A(﹣2,),顶点E(1,﹣2),当点A是最高点时,y A﹣y E=,符合条件;当点C是最高点时,y C﹣y E,即(﹣m2+2m+3),解得:1﹣≤m≤1,故1≤m≤1+;④当m≥3时,如图5所示,点A(﹣2,),顶点E(1,﹣2),(Ⅰ)当点A是最高点时,当点E是最低点时,y A﹣y E=;当点D时最低点时,y A﹣y D≤,即﹣(﹣m2+2m+3)≤,解得:3≤m≤1+;故3≤m≤1+;(Ⅱ)当点B是最高点时,当点E是最低点时,y B﹣y E=,同理可得:m≥4,当点D时最低点时,y B﹣y D≤,同理可得:m≤1+,故:3≤m≤1+或m≥4;综上,1﹣≤m≤0或1≤m≤1+或3≤m≤1+或m≥4;(4)①当a<0时,如图6所示,当x=﹣时,对应抛物线上的实点R,则y R>1,即:y=ax2﹣3ax﹣4a=a(+﹣4)>1,解得:a,②当a>0时,当x=﹣时,﹣(ax2﹣3ax﹣4a)<1,即﹣a(+﹣4)<1,解得:a,即0<a<;综上,a的取值范围为:a或0<a<.。

相关文档
最新文档