连续时间信号的频域分析.

合集下载

信号与系统连续周期信号的频域分析

信号与系统连续周期信号的频域分析

信号与系统连续周期信号的频域分析频域分析是信号与系统中一种重要的分析方法,用于研究信号的频谱特性。

连续周期信号是一种在时间域上具有周期性的信号,其频域分析包括傅里叶级数展开和频谱图表示。

傅里叶级数展开是一种将连续周期信号分解为若干个频率成分的方法。

对于周期为T的连续周期信号x(t),其傅里叶级数展开可以表示为:x(t) = ∑[Cn * exp( j *2πn/T * t )]其中,Cn为信号中频率为n/T的分量的振幅,j为虚数单位。

通过计算信号的傅里叶系数Cn,可以得到信号的频率成分和其对应的振幅。

在频域分析中,经常使用的一个重要工具是频谱图。

频谱图是一种将信号在频域上进行可视化展示的方法,通过绘制信号的频谱,可以直观地观察到信号的频率信息。

频谱图中的横轴表示频率,纵轴表示振幅。

对于连续周期信号,其频谱图是离散的,只有在频率为基频及其倍数的位置上有分量值。

基频是连续周期信号的最低频率成分,其他频率成分都是基频的整数倍。

频谱图中的峰值代表了信号在不同频率上的能量分布情况,而峰值的高度代表了对应频率上的振幅大小。

通过分析频谱图,可以获得信号中各个频率成分的相对强度,从而对信号进行进一步的特征提取和处理。

在实际应用中,频域分析经常用于信号处理、系统建模和通信等领域。

例如,在音频处理中,通过频域分析可以实现音频信号的降噪、音乐特征提取和音频编码等任务。

在通信系统中,频域分析可用于频率选择性衰落信道的估计和均衡、多载波调制技术等。

总结起来,频域分析是信号与系统中对连续周期信号进行分析的重要方法。

通过傅里叶级数展开和频谱图表示,可以揭示信号的频率成分及其振幅特性,为信号处理和系统设计提供依据。

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

实验二--连续时间信号的频域分析

实验二--连续时间信号的频域分析

实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号 20 评分:实验日期: 2017 年 12 月 13日指导教师: 张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT、DTFT的若干重要性质。

基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB编程完成相关的傅里叶变换的计算。

以看得很清楚。

二、实验原理及方法任何一个周期为T1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。

其中三角傅里叶级数为:2.1或:2.2指数形式的傅里叶级数为:2.3其中,为指数形式的傅里叶级数的系数,按如下公式计算:2.4傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:2.52.6连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号ejt的线性组合构成的,每个频率所对应的周期复指数信号ejt称为频率分量(frequency component),其相对幅度为对应频率的|X(j)|之值,其相位为对应频率的X(j)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。

实验二 连续时间信号的频域分析

实验二 连续时间信号的频域分析

实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号20 评分:实验日期: 2017 年 12 月 13日指导教师:张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。

基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB 编程完成相关的傅里叶变换的计算。

以看得很清楚。

二、实验原理及方法任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。

其中三角傅里叶级数为:∑∞=++=1000)]sin()cos([)(k k k t k b t k a a t x ωω或: ∑∞=++=100)cos()(kk k t k A A t x ϕω指数形式的傅里叶级数为:∑∞-∞==kt jk k e F t x 0)(ω 其中,k F 为指数形式的傅里叶级数的系数,按如下公式计算:⎰--=2/2/111)(1T Tt jk k dt e t x T F ω傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:⎰∞∞--=dt e t x j X t j ωω)()(⎰∞∞-=ωωπωd e j X t x tj )(21)( 连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j?t 的线性组合构成的,每个频率所对应的周期复指数信号e j?t 称为频率分量(frequency component ),其相对幅度为对应频率的|X(j?)|之值,其相位为对应频率的X(j?)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:Λ-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ其中,?0 = π,要求将一个图形窗口分割成四个子图,分别绘制cos(?0t)、cos(3?t)、cos(5?t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。

第三、四章连续时间信号与系统的频域分析内容总结

第三、四章连续时间信号与系统的频域分析内容总结
X

连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X

连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X

连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X

连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X

连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)

第3章 频谱分析

第3章 频谱分析
1 n 1

jn1t

n 1
F jn e
1

jn1t
式(3-9)又可写为
f t
F jn e
1

jn1t

F e
n

jn1t
(3-10)
第 3章
连续时间系统的频域分析
式(3-10)称为周期信号f(t)的指数形式傅立叶级数展开式, 其中F(jnω1)为傅立叶系数, 简写为Fn, 又称为频谱函数。 由于 Fn为复数, 所以式(3-10)又称为复系数形式傅立叶级数展开式。 傅立叶系数Fn为
(n=0, 1, 2, 3, …) 4 T /2 bn f t sin n1tdt T 0
an 0

第 3章
连续时间系统的频域分析
(3) 奇谐函数。 若周期信号f(t)波形沿时间轴平移半个周 期后与原波形相对于时间轴镜像对称, 即满足
T f t f t 2
bn 0

1 2 sinn π/ 4 f t a0 an cos n1t cos n1t 2 n π n 1 n 1




因此
1 a0 2
an
2 sinn π/ 4 nπ
第 3章
连续时间系统的频域分析
即 a0=0.5 a1=0.45 a2≈0.32 a3=0.15
1807年, 傅立叶以他惊人的洞察力大胆断言: 任何周期函数都
可以用收敛的正弦级数表示。 他的关于把信号分解为正弦分 量的思想对后来的自然科学等领域产生了巨大的影响。
周期信号是定义在(-∞, ∞)区间内, 每隔一定时间T按相
同规律重复变化的信号。 图3-1所示是实际的周期性非正弦信号, 它们一般表示为

实验二---连续时间信号的频域分析

实验二---连续时间信号的频域分析

实验二---连续时间信号的频域分析实验目的:1. 学习连续时间信号的频域分析方法,掌握傅里叶变换理论。

2. 理解信号的时域与频域之间的转换关系,能够实现信号的频域分析及某些信号处理操作。

3. 了解傅里叶变换的性质和应用,能够应用傅里叶变换对各种周期和非周期信号进行分析。

实验原理:1. 傅里叶变换傅里叶变换是将一个连续时间函数在频域中的频谱与该函数在时域中的波形进行对应的数学变换。

连续时间傅里叶变换(CTFT)是将一个无限长但可积的信号,即绝对可积信号,变换为复频域函数。

如果傅里叶变换是定义在时域上的,那么它的自变量是时间t,而它的函数值是一个关于f的复合函数,即分别为实频谱与虚频谱的函数。

- 傅里叶变换是一个线性变换;- 时域中的卷积在频域中对应为乘积;- 频域中的卷积在时域中对应为乘积;- 时域中的移位在频域中对应为复制效应;- 能量守恒:信号在时域中的总能量等于在频域中的总能量;- Parseval定理:信号在时域和频域中的幅度平方和等于常数。

实验步骤:1)连续时间正弦波$f(t)=A sin(2\pi f_0 t)$其中,$f_0 =1200 Hz$,采样间隔 $\Delta t =5*10^{-6}$ s,数据长度 $N= 150$。

$f(t)=\frac{2A}{T_0} t$($-\frac{T_0}{2}<t<\frac{T_0}{2}$)其中,$T_0$ 为周期,数据长度 $N= 500$。

$f(t) =\frac{A}{2}[sgn(t)+1]$($-1<t<1$)绘制信号的频域幅度谱和相位谱,并分析其特点。

实验结果:正弦波:三角波:方波:实验分析:从时域波形可以看出,正弦信号为一定频率下的振荡信号,具有周期性,幅度相等,相位差为 $\frac{\pi}{2}$ 的两个正弦函数相加而成;三角波和方波均为非周期信号。

从频域幅度谱可以看出,正弦波在频域中只存在一个正弦函数,且其频率与时域信号的频率相同;三角波在频域中存在多个频率成分,且成分包含奇数倍或基波的奇数倍;方波在频域中由越来越多的奇数倍频率成分组成,其频率分量越高,能量越小。

连续时间信号的卷积及信号的频域分析实验报告(1)

连续时间信号的卷积及信号的频域分析实验报告(1)

连续时间信号的卷积及信号的频域分析实验报告(1)连续时间信号的卷积及信号的频域分析实验报告一、实验目的本实验的主要目的是通过对于两个时间域信号的卷积运算,掌握信号卷积运算的基本原理及操作方法;同时,利用MATLAB软件完成信号的傅里叶变换,了解信号在频域的频谱特征。

二、实验内容1、连续时间信号的卷积运算利用MATLAB软件中conv函数进行两个信号的卷积运算,并观察结果。

2、信号在频域的频谱特征- 利用MATLAB软件中fft函数对信号进行傅里叶变换,并获取其频域表示;- 利用MATLAB软件中ifft函数对信号进行逆傅里叶变换,恢复其原始时间域信号;- 观察不同频率成分对于信号的影响,并分析其原因。

三、实验步骤1、连续时间信号的卷积运算首先在MATLAB软件中定义两个连续时间信号,如下所示:t1 = 0:0.1:10;x1 = sin(2*pi*5*t1); % 正弦波信号t2 = 0:0.1:10;x2 = exp(-(t2-5).^2); % 高斯脉冲信号然后,使用conv函数进行卷积运算,并绘制出卷积后的信号图像。

x3 = conv(x1,x2,'same'); % 卷积运算figure; % 绘制卷积后的信号图像subplot(3,1,1);plot(t1,x1);xlabel('时间/s');ylabel('幅值');title('正弦波信号');subplot(3,1,2);plot(t2,x2);xlabel('时间/s');ylabel('幅值');title('高斯脉冲信号');subplot(3,1,3);plot(t1,x3);xlabel('时间/s');ylabel('幅值');title('卷积信号');2、信号在频域的频谱特征首先,通过fft函数对于时间域信号进行傅里叶变换,获取其频域表示。

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

0 21
/4
/2
(b)相位图
图2.1-2例2.1-2的频谱图
二、指数形式的傅里叶级数
利用欧拉公式将三角形式的傅里叶级数,表示为 复指数形式的傅氏级数
其中
f t F n1 e jn1t
n
F n1
1 T
t0 T t0
f t e jn1tdt
F n1 是复常数,通常简写为 Fn 。
21t
5
4
2
sin
1t
1 2
sin
31t
解:将 f t 整理为标准形式
f
(t)
1
2cos 1t来自4cos 21t
5
4
1 2
cos
31t
2
1
2
cos
1t
4
cos
21t
4
1 2
cos
31t
2
振幅谱与相位谱如图2-1所示。
cn
2
1
1
1/2
0 1 21 31
(a) 振幅图
n
/4
31
第二章 连续时间信号与系统的频域分析 ——Fourier变换
2. 1 周期信号的傅里叶级数分析 2. 2 非周期信号的频谱--傅里叶变换 2. 3 傅里叶变换的性质及定理 2. 4 系统的频域分析方法 2. 5 无失真传输系统与滤波
LTI系统分析的一个基本任务,是求解系统对任意 激励信号的响应,基本方法是将信号分解为多个基本信 号元。
一、三角形式傅里叶级数
周期信号: f t f t nT
其中
T
是信号的最小重复时间间隔,f1
1 是信号的基波频率。 T
若 f t 满足狄里赫利条件,则 f t 可以展开为三角形

信号与系统 郑君里 第三章 连续系统频域分析

信号与系统  郑君里 第三章 连续系统频域分析

编辑状态下,图形演示平移T1/2再翻转。
第3章 连续时间信号频域分析
1.三角型傅里叶级数
让· 巴普蒂斯· 约瑟夫· 傅立叶(Jean
Baptiste Joseph Fourier,1768 –1830), 法国著名数学家、物理学家,1817年当 选为科学院院士,1822年任该院终身秘 书,后又任法兰西学院终身秘书和理工 科大学校务委员会主席,主要贡献是在 研究热的传播时创立了一套数学理论。 小行星10101号傅里叶星、他是名字被刻在埃菲尔铁塔的七十二位法国 科学家与工程师其中一位、约瑟夫.傅立叶大学 1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方 程,提出任一函数都可以展成三角函数的无穷级数。
������=−1
������ ������������1 ej������������1������
因此得到指数形式的傅里叶级数

������(������) =
������=−∞
������(������������1 )ej������������1������
第3章 连续时间信号频域分析
2.指数型傅里叶级数
������=1
������ ������ = ������0 +
������0 = ������0 = ������0
������������ = ������������ =
2 2 ������������ + ������������
������������ = ������������ cos ������������ = ������������ sin ������������
第3章 连续时间信号频域分析
(1) 三角型傅里叶级数系数的计算

连续时间信号的频域分析

连续时间信号的频域分析

实验二 连续时间信号的频域分析 实验内容:1、周期信号的傅里叶级数与GIBBS 现象给定如一个周期信号1()x t 如图所示:Q2-1: 分别手工计算x1(t) 的傅里叶级数的系数。

信号x1(t) 在其主周期内的数学表达式为:⎩⎨⎧≤≤-=其他,02.02.0,1)(1t t x计算x1(t) 的傅里叶级数的系数的计算过程如下:解:首先,我们根据前面所给出的公式,计算该信号的傅里叶级数的系数。

⎰-=10011)(1T t jk k dt e t x T a ω⎰--=2.02.0021dt e t jk ω⎰--=-1000)(210t jk d e k j t jk ωωω 02.02.0200ωωωk j e e kj kj --=-ππk k )2.0s i n (=(ππω==T 120) 在MATLAB 命令窗口,依次键入:>> k = -10:10;>> ak = sin(0.2*(k+eps)*pi)./((k+eps)*pi)用MATLAB 帮助你计算出你手工计算的傅里叶级数的系数ak 从-10到10共21个系数。

t 22-12.02.0-从命令窗口上抄写x1(t)的21个系数如下:Columns 1 through 40.0000 -0.0208 -0.0378 -0.0432Columns 5 through 8-0.0312 0.0000 0.0468 0.1009Columns 9 through 120.1514 0.1871 0.2000 0.1871Columns 13 through 160.1514 0.1009 0.0468 0.0000Columns 17 through 20-0.0312 -0.0432 -0.0378 -0.0208Columns210.00000Q2-2:仿照程序Program2_1,编写程序Q2_2,以计算x1(t)的傅里叶级数的系数。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

信号分析与处理(修订版) 课件 吴京ch03、4 连续时间信号的频域分析、 连续时间信号及系统的复频

信号分析与处理(修订版) 课件 吴京ch03、4 连续时间信号的频域分析、 连续时间信号及系统的复频
当周期信号波形具有某种对称性时,其傅里叶级数中有些项就不出现。掌握傅里叶级 数的这一特点,就可以迅速判断信号中包含哪些谐波成分,从而简化系数的计算。另外, 有些信号经简单处理也可能具有对称性,这时就可利用信号的潜在对称性进行简化分析。
02 周期信号的傅里叶级数
二、指数函数形式的傅里叶级数
即周期为T的信号x(t),可以在任意(t0 ,t0+T)区间,在虚指数信号集 上分解为一系列不同频率的虚指数信号
里叶反变换,可简记为
二者的关系也可记作x(t)→X(jω) ,双箭头 x(t)与频域频谱X(jω)是一对傅里叶变换对。
表示对应关系,说明时域信号来自03 非周期信号的傅里叶变换
二、常用信号的傅里叶变换 1 .单边指数信号的频谱 单边指数信号的表达式为 由于所得频谱是复函数,故有
其时域波形图及频谱图 如图所示。

(2) x(t)的极大值和极小值的数目应有限;
(3) x(t)如有间断点,间断点的数目应有限。
02 周期信号的傅里叶级数
一、三角函数形式的傅里叶级数
周期为T的信号x(t) ,可以在任意(t0,t0 十T)区间,用三角函数信号集{ sinkω0t,cosk ω0t,1;k= 1,2,…;ω0 = 2π/T}精确分解为下面的三角形式的傅里叶级数,即
高等院校公共课系列精品教材
高等院校公共课系列精品教材
第四章
连续时间信号及系 统的复频域分析
电子信息科学与工程类
高等院校公共课系列精品教材
01 拉普拉斯 变换
01 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
式(4.6)和式(4. 7)称为拉普拉斯变换对,简称拉氏变换对,记为x(t)→X(s)。
X(s)称为x(t)的拉氏变换,又称为象函数,记为

连续时间信号与系统的频域分析

连续时间信号与系统的频域分析
3
目录
5-12 信号的时域抽样与抽样定理 5-13 调制与解调 5-14 频分复用与时分复用
4
引言
• 用时间作为变量描述信号我们称为信号的时域表示,显 示信号随时间变换的快慢、出现先后、存在时间的长短以 及信号是否按一定的时间间隔重复出现等。 • 用频率作为变量描述信号称为频域描述,揭示了信号各 个频率分量的大小,信号的能量主要集中在哪个频率范 围等特性。 • 信号的时域表示和频域表示是从信号的两个不同方面 对信号进行描述, • 在正交函数的基础上对时域信号的进行分解。最常用的 分解就是傅立叶分解,也称为信号的傅立叶分析。
能使信号 f(t)进行正交分解的基底函数,并且分解后均方 差为零的一组正交基底函数称为完备的正交函数集。
一个信号可用完备的正交函数集表示,正交函数集有许 多,如:
• 正弦函数集 • 指数函数集 • walsh函数集 • ……
正交函数集有许多重要的用途,例如进行频谱分析、信道 编码等。
13
5-2 周期信号的傅立叶级数分析
1
T
t0 T t0
f
(t) cos n1tdt
j1 T
t0 t0
T
sin
n1tdt
(5-22)
Fn
1 T
t0 T f (t)e dt j(n)1t
t0
(n取 ~ 之间的整数)
1
T
t0 T t0
f
(t)[cos n1t
j sin n1t]dt
通过比较可以得到指数形式的傅里叶系数与三角形式的傅 里叶系数有以下关系:
当周期信号 f (t)满足狄里赫利条件时,就可以用复指数函 数集或三角函数集的线性组合来表示,这种线性组合的表 示称为傅立叶级数展开。 狄里赫利条件:

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym(&#39;Heaviside(2*t+1)-Heaviside(2*t-1)&#39;);Gt1=sym(&#39;Heaviside(t1+1)-Heaviside(t1-1)&#39;);Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple(&#39;convert&#39;,Fw,&#39;piecewise&#39;);FFw1=maple(&#39;convert&#39;,Fw1,&#39;piecewise&#39;);FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym(&#39;(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)&#39;);Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)&#39;);ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym(&#39;((i*w)+5*i*w-8)/((i*w)+6*i*w+5)&#39;);ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

连续时间系统的频域分析

连续时间系统的频域分析

第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。

●简化电路分析与运算,总响应=单元响应之和。

1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。

一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。

2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。

令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。

3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。

物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。

二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书题目专业、班级电信1班学号姓名主要内容、基本要求、主要参考资料等:基于钟表设计的常识,给出时、分、秒的设计思路,并利用硬件编程语言VHDL或者Verilog-HDL来实现。

要求具有基本功能如调整时间对表、闹铃、计时器等,给出完成控制电路所需要的设计模块;给出硬件编程语言的实现,并进行仿真;给出下载电路的设计,设计为2种下载方法,其中一种必须为JTAG;同时设计者报告不允许雷同。

参考资料:1、潘松、黄继业《EDA技术及其应用》(第四版)科学出版社 20092、樊昌信《通信原理》电子出版社完成期限:指导教师签名:课程负责人签名:年月日目录摘要 (II)ABSTRACT (III)绪论 (III)1傅里叶变换原理概述 (1)1.1 傅里叶变换及逆变换的MATLAB实现 (2)2 用MATLAB实现典型非周期信号的频域分析 (3)2.1 单边指数信号时域波形图、频域图 (3)2.2 偶双边指数信号时域波形图、频域图 (4)2.3 奇双边指数信号时域波形图、频域图 (4)2.4 直流信号时域波形图、频域图 (5)2.5 符号函数信号时域波形图、频域图 (5)2.6 单位阶跃信号时域波形图、频域图 (6)2.7 单位冲激信号时域波形图、频域图 (6)2.8 门函数信号时域波形图、频域图 (7)3 用MATLAB实现信号的幅度调制 (8)3.1 实例1 (8)3.2 实例2 (10)4 实现傅里叶变换性质的波形仿真 (11)4.1 尺度变换特性 (11)4.2 时移特性 (14)4.3 频移特性 (16)4.4 时域卷积定理 (18)4.5 对称性质 (20)4.6 微分特性 (22)心得体会 (25)参考文献 (26)附录 (27)摘要MATLAB和Mathematica、Maple并称为三大数学软件。

MATLAB在数学类科技应用软件中在数值计算方面首屈一指。

Simulink是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包。

MATLAB具有强大的图形处理功能、符号运算功能和数值计算功能。

其中系统的仿真(Simulink)工具箱是从底层开发的一个完整的仿真环境和图形界面。

在这个环境中,用户可以完成面向框图系统仿真的全部过程,并且更加直观和准确地达到仿真的目标[1]。

本文主要介绍基于MATLAB的一阶动态电路特性分析。

关键字:MATLAB;仿真;图形处理;一阶动态电路。

AbstractMATLAB, and Mathematica, Maple, and known as the three major mathematical software. It is the application of technology in mathematics classes in numerical computing software, second to none. Simulink is an extension of MATLAB software, which is the realization of dynamic system modeling and simulation of a package. MATLAB has a powerful graphics processing capabilities, symbolic computing and numerical computing functions. One system simulation (Simulink) toolbox from the bottom of the development of a complete simulation environment and the graphical interface. In this environment, the user can complete system simulation block diagram for the entire process and achieve a more intuitive and accurate simulation of goal[1].In this paper, MATLAB-based first-order characteristics of dynamic circuits.Keywords: MATLAB;Simulation;Graphics;First Order Circuit。

绪论在科学技术飞速发展的今天,计算机正扮演着愈来愈重要的角色。

在进行科学研究与工程应用的过程中,科技人员往往会遇到大量繁重的数学运算和数值分析,传统的高级语言Basic、Fortran 及C 语言等虽然能在一定程度上减轻计算量,但它们均用人员具有较强的编程能力和对算法有深入的研究。

MATLAB 正是在这一应用要求背景下产生的数学类科技应用软件。

MATLAB 是matrix 和laboratory 前三个字母的缩写,意思是“矩阵实验。

MATLAB 具有以下基本功能:室”,是Math Works 公司推出的数学类科技应用软件[2](1)数值计算功能;(2)符号计算功能;(3)图形处理及可视化功能;(3)可视化建模及动态仿真功能。

本文介绍了如何利用MATLAB强大的图形处理功能、符号运算功能以及数值计算功能,实现连续时间系统频域分析。

本次课程设计介绍了用MATLAB实现典型非周期信号的频谱分析,用MATLAB实现信号的幅度调制以及用MATLAB实现信号傅里叶变换性质的仿真波形。

1傅里叶变换原理概述设有连续时间周期信号,它的周期为T,角频率,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种[3]。

1. 三角形式的傅里叶级数[2]:式中系数,称为傅里叶系数,可由下式求得:[2. 指数形式的傅里叶级数[2]:式中系数称为傅里叶复系数,可由下式求得:周期信号频谱具有三个特点[1]:(1)离散性,即谱线是离散的;(2)谐波性,即谱线只出现在基波频率的整数倍上;(3)收敛性,即谐波的幅度随谐波次数的增高而减小。

周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

在Matlab中有多种进行数值积分运算的方法,我们采用quadl函数,它有两种其调用形式。

(1) y=quadl(‘func’, a, b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

(2) y=quadl(@myfun, a, b)。

其中“@”符号表示取函数的句柄,myfun表示所定义函数的文件名。

1.1傅里叶变换及逆变换的MATLAB实现MATLAB的Symbolic Math Toolbox 提供了能直接求解傅里叶变换及逆变换的函数Fourier()及Fourier()[4]。

1.1 fourier 变换1. (1) F=fourier(f);(2) F=fourier(v);(3) F=fourier(f,u,v);说明:(1) F=fourier(f)是符号函数 f 的Fourier变换,缺省返回是关于ω的函数。

如果f=f(ω),则fourier 函数返回关于t 的函数。

(2)F=fourier(f,v)返回函数F 是关于符号对象v 的函数,而不是缺省的ω(3)F=fourier(f,u,v)对关于u 的函数f 进行变换,返回函数F 是关于v 的函数。

1.2 fourier 逆变换1. (1) f=ifourier(F);(2) f=ifourier(F,u);(3) f=ifourier(F,v,u);说明:(1) f=ifourier(F)中输入参量F是傅里叶变换的符号表达式,缺省为符号变量w的函数,输出参量f是F的傅里叶逆变换的符号表达式,缺省为符号变量x的函数。

(2)f=ifourier(F,u)中输入参量F是傅里叶变换的符号表达式,缺省为符号变量w的函数,输出参量f是F的傅里叶逆变换的符号表达式,为指定符号变量u的函数(3)f=ifourier(F,v,u)中输入参量F是傅里叶变换的符号表达式,为指定符号变量v的函数,输出参量f是F的傅里叶逆变换的符号表达式,缺省为符号变量u的函数。

2 用MATLAB 实现典型非周期信号的频域分析2.1单边指数信号时域波形图、频域图()()t f t e t αε-= 的时域波形图和频谱图如图2.1.1 :-1-0.50.511.522.5300.511.52texp(-2 t) Heaviside(t)时域波形-6-4-202460.20.30.40.5w1/abs(2+i w)幅度频谱-6-4-2246-101w-i atanh(1/2 (1/(2+i w)-1/(2-i conj(w)))/(1/2/(2+i w)+1/2/(2-i conj(w))))相位频谱图2.1.1单边指数信号2.2偶双边指数信号时域波形图、频域图偶双边指数信号时域波形图、频域图如下图图2.2.1:-6-4-22460.51texp(-2 abs(t))时域波形-6-4-2024600.51w 4/abs(4+w 2)幅度频谱-6-4-2246-1-0.500.51w-i atanh(1/2 (4/(4+w 2)-4/(4+conj(w)2))/(2/(4+w 2)+2/(4+conj(w)2)))相位频谱图2.2.1偶双边指数信号2.3奇双边指数信号时域波形图、频域图奇双边指数信号时域波形图、频域图如下图图2.3.1:-6-4-22460.51t-exp(-2 abs(t))时域波形-6-4-2024600.51w 4/abs(4+w 2)幅度频谱-6-4-2246-1-0.500.51w-i atanh(1/2 (-4/(4+w 2)+4/(4+conj(w)2))/(-2/(4+w 2)-2/(4+conj(w)2)))相位频谱图2.3.1奇双边指数信号2.4 直流信号时域波形图、频域图直流信号f (t )=A,不满足绝对可积条件,但傅里叶变换却存在。

可以把单位直流信号看做双边指数信号当a 趋于0时的极限。

直流信号时域波形图、频域图如下图2.4.1:-6-4-224600.511.5texp(-1/1000 abs(t))时域波形-3-2-1012350100150200w 1/500/abs(1/1000000+w 2)幅度频谱-6-4-20246-1-0.500.51w-i atanh(1/2 (1/500/(1/1000000+w 2)-1/500/(1/1000000+conj(w)2))/(1/1000/(1/1000000+w 2)+1/1000/(1/1000000+conj(w)2)))相位频谱图2.4.1直流信号2.5 符号函数信号时域波形图、频域图符号函数信号时域波形图、频域图如下图2.5.1:-2-1.5-1-0.500.511.52-101t2 Heaviside(t)-1时域波形-3-2-1012350100150200w 1/500/abs(1/1000000+w 2)幅度频谱-6-4-20246-1-0.500.51w-i atanh(1/2 (1/500/(1/1000000+w 2)-1/500/(1/1000000+conj(w)2))/(1/1000/(1/1000000+w 2)+1/1000/(1/1000000+conj(w)2)))相位频谱图2.5.1符号函数信号2.6 单位阶跃信号时域波形图、频域图单位阶跃函数信号时域波形图、频域图如下图2.6.1:-3-2-10123-6-4-20246单位阶跃函数的时域w单位阶跃信号时域波形图、频域图2.6.1单位阶跃函数信号2.7 单位冲激信号时域波形图、频域图单位冲激函数信号时域波形图、频域图如下图2.7.1:-1-0.8-0.6-0.4-0.200.20.40.60.81020*********脉宽为0.01的矩形脉冲信号-30-20-1001020300.20.40.60.81w脉宽为0.01的矩形脉冲信号的幅度频谱图2.7.1单位冲激函数信号2.8 门函数信号时域波形图、频域图门函数信号时域波形图、频域图如下图2.8.1:-1-0.8-0.6-0.4-0.200.20.40.60.8100.20.40.60.81t时域波形-30-20-1001020300.20.40.60.81w幅度频谱图2.8.1门函数信号3用MATLAB实现信号的幅度调制设信号f (t) 的频谱为F( jw) ,现将f (t) 乘以载波信号cos (w0t) ,得到高频的已调信号y(t ) ,即:y(t ) = f (t) cos (w0t)从频域上看,已调制信号y(t ) 的频谱为原调制信号f (t) 的频谱搬移到0 ±w 处,幅度降为原F( jw) 的1/2,即上式即为调制定理,也是傅里叶变换性质中“频移特性”的一种特别情形。

相关文档
最新文档