2019年广东省初中学业水平考试数学试卷及答案

合集下载

2019年广东省中考数学试题(含答案,解析版)

2019年广东省中考数学试题(含答案,解析版)

2019年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105 C.221×103 D.0.221×106【答案】B【解析】a×10n形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念 7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式aa2 .【考点】二次根式9.已知x1、x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2 【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法. 【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN: S△ADM =1 : 4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF,∠AHN=∠GFN,△ANH≌△GNF(AAS),①正确;由①得AN=GN=1,∵NG⊥FG,NA不垂直于AF,∴FN不是∠AFG的角平分线,∴∠AFN≠∠HFG,②错误;由△AKH∽△MKF,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN,∴K为NH的中点,即FN=2NK,③正确;S△AFN =21AN·FG=1,S△ADM =21DM·AD=4,∴S△AFN : S△ADM =1 :4,④正确.【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质 13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的15.如图,某校教学楼AC与实验楼BD的水平间距CD=3顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2. 【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DB AD∵DB AD =2 ∴ECAE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=xk 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1) ∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37) (或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去)【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF是⊙O的切线;(3)如题24-2图,若点G是△ACD的内心,BC·BE=25,求BG的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D ∴ED=EC (2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32 ∵CO ⊥FA∴FO=OA=1 ∴m 32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6 ∵tan ∠CFO=FO CO =3∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC ∥BA∵BF=BO -FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在(b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在(B )当P 在线段AB 之间时,﹣7<m <1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在第 21 页 (共 21 页) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。

(完整版)2019年广东省初中学业水平考试(数学)试卷及答案

(完整版)2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A)A.2 B.-2 C.12D.±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B)A.2。

21×106 B.2。

21×105 C.221×103 D.0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C ) A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0a b<824的结果是(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b ,175∠=°,则∠2= .答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒ ,这个多边形的边数是 .答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y =+,则代数式489x y -+的值是 .答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .答案:()15153+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16—2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x x >3 ②4)1(2>+x 422>+x 22>x 1>x∴该不等式组的解集是x >318.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x 解 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆ 2==∴DBADEC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21 = 63答:同时抽到甲、乙两名学生的概率为13。

2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试数学说明: .全卷共 页,满分为 分,考试用时为 分钟..答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用 铅笔把对应该号码的标号涂黑..选择题每小题选出答案后,用 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效..考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 小题,每小题 分,共 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.. 的绝对值是(✌)✌. .  .12.±.某网店 年母亲节这天的营业额为 元,将数 用科学记数法表示为( )✌.  .  . . .如图,由 个相同正方体组合而成的几何体,它的左视图是(✌).下列计算正确的是( )✌.632b b b ÷= .339b b b ⋅= .2222a a a += .()363a a =.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( ).数据 、 、 、 、 的中位数是( )✌. . . ..实数♋、♌在数轴上的对应点的位置如图所示,下列式子成立的是( )✌.a b > .a b <.0a b +> .0ab< 24( )✌.  . .  ..已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) ✌.12x x ≠ .2112=0x x -.12=2x x + .12=2x x ⋅.如图,正方形✌的边长为 ,延长 至☜使☜,以☜为边在上方作正方形☜☞☝,延长☞☝交于 ,连接✌、✌☞,☟为✌的中点,连接☞☟分别与✌、✌交于点☠、 .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有( )✌. 个 . 个 . 个 . 个二、填空题(本大题 小题,每小题 分,共 分)请将下列各题的正确答案填写在答题卡相应的位置上..计算:1120193-⎛⎫+ ⎪⎝⎭ .答案:解析:本题考查了零次幂和负指数幂的运算.如图,已知a b ,175∠=°,则∠ = .答案:105︒解析:本题考查了平行线的性质,互为补角的计算.一个多边形的内角和是1080︒ ,这个多边形的边数是 .答案:解析:本题考查了多边形内角和的计算公式.已知23-+的值是 .x yx y=+,则代数式489答案: 解析:整体思想,考查了整式的运算.如图,某校教学楼✌与实验楼 的水平间距 153米,在实验楼顶部 点测得教学楼顶部✌点的仰角是 °,底部 点的俯角是 °,则教学楼✌的高度是 米(结果保留根号) .答案:()+15153解析:本题利用了特殊三角函数值解决实际问题.如题 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题 图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 个这样的图形(题 图)拼出来的图形的总长度是 (结果用含♋、♌代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题 小题,每小题 分,共 分).解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x⌧  ②4)1(2>+x 422>+x 22>x 1>x∴该不等式组的解集是⌧ .先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中x 解 原式)1()2)(2(21--+⋅--x x x x x x xx 2+ 当2=x原式222+2222+ 21+.如图,在ABC △中,点 是✌边上的一点.( )请用尺规作图法,在ABC △内,求作∠✌☜,使∠✌☜ ∠ , ☜交✌于☜;(不要求写作法,保留作图痕迹)( )在( )的条件下,若2AD DB =,求AEEC的值.解 ( )如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆2==∴DBADEC AE四、解答题(二) (本大题 小题,每小题 分,共 分).为了解某校九年级全体男生 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为✌、、 、 四个等级,绘制如下不完整的统计图表,如题 图表所示,根据图表信息解答下列问题:( )⌧ ,⍓ ,扇形图中表示 的圆心角的度数为 度; ( )甲、乙、丙是✌等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 ☎✆ 4x = ; 40y =  ☎✆解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21 =63答:同时抽到甲、乙两名学生的概率为13。

(完整版)2019广东省中考数学试卷及答案

(完整版)2019广东省中考数学试卷及答案

2019 年广东省初中学业水平考试数学说明:1.全卷共 4 页,满分为120 分,考试用时为100 分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案 能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案; 准使用铅笔和涂改液. 按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10 小题,每小题 3 分,共30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. -2 的绝对值是A .2B .-2 C.12D .±22. 某网店2019 年母亲节这天的营业额为221000 元,将数221000 用科学记数法表示为A .2.21 ×160B .2.21 ×150 C.221 ×130 D .0.221 ×1603. 如图,由 4 个相同正方体组合而成的几何体,它的左视图是4. 下列计算正确的是6 3 2 3 3 9 2 2 2 3 36A .b b bB .b b b C.a a 2a D . a a5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是221 212 1 16. 数据 3、3、5、8、 11 的中位数是A . 3B . 4C . 5D . 67.实数 a 、b 在数轴上的对应点的位置如图所示,下列式孑成立的是A . a bB . a bC. a b 0D.a 0b8. 化简 4 的结果是A . -4B . 4C . ± 4D . 29. 己知 x 、 x 是一元二次方程 x 2x 0 的两个实数根,下列结论错误..的是A . x xB . x 22 x =0C . x 1 x 2 =2D . x 1 x 2 =210. 如图,正方形 ABCD 的边长为 4,延长 CB 至 E 使 EB=2 ,以 EB 为边在上方作正方形 EFGB ,延长 FG交 DC 于 M ,连接 AM 、 AF , H 为 AD 的中点,连接 FH 分别与 AB 、AM 交于点 N 、K .则下列结论:① V ANH ≌VGNF ; ② AFNHFG ; ③FN2NK ; ④S V AFN : S VADM 1: 4 .其中正确的结论有A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡相应的位置上.11. 计算: 1201901 = .312.如图,己知 a Pb , 1 75 °,则∠2=.13. 一个多边形的内角和是1080 ,这个多边形的边数是.14. 己知x 2 y 3 ,则代数式 4 x 8y 9 的值是.15. 如图,某校教学楼AC 与实验楼BD 的水平间距CD= 15 3 米,在实验楼顶部 B 点测得教学楼顶部 A 点的仰角是30°,底部 C 点的俯角是45°,则教学楼AC 的高度是米(结果保留根号).16. 如题16-1 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2 图所示方法玩拼图游戏,两两相扣,相互间 留空隙,那么小明用9 个这样的图形(题16-1 图)拼出来的图形的总长度是(结果用含a、b 代数式表示).三、解答题(一)(本大题 3 小题,每小题 6 分,共18 分)17. 解 等式组:x 1 2 ①2 x 1 4 ②18. 先化简,再求值:x 1x 2 x 2x2 xx2 4,其中x= 2 .19. 如图,在VABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在VABC 内,求作∠ ADE ,使∠ ADE =∠B,DE 交AC 于E;( 要求写作法,保留作图痕迹)AD(2)在(1)的条件下,若 2 ,求DB AE的值.EC四、解答题(二)(本大题 3 小题,每小题7 分,共21 分)20. 为了解某校九年级全体男生1000 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D 四个等级,绘制如下 完整的统计图表,如题20 图表所示,根据图表信息解答下列问题:(1)x= ,y= ,扇形图中表示 C 的圆心角的度数为度;(2)甲、乙、丙是 A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21. 某校为了开展“阳光体育运动”,计划购买篮球、足球共60 个,己知每个篮球的价格为70 元,每个足球的价格为80 元.(1)若购买这两类球的总金额为4600 元,求篮球、足球各买了多少个?(2)若购买篮球的总金额 超过购买足球的总金额,求最多可购买多少个篮球?22. 在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,在格点上,以点 A 为圆心的?EF 与BC 相切于点 D ,分别交AB、AC 于点E、F.VABC 的三个顶点均(1)求VABC 三边的长;(2)求图中由线段EB 、BC、CF 及F?E 所围成的阴影部分的面积.五、解答题(三)(本大题 3 小题,每小题9 分,共27 分)k2 23. 如图,一次函数y=k1x+b 的图象与反比例函数y 4),点 B 的坐标为(4,n).的图象相交于A、B 两点,其中点 A 的坐标为(-1,x(1)根据图象,直接写出满足(2)求这两个函数的表达式;k1x bk2的x 的取值范围;x(3)点P 在线段AB 上,且S AOP : S B OP 1: 2 ,求点P 的坐标.24. 如题24-1 图,在VABC 中,AB =AC,⊙O 是VABC 的外接圆,过点 C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E,延长DC 至点F,使CF=AC,连接AF.(1)求证:ED =EC;(2)求证:AF 是⊙ O 的切线;(3)如题24-2 图,若点G 是VACD 的内心,BC BE 25,求BG 的长.25. 如题25-1 图,在平面直角坐标系中,抛物线y3x2 3 3 x7 3与x 轴交于点A、B(点 A 在点 B 8 4 8右侧),点 D 为抛物线的顶点.点 C 在y 轴的正半轴上,CD 交x 轴于点F,VCAD 绕点 C 顺时针旋转得到VCFE ,点A 恰好旋转到点F,连接BE.(1)求点A、B、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2 图,过顶点 D 作DD1 x 轴于点D1,点P 是抛物线上一动点,过点P 作PM x 轴,点M 为垂足,使得VPAM 与VDD1 A 相似( 含全等).①求出一个满足以上条件的点P 的横坐标;②直.接.回.答.这样的点P 共有几个?二、填空题11、答案:4解析:本题考查了零次幂和负指数幂的运算12、答案:105解析:本题考查了平行线的性质,互为补角的计算13、答案:8解析:本题考查了多边形内角和的计算公式14、答案:21解析:整体思想,考查了整式的运算15、答案:15 15 3解析:本题利用了特殊三角函数值解决实际问题16、答案: a 8b三解答题(一)17、解:①得:x 3①得:x 1① 等式组的解集为:x 318、解:原式=xx 12( x 2)( x 2)x( x 1)= x 2x当x 2 时原式= 2 222=222=1 22019 广东省中考数学答案一、选择题1 2 3 4 5 6 7 8 9 10A B A C C C D B D C19、解:(1)如图所示:①ADE 即为所求。

2019年广东省初中学业水平考试(数学)试卷及答案(可编辑修改word版)

2019年广东省初中学业水平考试(数学)试卷及答案(可编辑修改word版)

2019 年广东省初中学业水平考试数学说明:1.全卷共4 页,满分为120 分,考试用时为100 分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10 小题,每小题3 分,共30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2 的绝对值是(A)A.2 B.-2 C.12D.±22.某网店2019 年母亲节这天的营业额为221000 元,将数221000 用科学记数法表示为(B)A.2.21×106 B.2.21×105 C.221×103 D.0.221×1063.如图,由4 个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C)A.b6÷b3=b2B.b3⋅b3=b9C.a2+a2= 2a2D.(a3 )3 =a642 5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6. 数据 3、3、5、8、11 的中位数是(C )A .3B .4C .5D .67. 实数 a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A . a > bB . a < bC . a + b > 0D . a < 0b8. 化简 的结果是(B )A .-4B .4C .±4D .29. 已知 x 、 x 是一元二次方程 x 2 - 2x = 0 的两个实数根,下列结论错误的是(D ) 1 2A. x ≠ x B . x 2 - 2x =0 1 2 1 1C . x 1 + x 2 =2D . x 1 ⋅ x 2 =210. 如图,正方形 ABCD 的边长为 4,延长 CB 至 E 使 EB=2,以 EB 为边在上方作正方形 EFGB ,延长 FG 交 DC 于 M ,连接 AM 、AF ,H 为 AD 的中点,连接 FH 分别与 AB 、AM 交于点 N 、K .则下列结论: ①△ANH ≌△GNF; ②∠AFN = ∠HFG ; ③FN = 2NK ; ④S △AFN : S △ADM = 1: 4 .其中正确的结论有(C )3 A.1 个 B .2 个 C .3 个 D .4 个二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡相应的位置上. ⎛ 1 ⎫-111.计算: 20190 + ⎪ ⎝ 3 ⎭答案:4= .解析:本题考查了零次幂和负指数幂的运算12.如图,已知 a b ,∠1 = 75 °,则∠2= .答案:105︒解析:本题考查了平行线的性质,互为补角的计算13. 一个多边形的内角和是1080︒答案:8,这个多边形的边数是 .解析:本题考查了多边形内角和的计算公式14. 已知 x = 2 y + 3 ,则代数式4x - 8 y + 9 的值是 .答案:21解析:整体思想,考查了整式的运算15. 如图,某校教学楼 AC 与实验楼 BD 的水平间距 CD=15 米,在实验楼顶部 B 点测得教学楼顶部 A 点的仰角是 30°,底部 C 点的俯角是 45°,则教学楼 AC 的高度是 米(结果保留根号) .答案: (15 + 15 3 )⎩ 解析:本题利用了特殊三角函数值解决实际问题16. 如题 16-1 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题 16-2 图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 9 个这样的图形(题 16-1图)拼出来的图形的总长度是(结果用含 a 、b 代数式表示) .答案: a + 8b解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)⎧x -1 > 2 ① 17.解不等式组: ⎨2 ( x +1) > 4 ②解 ① x -1 > 2x >3② 2(x +1) > 42x + 2 > 42x > 2x > 12 ∴该不等式组的解集是 x >3⎛ x - 1⎫÷ x 2- x 18. 先化简,再求值: x - 2 x - 2 ⎪ x 2 - 4 , 其中 x = .⎝ ⎭解 原式= x -1 ⋅ (x + 2)(x - 2)x - 2= x + 2xx (x -1)当 x =原式== 2 + 2 22=1+19. 如图,在△ABC 中,点 D 是 AB 边上的一点.(1) 请用尺规作图法,在△ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交 AC 于 E ;(不要求写作法,保留作图痕迹)(2) 在(1)的条件下,若 AD = 2 ,求 AE 的值.DB EC22 + 222解(1)如图(2) ∠ADE =∠B, ∠A =∠A ∴∆ADE ∽∆ABC∴AE=AD= 2 EC DB四、解答题(二)(本大题3 小题,每小题7 分,共21 分)20.为了解某校九年级全体男生1000 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D 四个等级,绘制如下不完整的统计图表,如题20 图表所示,根据图表信息解答下列问题:(1)x= ,y= ,扇形图中表示C 的圆心角的度数为度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.⎩⎩ 解 (1) x = 4 ;y = 40 ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为 1答:同时抽到甲、乙两名学生的概率为 。

2019年广东省中考数学试卷-答案

2019年广东省中考数学试卷-答案

广东省2019年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2-到原点的距离是2,所以2-的绝对值是2,【考点】绝对值的概念。

2.【答案】B【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.221 000的小数点向左移动5位得到2.21,所以221 000用科学记数法表示为52.2110⨯,【考点】科学记数法的表示方法。

3.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:,【考点】简单几何体的三视图。

4.【答案】C【解析】根据同底数幂除法法则、同底数幂乘法法则、合并同类项法则、幂的乘方法则逐一进行计算即可得.A.633b b b ÷=,故A 选项错误;B.336b b b ⋅=,故B 选项错误;C.2222a a a +=,正确;D.()339a a =,故D 选项错误,【考点】同底数幂的乘除法,幂的乘方等运算。

5.【答案】C【解析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.A 、是轴对称图形,不是中心对称图形,故不符合题意;B 、是轴对称图形,不是中心对称图形,故不符合题意;C 、是轴对称图形,也是中心对称图形,故符合题意;D 、是轴对称图形,不是中心对称图形,故不符合题意,【考点】轴对称图形和中心对称图形。

6.【答案】C【解析】根据中位数的定义进行求解即可。

从小到大排序:3、3、5、8、11,位于最中间的数是5,所以这组数据的中位数是5,【考点】中位数。

7.【答案】D【解析】先由数轴上a ,b 两点的位置确定A ,b 的取值范围,再逐一验证即可求解.由数轴上a ,b 两点的位置可知21a --<<,01b <<, 所以a b <,故A 选项错误;a b >,故B 选项错误;0a b +<,故C 选项错误;0a b<,故D 选项正确, 【考点】实数与数轴,实数的大小比较、实数的运算等。

2019年广东省初中毕业生学业考试数学试题及答案(Word版)

2019年广东省初中毕业生学业考试数学试题及答案(Word版)

2019年广东省初中毕业生学业考试数学试题及答案(Word 版)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是 A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是3.据报道,2018年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为 A. 0.126×2018元 B. 1.26×2018元 C. 1.26×2018元 D. 12.6×2018元4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π). 三、解答题(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x 18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.①②(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(本大题3小题,每小题9分,共27分)23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度; (2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况). 19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,AD ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人). 21.(1)10%;(2)20180×(1+0.1)=20180(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x y 当0=y 时,23=x ,∴P(23,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,NA FD BA 又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在Rt △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=30cos AC=6÷3423=(3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5), x MN BF AC S S y BMF BCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H ,∵AF=6-x ,∠AHF=∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。

2019年广东省中考数学真题试题(含答案)

2019年广东省中考数学真题试题(含答案)

2019年广东省初中学业水平考试数学(含答案)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法213.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .<0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=2【答案】Db a24a a 2【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =AN ·FG=1,S △ADM =DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________. 【答案】4212131【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y )+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).315【答案】15+15【解析】AC=CD ·tan30°+CD ·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)3317.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值: ,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛22-x 1-x 4-x x-x 22÷2-x 1-x ()()()1-x x 2-x 2x +x 2x +2222+2222+2DB ADEC AE【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴= ∵=2 ∴=2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将EC AE DB AD DB AD EC AE测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种404∴P (甲乙)== 答:同时抽到甲、乙两名学生的概率为. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的623131三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=202262+1022262+1022284+54215221102102S 扇形EAF ==5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4) ()25241π xk 2xk2xk 2∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴,解得 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC1-k 2x 4-y =x 4-y =44-⎩⎨⎧+=+=b k 41-b -k 411⎩⎨⎧==3b1-k1∴ ∵MN=a+1,BN=4-a∴,解得a= ∴-a+3= ∴点P 坐标为(,) (或用两点之间的距离公式AP=,BP=,由解得a 1=,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.BNMN BP AP =21a -41a =+32373237()()224-3a -1a +++()()223-a 1-a -4++21BP AP =32【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴ ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识 25.如题25-1图,在平面直角坐标系中,抛物线y=与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;BCAB AB BE =837 -x 433x 832+(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y==得点D 坐标为(﹣3,) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:837 -x 433x 832+()32-3x 83+32过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴ 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA ∴FO=OA=1∴,解得m= (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=x+,再求出点C 的坐标)∴点C 坐标为(0,) ∴CD=CE==6∵tan∠CFO== ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BFCOCG FO DG =32m32m 13+=3333()223233++FOCO 3∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=(A )当P 在点A 右侧时,m >1 (a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时 ∴﹣,解得m 1=﹣11,m 2=1(舍去) 837-m 433m 832+3211DD AD AM PM =3241-m 837-m 433m 832=+35-11DD AD AM PM =3241-m 837-m 433m 832=+35-11AD DD AM PM =3241-m 837-m 433m 832=+432(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴﹣,解得m 1=,m 2=1(舍去) 综上所述,点P 的横坐标为,﹣11,,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想11DD AD AM PM =3241-m 837-m 433m 832=+337-35-337-。

2019年广东省中考数学试卷-答案

2019年广东省中考数学试卷-答案

【考点】简单几何体的三视图。 4.【答案】C 【解析】根据同底数幂除法法则、同底数幂乘法法则、合并同类项法则、幂的乘方法则逐一进行计算即可得. A. b6 b3 b3 ,故 A 选项错误; B. b3 b3 b6 ,故 B 选项错误; C. a2 a2 2a2 ,正确;
D. a3 3 a9 ,故 D 选项错误,
【考点】同底数幂的乘除法,幂的乘方等运算。 5.【答案】C
1 / 14
【解析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得. A、是轴对称图形,不是中心对称图形,故不符合题意; B、是轴对称图形,不是中心对称图形,故不符合题意; C、是轴对称图形,也是中心对称图形,故符合题意; D、是轴对称图形,不是中心对称图形,故不符合题意, 【考点】轴对称图形和中心对称图形。 6.【答案】C 【解析】根据中位数的定义进行求解即可。 从小到大排序:3、3、5、8、11, 位于最中间的数是 5, 所以这组数据的中位数是 5, 【考点】中位数。 7.【答案】D 【解析】先由数轴上 a,b 两点的位置确定 A,b 的取值范围,再逐一验证即可求解. 由数轴上 a,b 两点的位置可知 2<a<1, 0<b<1 , 所以 a<b ,故 A 选项错误; a > b ,故 B 选项错误; a b<0 ,故 C 选项错误; a <0 ,故 D 选项正确, b 【考点】实数与数轴,实数的大小比较、实数的运算等。 8.【答案】B 【解析】根据算术平方根的定义进行求解即可.由题意知, 42 16 4 . 【考点】算术平方根。 9.【答案】D 【解析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行 分析即可。 x1 、 x2 是一元二次方程 x2 2x 0 的两个实数根, 这里 a 1, b 2 , c 0 ,

2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试(数学)试卷及答案
.实数、在数轴上的对应点的位置如图所示,下列式子成立的是()
. a b . a b . a b 0 . a 0
b
.化简 42 的结果是()
. . . .
.已知 x1 、 x2 是一元二次方程 x2 2x 0 的两个实数根,下列结论错.误.的是()
、如图,在中,,,::,点从点出发沿方向向点运动,速度为,同时点从点出发沿方向向 点运动,速度为,当一个运动点到达终点时,另一个运动点也随之停止运动.
又∵以点A为圆心的圆与BC相切于点D
AD BC, CD BD AD 1 BC 2 5
2
SABC
12 2
10 2
10 20
、如图,在中,,,::,点从点出发沿方向向点运动,速度为,同时点从点出发沿方向向 点运动,速度为,当一个运动点到达终点时,另一个运动点也随之停止运动.
S阴
20
1 4
解() ∵ ∴弧弧∠∠ ∴∠∠ 又∵∠∠ ∴∠∠ ∴ () 证明:连接交于点 ∵ ∴为弧中点 ∴⊥ ∵∠∠+∠ 又∵∠∠∠∠ ∴∠∠ ∴∥
、如图,在中,,,::,点从点出发沿方向向点运动,速度为,同时点从点出发沿方向向 点运动,速度为,当一个运动点到达终点时,另一个运动点也随之停止运动.
∴∠∠° 即⊥ 又∵ A 在圆上, ∴为⊙ O 的切线 () 连接 由()知∥ ∴∠∠ ∵为△的内心 ∴平分∠ ∴∠∠ 又∵∠∠∠ ∴∠∠∠∠ ∴∠∠ ∴ ∵∠∠∠∠ ∴△∽△
x 4
,其中
x=
2.
、如图,在中,,,::,点从点出发沿方向向点运动,速度为,同时点从点出发沿方向向 点运动,速度为,当一个运动点到达终点时,另一个运动点也随之停止运动.
解原式 x 1 (x 2)( x 2) x 2 x(x 1)

2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试(数学)试卷及答案

2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是(A ) A .2B .-2C .12D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B ) A .×106B .×105C .221×103D .×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A )4.下列计算正确的是(C ) A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0ab<8(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y=+,则代数式489x y-+的值是.答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).答案:(15+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x x >3 ②4)1(2>+x 422>+x 22>x 1>x∴该不等式组的解集是x >318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中x 解 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆ 2==∴DBADEC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。

(完整版)2019广东省中考数学试卷及答案

(完整版)2019广东省中考数学试卷及答案

2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是 A .2B .-2C .12D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是 A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是 A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a b >B .a b <C .0a b +>D .0ab<8的结果是 A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFNADMSS=④.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .12.如图,已知a b ,175∠=°,则∠2= .13.一个多边形的内角和是1080︒ ,这个多边形的边数是 . 14.已知23x y =+ ,则代数式489x y -+ 的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x19.如图,在ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB ,求AEEC的值.四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC 的三个顶点均在格点上,以点A 为圆心的EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数y =k 1x +b 的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC 中,AB =AC ,⊙O 是ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是ACD 的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线2y x 与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD 绕点C 顺时针旋转得到CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点D 1,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM 与1DD A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019广东省中考数学答案一、选择题二、填空题 11、答案:4解析:本题考查了零次幂和负指数幂的运算 12、答案:︒105解析:本题考查了平行线的性质,互为补角的计算 13、答案:8解析:本题考查了多边形内角和的计算公式 14、答案:21解析:整体思想,考查了整式的运算 15、答案:31515+解析:本题利用了特殊三角函数值解决实际问题16、答案:b a 8+三 解答题(一)17、解: ①得:3>x ①得:1>x①不等式组的解集为:3>x18、解: 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x 时 原式=222+ =2222+ =21+19、解:(1)如图所示:①ADE 即为所求。

2019年广东省中考数学试题((含答案)

2019年广东省中考数学试题((含答案)

2019年广东省初中学业水平考试数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.-2的绝对值是A.2B.-2C. D. 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A.b 6÷b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A.3B.4C.5D.6 7.实教a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A.a>bB.|a|<|b|C.a+b>0D. <0 8.化简 的结果是 A.-4 B.4 C. D.2 9.已知x 1、x 2是一元二次方程了x 2-2x=0的两个实数根,下列结论错.误.的是 A.x 1≠x 2 B.x 12-2x 1=0 C.x 1+x 2=2 D.x 1·x 2=2 10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填2±21主视方向 A B C DA B C Dba题7图4±题7图131-⎪⎭⎫ ⎝⎛24题15图 写在答题卡相应的位置上.11.计算20190+ = .12.如图,已知a//b ,∠l=75°,则∠2 = .13.一个多边形的内角和是1080°,这个多边形的边数是 . 14.已知x=2y+3,则代数式4x-8y+9的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD= 米,在实验楼 顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则 教学楼AC 的高度是 米(结果保留根号)。

2019年广东省初中学业水平考试数学试卷及答案

2019年广东省初中学业水平考试数学试卷及答案

2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A )A .2B .-2C .12 D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B )A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A )4.下列计算正确的是(C )A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C )A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0a b< 8.化简24的结果是(B )A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠ B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y=+,则代数式489x y-+的值是.答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).答案:(15153+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①② 解 ①21>-xx >3②4)1(2>+x422>+x22>x1>x∴该不等式组的解集是x >318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中=2x . 解 原式=)1()2)(2(21--+⋅--x x x x x x =x x 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆2==∴DBAD EC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。

2019广东省中考数学试题(含答案)

2019广东省中考数学试题(含答案)

2019年广东省初中学业水平考试数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.-2的绝对值是A.2B.-2C. D. 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A.b 6÷b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A.3B.4C.5D.6 7.实教a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A.a>bB.|a|<|b|C.a+b>0D. <0 8.化简 的结果是 A.-4 B.4 C. D.2 9.已知x 1、x 2是一元二次方程了x 2-2x=0的两个实数根,下列结论错.误.的是 A.x 1≠x 2 B.x 12-2x 1=0 C.x 1+x 2=2 D.x 1·x 2=2 10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填2±21主视方向 A B C DA B C Dba题7图4±题7图131-⎪⎭⎫ ⎝⎛24题15图 写在答题卡相应的位置上.11.计算20190+ = .12.如图,已知a//b ,∠l=75°,则∠2 = .13.一个多边形的内角和是1080°,这个多边形的边数是 . 14.已知x=2y+3,则代数式4x-8y+9的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD= 米,在实验楼 顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则 教学楼AC 的高度是 米(结果保留根号)。

2019年广东省初中学业水平考试(数学)试卷与答案

2019年广东省初中学业水平考试(数学)试卷与答案

2021年XX省初中学业水平考试数学说明:1.全卷共4页,总分值为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的XX号、XX、考场号、座位号.用2B铅笔把对应该的标号涂黑.3.选择题每题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试完毕时,将试卷和答题卡一并交回.一、选择题〔本大题10小题,每题3分,共30分〕在每题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是〔A〕A.2B.-2C.12D.±22.某网店2021年母亲节这天的营业额为221000元,将数221000用科学记数法表示为〔B〕6B.2.21×105C.221×103D.0.221×106A.2.21×103.如图,由4个一样正方体组合而成的几何体,它的左视图是〔A〕4.以下计算正确的选项是〔C〕A.632bbbB.339bbbC.2222aaaD.336aa5.以下四个银行标志中,既是中心对称图形,又是轴对称图形的是〔C〕6.数据3、3、5、8、11的中位数是〔C〕A.3B.4C.5D.67.实数a、b在数轴上的对应点的位置如下图,以下式子成立的是〔D〕1A.abB.aba C.ab0D.0b28.化简4的结果是〔B〕A.-4B.4C.±4D.29.x1、x2是一元二次方程2xx的两个实数根,以下结论错误..的是〔D〕20A.x1x2B.2x12x1=0C.x1x2=2D.x1x2=210.如图,正方形A BCD的边长为4,延长C B至E使EB=2,以EB为边在上方作正方形E FGB,延长F G交DC于M,连接A M、AF,H为AD的中点,连接F H分别与A B、AM交于点N、K.那么以下结论:①△ANH≌△GNF;△△.其中正确的结论有〔C〕②;③FN2NK;S:S1:4AFNHFG④AFNADMA.1个B.2个C.3个D.4个二、填空题〔本大题6小题,每题4分,共24分〕请将以下各题的正确答案填写在答题卡相应的位置上.0120213111.计算:=.答案:4解析:此题考察了零次幂和负指数幂的运算12.如图,ab,175°,那么∠2=.答案:105解析:此题考察了平行线的性质,互为补角的计算213.一个多边形的内角和是1080,这个多边形的边数是.答案:8解析:此题考察了多边形内角和的计算公式14.x2y3,那么代数式4x8y9的值是.答案:21解析:整体思想,考察了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,那么教学楼AC的高度是米〔结果保存根号〕.答案:15153解析:此题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如下图,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形〔题16-1图〕拼出来的图形的总长度是〔结果用含a、b代数式表示〕.答案:a8b解析:此题考察了轴对称图形的性质,根据题目找规律三、解答题〔一〕〔本大题3小题,每题6分,共18分〕317.解不等式组: x 12 2x14① ②解①x12x>3 ②2(x1)4 2x 24 2x2 x1∴该不等式组的解集是x>318.先化简,再求值:2x1xx2x2x2x4,其中x=2.解原式= x x 1 2 (x 2)( x(x x 1)2)=x 2 x当x222原式=2=2 2 22 =1219.如图,在△ABC 中,点D 是AB 边上的一点.〔1〕请用尺规作图法,在△ABC 内,求作∠ADE ,使∠ADE=∠B ,DE 交AC 于E ;〔不要求写作法,保存作图痕 迹〕AD〔2〕在〔1〕的条件下,假设2DB,求A E EC的值. 4解〔1〕如图〔2〕ADEB,AAADE ∽ABC AE ECA D DB2四、解答题〔二〕〔本大题3小题,每题7分,共21分〕20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了局部男生进展测试,并将测试成绩分为A 、B 、C 、 D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答以下问题:〔1〕x=,y=,扇形图中表示C 的圆心角的度数为度; 〔2〕甲、乙、丙是A 等级中的三画树状图法,求同时抽到甲、乙两名解(1)x4;y40;36 (2)解:由题意可知树状图为 5由树状图可知,同时抽到甲、乙两名学生的概率为21 = 63答:同时抽到甲、乙两名学生的概率为13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是(A ) A .2B .-2C .12D .±2 2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B ) A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A )4.下列计算正确的是(C )A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0ab< 8.化简24的结果是(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△;AFN HFG ∠=∠②;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b ,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23-+的值是.x y=+,则代数式489x y答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).答案:()+15153解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是(结果用含a、b代数式表示).答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②解①21>-xx >3②4)1(2>+x422>+x22>x 1>x∴该不等式组的解集是x >318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭,其中=2x 解原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x 原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹) (2)在(1)的条件下,若2AD DB =,求AEEC的值.解(1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆ 2==∴DBADEC AE四、解答题(二)(本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =,y =,扇形图中表示C 的圆心角的度数为度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解(1)4x =;40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。

21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?解(1)方法一:解:设计划购买篮球x 个,足球y 个由题意得,6070804600x y x y +=⎧⎨+=⎩解得:2040x y =⎧⎨=⎩答:计划购买篮球20个,足球40个.方法二:解:设计划购买篮球x 个,则购买足球(60)x -个 由题意得,7080(60)4600x x +-= 解得:20x = 则60602040x -=-=答:计划购买篮球20个,足球40个.(2)解:设计划购买篮球a 个,则购买足球(60)a -个 则有7080(60),(060)a a a ≤-≤≤ 解得:032a ≤≤答:最多可购买32个篮球。

22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC △的三个顶点均在格点上,以点A 为圆心的EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC △三边的长;(2)求图中由线段EB 、BC 、CF 及FE 所围成的阴影部分的面积.解(1)由图可知102406222==+=AB102406222==+=AC 54808422==+=BC(2)由(1)可知102=AB ,102=AC ,54=BC222BC AC AB =+∴︒=∠∴90BAC又D BC A 相切于点为圆心的圆与以点∵ 5221==∴=∴⊥∴BC AD BD CD BC AD ,2010210221=⨯⨯=∴∆ABC S2)52(4120⋅⋅-=∴π阴Sπ⨯⨯-=204120π520-=五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数y =k 1x +b 的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.解(1)由已知得:1-<x 或40<<x(2) xk y 2=经点)4,1(-A 24k -=∴,解得42-=k xy 4-=∴当4=x 时,得144-=-=y)1,4(-∴B将)1,4(),4,1(--B A 代入b x k y +=1得⎩⎨⎧+=-+-=b k bk 11414 解得⎩⎨⎧=-=311b k3+-=∴x y ∴反比例函数为xy 4-= 一次函数为3+-=x y(3)∵,∴;∵A (-1,4),B (4,-1),∴=;∴设点P(t,-t+3)∵P在线段AB上,∴∴解得:(舍去);∴P(,);∴当时,P(,)24.如题24-1图,在ABC 中,AB =AC ,⊙O 是ABC △的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是ACD 的内心,25BC BE ⋅=,求BG 的长.解(1)∵AB=AC∴弧AB=弧AC,∠B=∠ACB∴∠D=∠B又∵∠BCD=∠ACB∴∠D=∠BCD∴ED=EC(2)证明:连接AO,交BC 于点H∵AB=AC∴A 为弧BC 中点∴OA ⊥BC∵∠ACD=∠F +∠FAC又∵∠ACB=∠BCD,∠F=∠CAF∴∠CAF=∠ACB∴AF ∥BC∴∠FAO=∠CHO=90°即AO ⊥AF又∵A 在圆上,∴AF 为⊙O 的切线(3)连接AG由(2)知AF ∥BC∴∠FAG=∠AGB∵G 为△ACD 的内心∴AG 平分∠DAC∴∠EAG=∠CAG又∵∠BAE=∠BCD=∠CAF∴∠FAC+∠CAG=∠BAE+∠EAG∴∠BAG=∠BGA∴AB=BG∵∠B=∠B,∠BAE=∠ACB∴△AEB ∽△CAB ∴BC ABAB EB =即BC BE AB ⋅=2∵EB ·BC=25,AB=BG∴BG=AB=525.如题25-1图,在平面直角坐标系中,抛物线233373y x x=+-与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点.点C在y轴的正半轴上,CD交x轴于点F,CAD△绕点C顺时针旋转得到CFE△,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如题25-2图,过顶点D作1DD x⊥轴于点D1,点P是抛物线上一动点,过点P作PM x⊥轴,点M为垂足,使得PAM△与1DD A△相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答....这样的点P共有几个?解(1)依题意837433832-+=xxy令0=y得:837433832=-+xx........①解得:71-=x,12=x∴)0,7(-B,)0,1(A把3832433-=⨯-=x代入①得:32-=y ∴)32,3(--D(2)由(1)得:B (-7,0) A (1,0),D(-3,-32)由题意可知,△CAD ≌△CFE∴CF=AC又CO ⊥AF∴0A=0F∴F(-1,0)∴AF=2∴设DF 解析式为y=kx +b⎩⎨⎧+-=-+-=b k bk 3320所以:k=3b=3∴y=3x +3令x=0 得 y=3∴C(0,3)∴AC=22)3(1+=2∴AC=AF=CF∴△ACF 为等边三角形∴∠CAF=60°∵△CAD ≌△CFE∴∠ACF=∠FCE=60°,CD=CE又∠ECA+∠CAF=180°∴CE ∥AB又BF=6 CD=22)323(3++=6∴BF=CE∴四边形BFCE 为平行四边形(3)①当P 在下方时,∵1190DAD PAM A DD ∠≠∠︒=∠且当A DD 1∆∽AMP ∆时; ∴AD MA DD PM11=由(1)可知:A (1,0) D (-3,-23))0,3(1-D 设)83743383,(2-+m m m P ;则M (m,0) ∴83743383)83743383(022+--=-+-=m m m m PM32)32(01=--=DDm MA A D -==--=1;4)3(11 根据AD MA DD PM11=得:3214837433832mm m -=+--整理得:05232=-+m m∴(3m+5)(m-1)=0 ∴1,35=-=m m (舍)∴P 的横坐标为35②P 共有3个.。

相关文档
最新文档