初二数学三角形与全等三角形轴对称知识点归纳
初二数学上册:轴对称知识框架+考点笔记整理
初二数学上册:轴对称知识框架+考点笔记整理一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点关于轴对称的点的坐标为.②点关于轴对称的点的坐标为.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
人教版初二上册数学知识点归纳
第十一章 三角形 第十二章 全等三角形考点一、三角形 (3~8分)1、主要线段角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段。
中线:在三角形中,连接一个顶点和它对边的中点的线段。
高线:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段。
2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
考点二、全等三角形 (3~8分)1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”)4、全等变换(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形 (8~10分)1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
初二数学三角形与全等三角形、轴对称知识点归纳
一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边 BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度. 证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
初二数学几何概念知识点总结
初二数学几何概念知识点总结(要求理解、会讲、会用,主要用于填空和选择题)一、基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数。
二、常识:1、三角形中,第三边长的判断: 另两边之差<第三边<另两边之和2、三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外。
注意:三角形的角平分线、中线、高线都是线段。
3、三角形能否成立的条件是:最长边<另两边之和。
4、直角三角形能否成立的条件是:最长边的平方等于另两边的平方和。
5、分别含30°、45°、60°的直角三角形是特殊的直角三角形。
6、三角形中,最多有一个内角是钝角,但最少有两个外角是钝角。
7、全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边。
8、等边三角形是特殊的等腰三角形。
9、几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明。
10、符合“AAA”“SSA”条件的三角形不能判定全等。
11、几何习题经常用四种方法进行分析: (1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法 12、几何基本作图分为: (1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线; (4)过已知点作已知直线的垂线;(5)作线段中垂线;(6)过已知点作已知直线的平行线 13、会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图。
14、作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图。
15、几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图1、二次根式:一般地,式子)0(≥a a 叫做二次根式。
八年级上册数学第1章 全等三角形第2章 轴对称图形知识梳理
第1章全等三角形1、全等图形:能完全重合的图形叫做全等图形.◆全等变换:通过平移、旋转、翻折这几种方式图形的形状、大小不发生改变,换而言之,就是三种变换前后的图形是全等的,所以我们也把这三种变换叫做全等变换.2、全等三角形:两个能完全重合的三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。
3、全等三角形的性质◆全等三角形的对应边相等,对应角相等.(注意写法:字母一一对应)理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角.延伸:①全等三角形的周长相等、面积相等.②全等三角形的对应边上的对应中线、角平分线、高线分别相等.4、全等三角形的判定方法理解:三角形全等的判定条件中必须是三个元素,并且一定有一组对应边相等...........5、全等三角形的判定的基本思路◆已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).◆已知一边一角:若边为角的对边:找任一角(AAS).若边就是角的一条边:①找这条边上的另一角(ASA);②找这条边上的对角(AAS);②找该角的另一边(SAS).◆已知两角:①找两角的夹边(ASA);②找任意一边(AAS).6、全等三角形的判定的基本模型◆平移型:平行线,重叠线段◆翻折型:公共边,公共角,对顶角◆旋转型:对顶角,重叠角和重叠线段◆一线三等角型:◆手拉手型:◆半角全等型:7、全等三角形的判定常用辅助线◆直接连线构造全等三角形:◆倍长中线构造全等三角形:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线”的方法添加辅助线.所谓倍长中线,就是将三角形的中线延长一倍,以便构造全等三角形,从而运用全等三角形的有关知识来解决问题的方法.◆截长补短构造全等三角形:(1)“截长法”,即在长线段上取一段,使之等于其中一条短线段,然后证明剩下的线段等于另一条短线段.(2)“补短法”,即延长短线段,使延长部分等于另一条短线段,再证明延长后的线段等于长线段;或延长短线段,使延长后的线段等于长线段,再证明延长部分等于另一条短线段.8、尺规作图①用尺规作角平分线②过直线外一点作已知直线的垂线③过直线上一点作已知直线的垂线第2章轴对称图形1、轴对称:把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴.◆轴对称的性质:①成轴对称的两个图形全等;②成轴对称的两个图形中,对应点的连线被对称轴垂直平分.拓展:成轴对称的两个图形的任何对应部分也成轴对称.2、轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.◆轴对称图形与轴对称的区别与联系:3、线段的垂直平分线的概念:垂直并且平分......一条线段的直线,叫做这条直线的垂直平分线.◆线段的垂直平分线必须满足两个条件:①经过线段的中点;②垂直于这条线段.注意:线段的垂直平分线是一条直线,而不是一条线段,且只有一条.●4、线段:线段是轴对称图形,有2条对称轴,分别是线段所在直线和线段的垂直平分线.◆线段的垂直平分线性质定理:线段的垂直平分线上的点到线段两端的距离相等.拓展:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.◆线段的垂直平分线判定定理:到线段两端距离相等的点在线段的垂直平分线上.5、角:角是轴对称图形,有1条对称轴,角平分线所在的直线.....是它的对称轴.◆角平分线性质定理:角平分线上的点到角两边的距离相等.拓展:三角形三个内角的平分线交于一点,这一点到三角形三条边的距离相等.◆角平分线判定定理:角的内部到角两边距离相等的点在角的平分线上.6、等腰三角形:等腰三角形是轴对称图形,顶角平分线(也可以说是底边上的中线或底边上的高)所在的直线是它的对称轴.◆等腰三角形性质定理:①等腰三角形的两个底角相等(简称“等边对等角”);②等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合(简称“三线合一”).◆等腰三角形判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).◆直角三角形性质定理:直角三角形斜边上的中线等于斜边的一半.注意:该定理需满足两个条件:1.直角三角形;2.斜边上的中线.7、等边三角形:三边相等的三角形叫做等边三角形或正三角形.8、等边三角形:等边三角形是轴对称图形,角平分线(也可以说是三边上的中线或三边上的高)所在的直线是它的对称轴◆等边三角形性质定理:等边三角形的每个内角都等于60°.拓展:等边三角形每条边都能运用三线合一这性质.◆等边三角形判定定理:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.尺规作图:●●1、画已知图形的对称图形(“三步法”):一找——找已知图形的关键点;二画——根据对称点的位置关系画出各关键点的对称点;三连——按照已知图形的形状连接各对称点,得到所要求作的图形.●●2、用尺规作线段的垂直平分线●●3、已知底边及底边上的高作等腰三角形。
8年级数学知识点归纳总结
8年级数学知识点归纳总结一、全等三角形能够完全重合的两个三角形叫做全等三角形。
全等三角形的性质。
全等三角形对应边相等,对应角相等。
三角形全等的判定。
SAS,ASA,AAS,SSS,HL(直角三角形中)。
角平分线的性质定理。
角的平分线垂直于角的两边。
判定定理。
一个角是另一个角的两倍,那么这两个角互为对顶角。
余角、补角定理。
同角或等角的余角、补角相等。
等式的性质。
等式两边同时加、减、乘、除(除数不为0)结果仍得等式。
直角三角形全等的特殊条件:HL。
直角三角形被斜边上的高分所截得的两个直角三角形和以斜边为公共边的两个直角三角形全等。
证明方法:S-S,A-A,A-S,H-L,SAS,ASA,AAS,SSS,HL。
二、轴对称轴对称图形:一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是它的对称轴。
轴对称:两个图形沿一条直线折叠后,这两个图形能够互相重合,那么这两个图形成轴对称,这条直线是它们的对称轴。
画对称轴的方法:用尺子按轴对称的方向画。
轴对称的性质:轴对称的两个图形是全等形;对称轴是对应点连线的垂直平分线;对应线段相等,对应角相等。
画法:画出一个图形的另一半,使这两个图形完全重合。
从而得到轴对称图形的画法。
要注意做好的是虚线要顺畅地相连接,一定要准确找出相等的线段与角。
旋转$180$度后对应的线段与角相等是这类问题的特点注意利用。
在平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于$x$轴对称的点,横坐标相同,纵坐标互为相反数;关于$y$轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点横纵坐标均互为相反数。
补充:等腰三角形的性质:等腰三角形的两个底角相等(简称:等边对等角)多边形的内角和定理:$(n-2)180=nA$ 多边形的外角和定理:任意多边形的外角和等于$360^{\circ}$平行四边形、矩形、菱形、正方形的性质:平行四边形:矩形:正方形:四个角都是直角;对角线相等;对角线互相平分;菱形:四个角都是直角;对角线互相垂直;对角线互相平分;四边相等特殊四边形的性质和判定定理:性质定理:平行四边形的对边相等且平行;矩形四个角都是直角,正方形的四个角都是直角且四条边相等;菱形的四条边都相等;正方形的四条边都相等且四个角都是直角(注:正方形是特殊的矩形也是特殊的菱形)。
初二上册数学知识点归纳
初二上册数学知识点归纳初二上册数学知识点归纳初二上册数学知识点归纳1一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式顺序和对应关系从已知推导出要证明的问题. 在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
初二上册数学知识点归纳2 一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳
第十一章《全等三角形》知识要点归纳一、知识网络二、基础知识梳理 1、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。
2、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。
(2)两边和它们的夹角对应相等的两个三角形全等。
(3)两角和它们的夹边对应相等的两个三角形全等。
⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理A B C D E F 中和在DEF ABC ∆∆⎪⎩⎪⎨⎧===DF AC EF BC DEAB DEF(SSS) ABC ∆∆∴≌ A B C D EF中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB DEF(SAS) ABC ∆∆∴≌ AB CDE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A(4)两角和其中一角的对边对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
注意:①全等三角形问题中,找准对应点,对应边,对应角。
(突出对应) ②题中已知平移、翻折、旋转相当已知全等;③判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
④要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
⑤要善于灵活选择适当的方法判定两个三角形全等。
其中:一般三角形有四 种判定方法 。
直角三角形有五 种判定方法。
3、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上DEF(ASA)ABC ∆∆∴≌ A B C DE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A DEF(AAS)ABC ∆∆∴≌ A C BEFD中和在DEF Rt ABC Rt ∆∆⎩⎨⎧==DF AC DE AB )HL (DEF Rt ABC Rt ∆∆∴ ≌ ·ADP COB角平分线的性质)平分PD(PC OAPD OB PC AOB OP =∴⊥⊥∠ ·ADP CBAOB∠∠=∠∴=⊥⊥平分或:角平分线的判定)OP BOP(AOP PD PC OA PD OB PC注:①性质与判定都是由三个条件推出一个结论,要正确应用; ②会用尺规做一个角的平分线,依据为“边边边”。
新人教版八年级数学上册知识点总结归纳
只用一种正多边形:3、4、6/。 镶嵌拼成 360 度的角 只用一种非正多边形(全等):3、4。
知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
(1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个 n 边形有 n 个内角。 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图 1).本章所讲的多边 形都是指凸多边形.
凸多边形
凹多边形
图1
(2)多边形通常还以边数命名,多边形有 n 条边就叫做 n 边形.三角形、四边形都属于多边形,
其中三角形是边数最少的多边形.
知识点二:正多边形
各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生
活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示
三角形有下面三个特性:
(1)三角形有三条线段
(2)三条线段不在同一直线上 三角形是封闭图形
(3)首尾顺次相接
三角形用符号“ ”表示,顶点是 A、B、C 的三角形记作“ ABC”,读作“三角形 ABC”。
条对角线。
1.公式: 边形的内角和为
.
2.公式的证明:
证法 1:在 边形内任取一点,并把这点与各个顶点连接起来,共构成 个三角形,这 个
三角形的内角和为
,再减去一个周角,即得到 边形的内角和为
.
初二知识点总结归纳
初二知识点总结归纳一、数学。
1. 三角形。
- 三角形的内角和为180°。
三角形的外角等于与它不相邻的两个内角之和。
- 三角形三边关系:两边之和大于第三边,两边之差小于第三边。
- 等腰三角形:两腰相等,两底角相等;三线合一(底边上的高、中线、顶角平分线重合)。
- 等边三角形:三边相等,三个内角都是60°。
2. 全等三角形。
- 全等三角形的判定方法:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(直角、斜边、直角边,适用于直角三角形)。
- 全等三角形的性质:对应边相等,对应角相等。
3. 轴对称。
- 轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
- 轴对称的性质:对称轴垂直平分对应点的连线;对应线段相等,对应角相等。
- 线段垂直平分线:线段垂直平分线上的点到线段两端的距离相等;到线段两端距离相等的点在这条线段的垂直平分线上。
4. 整式的乘除与因式分解。
- 幂的运算。
- 同底数幂相乘:a^m · a^n=a^m + n- 同底数幂相除:a^m÷ a^n = a^m - n(a≠0)- 幂的乘方:(a^m)^n=a^mn- 积的乘方:(ab)^n=a^nb^n- 整式乘法。
- 单项式乘以单项式:系数相乘,同底数幂相乘。
- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。
- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
- 整式除法。
- 单项式除以单项式:系数相除,同底数幂相除。
- 多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加。
- 因式分解。
- 定义:把一个多项式化为几个整式的积的形式。
- 方法:提公因式法(公因式的确定:系数取最大公约数,相同字母取最低次幂);公式法(平方差公式a^2 - b^2=(a + b)(a - b),完全平方公式a^2±2ab + b^2=(a± b)^2)。
八年级数学上下册知识点归纳
八年级数学上下册知识点归纳一、八年级上册知识点(一)三角形1.三角形的性质-三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
-三角形内角和定理:三角形三个内角的和等于180°。
-三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
2.全等三角形-全等三角形的性质:全等三角形的对应边相等,对应角相等。
-全等三角形的判定:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(斜边、直角边)。
(二)轴对称1.轴对称图形的概念-如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称的性质-关于某条直线对称的两个图形是全等形。
-如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
-两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3.线段的垂直平分线-性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
-判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(三)整式的乘法与因式分解1.整式的乘法-同底数幂的乘法:a^m×a^n = a^(m + n)(m、n 都是正整数)。
-幂的乘方:(a^m)^n = a^(mn)(m、n 都是正整数)。
-积的乘方:(ab)^n = a^n×b^n(n 是正整数)。
-单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
-单项式乘以多项式:m(a + b + c) = ma + mb + mc。
-多项式乘以多项式:(a + b)(m + n) = am + an + bm + bn。
2.乘法公式-平方差公式:(a + b)(a - b) = a^2 - b^2。
-完全平方公式:(a ± b)^2 = a^2 ± 2ab + b^2。
初二数学知识点归纳(全)
初二数学知识点归纳(全)初二数学知识点归纳如下:一、三角形1. 三角形的定义:由三条线段首尾顺次相接所组成的图形。
2. 三角形的分类:按边长关系:等边三角形、等腰三角形、不等边三角形。
按角关系:锐角三角形、直角三角形、钝角三角形。
3. 三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
4. 三角形的内角和:180度。
5. 三角形的内接圆与外接圆:内接圆:圆心到三角形各顶点的距离相等。
外接圆:圆心到三角形各边的距离相等。
6. 正弦定理:在任意三角形中,任意一边的边长与其对应的角的正弦值之比是一个常数,即a/sinA = b/sinB = c/sinC。
7. 余弦定理:在任意三角形中,任意一边的平方等于其他两边的平方和减去这两边与夹角余弦的乘积的两倍,即c^2 = a^2 + b^2 - 2ab*cosC。
二、全等三角形1. 全等三角形的定义:两个三角形在形状和大小方面完全相同,即它们的对应边长相等,对应角度相等。
2. 全等三角形的判定方法:SAS(边角边):两边的长度分别相等,并且这两边夹的角也分别相等。
ASA(角边角):两角分别相等,并且其中一个角的对边也分别相等。
SSS(边边边):三边的长度分别相等。
HL(高-腰-腰):直角三角形的斜边和一条直角边分别相等。
三、轴对称与中心对称1. 轴对称:存在一条直线,图形关于这条直线对称。
2. 中心对称:存在一个点C,图形关于点C对称。
3. 轴对称的性质:如果两个图形关于某条直线对称,那么这条直线就是它们的对称轴。
对称轴上的点到两个对称图形的距离相等。
4. 中心对称的性质:如果两个图形关于某一点对称,那么这个点就是它们的对称中心。
对称中心到两个对称图形的距离相等。
四、四边形1. 四边形的定义:由四条线段首尾顺次相接所组成的图形。
2. 四边形的分类:按对角线关系:平行四边形、矩形、菱形、正方形。
按边长关系:梯形、等腰梯形。
3. 平行四边形的性质:对边平行且相等。
全等三角形和轴对称知识点归纳
一.知识结构图
二.常见作图和画图
1. 作一个角等于已知角
2. 作已知角的角平分线→点到角两边的垂直距离相等
3. 作已知线段垂直平分线→点到线段两端点的距离相等
4.画已知点的对称点→最短路线(距离、周长等)
三.证线段垂直平分线的方法
1.根据定义分别证垂直和平分
2.等腰三角形三线合一
3.根据线段垂直平分线上的点的判定,证有两个点在线段的垂直平分线上
四.证角相等常用到的方法五.证线段相等常用到的方法
1.公共角 1.公共边
2.相等的角加上或减去相等的角 2. 相等的线段加上或减去相等的线段
3.对顶角相等 3.线段的中点分得的线段相等
4.角平分线分得的两个角相等 4..角平分线上的点得到线段相等
5.直角都相等 5. 线段垂直平分线上的点得到线段相等
6.平行得同位角、内错角相等 6. .等腰三角形两腰相等(等角对等边)
7.等角的余角相等、.等角的补角相等7. 等边三角形.三边相等
8.等腰三角形的两底角相等(等边对等角) 8. 全等三角形对应边相等
9. 等边三角形.三个角相等
10. .全等三角形对应角相等
11.两个三角形有两个角对应相等,得到第三个角对应相等。
初二数学(上)知识点总结
初二数学(上)知识点总结三角形一 基本概念:B 级概念:(要求理解、会讲、会用,主要用于填空和选择题) 三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6.分别含30°、45°、60°的直角三角形是特殊的直角三角形. 7.如图,双垂图形中,有两个重要的性质,即:(1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角. 9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形. 11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等. 13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法. 14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线. 15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图. 17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. 18. 多边形①多边形的内角和 (n-2)180º②多边形的外角和 360º ③多边形的对角线条数2)3-n (n※19.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角;④ 作辅助线必须符合几何基本作图.A BC ED AB C D 12延长BC到D,使CD=BC,连结AD,直角几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m±n )2的多项式叫完全平方式;对于二次三项式x 2+px+q ,有“ x 2+px+q 是完全平方式 (2p )2=q ”. 第十五章 分式(一)知识体系(二)需要注意的问题 分式的基本概念和基本性质1. 区分整式和分式,分式是除式中含有字母的有理式,它表示分子除以分母的商,因此它既是有理式,又是与整式联系的代数式。
苏科版八年级数学上册知识点总结归纳
苏科版八年级数学上册知识点总结归纳苏教版八年级数学上册(义务教育教科书)知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
初二数学知识点归纳
单元知识点预计课时备注初二上册第全十等一三章角形一、全等三角形1、全等三角形的定义2、全等三角形的性质3、全等三角形的判定4、证明两个三角形全等的基本思路二、角的平分线1、角的平分线的性质2、角的平分线的判定及推论轴第十二对章称一、轴对称图形1、轴对称图形和轴对称的定义2、轴对称图形和轴对称的区别与联系3、轴对称的性质二、线段的垂直平分线定义、性质、判定三、用坐标表示轴对称四、等腰三角形1、性质2、判定五、等边三角形1、等边三角形性质、判定2、直角三角形的性质第实十三章数1、实数的概念及分类2、实数的倒数、相反数和绝对值3、平方根、算数平方根和立方根4、科学记数法和近似数5、实数大小的比较6、实数的运算一第次十一、函数1、变量、常量2、函数的概念3、函数中自变量取值范围的求法4、函数图象定义5、用描点法画函数的图象的一般步骤四函章数6、函数的三种表示形式二、正比例函数1、正比例函数的概念2、正比例函数的图像与性质三、求函数解析式的方法四、一次函数与二元一次方程组整式第的十乘五除章与因式分解1、同底数幂的乘法2、幂的乘方与积的乘方3、同底数幂的除法4、整式的乘法单项式乘以单项式单项式乘以多项式5、乘法公式平方差公式完全平方公式6、整式的除法单项式除以单项式多项式除以单项式7、因式分解定义常用方法初二下册第分十六章式1、分式的定义2、分式的基本性质3、分式的通分和约分4、分式的运算5、分式方程定义、解题步骤6、科学记数法第反十比七例章函数1、反比例函数的概念2、反比例函数的图像3、反比例函数的性质4、反比例函数解析式的确定5、反比例函数中反比例系数的几何意义第勾十股1、勾股定理及其逆定理2、直角三角形的性质3、摄影定理八定章理4、直角三角形的判定5、命题、定理、证明6、三角形中的中位线四第十九边章形一、平行四边形1、定义2、性质3、判定4、面积二、矩形1、定义2、性质3、判定4、面积三、菱形1、定义2、性质3、判定4、面积四、正方形1、定义2、性质3、判定4、面积五、梯形1、梯形、直角梯形与等腰梯形的定义2、等腰梯形的性质与判定3、面积第数二据十的章分析1、解统计学的几个基本概念2、平均数、加权平均数3、众数与中位数4、极差5、方差与标准差6、数据的收集与整理的步骤。
关于初二数学知识点全总结精选
关于初二数学知识点全总结精选初二数学知识点第十一章全等三角形一、知识框架二、知识概念1。
全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2。
全等三角形的性质:全等三角形的对应角相等、对应边相等。
3。
三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4。
角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系)。
②、回顾三角形判定,搞清我们还需要什么。
③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一、知识框架二、知识概念1。
对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2。
性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3。
等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4。
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、与三角形有关的线段
1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形
2、等边三角形:三边都相等的三角形
3、等腰三角形:有两条边相等的三角形
4、不等边三角形:三边都不相等的三角形
5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角
6、三角形分类:不等边三角形
等腰三角形:底边和腰不等的等腰三角形
等边三角形
7、三角形两边之和大于第三边,两边之差小于第三边
注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形
8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC 的边BC上的高
9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线
注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线
11、三角形的稳定性,四边形没有稳定性
二、与三角形有关的角
1、三角形内角和定理:三角形三个内角的和等于180度。
证明方法:利用平行线性质
2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角
3、三角形的一个外角等于与它不相邻的两个内角的和
4、三角形的一个外角大于与它不相邻的任何一个内角
5、三角形的外角和为360度
6、等腰三角形两个底角相等
一、全等三角形
能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质
(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)
角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)
斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)
4、证明两个三角形全等的基本思路:
二、角的平分线:
熟悉基本图形
1、(性质)角的平分线上的点到角的两边的距离相等.
2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:
(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”
初二数学轴对称知识点
一、轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
4.轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线熟悉基本图形比较区分角平分线模型
1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等
3.与一条线段两个端点距离相等的点,在线段的垂直平分线上
4.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。
(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)
五、(等边三角形)知识点回顾
1.等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于60°。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是60°的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
4.直角三角形,斜边上的中线等于斜边的一半、。