数学曲率半径的运动学解
曲率与曲率半径问题(解析版)-高中数学
曲率与曲率半径问题1.(2024·浙江温州·二模)如图,对于曲线Γ,存在圆C满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 03);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.【解析】(1)记f x =x 2,设抛物线y =x 2在原点的曲率圆的方程为x 2+y -b 2=b 2,其中b 为曲率半径.则f x =2x ,f x =2,故2=f0 =b 2b -03=1b ,2=r 2b 3,即b =12,所以抛物线y =x 2在原点的曲率圆的方程为x 2+y -122=14;(2)设曲线y =f x 在x 0,y 0 的曲率半径为r .则法一:f x 0 =-x 0-ay 0-bfx 0 =r 2b -y 03,由x 0-a 2+y 0-b 2=r 2知,fx 0 2+1=r 2y 0-b 2,所以r =fx0 2+132f x 0,故曲线y =1x在点x 0,y 0 处的曲率半径r =-1x 202+1 322x 30,所以r 2=1x 40+132x 302=14x 20+1x 23≥2,则r 23=2-23x 20+1x 20≥213,则r =12x 20+1x 232≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.法二:-1x 20=-x 0-a y 0-b 2x 30=r 2b -y 0 3,a +bx 20-2x 0x 40+1=r ,所以y 0-b =-x 0⋅r 23213x 0-a =-r 23213x 0,而r 2=x 0-a 2+y 0-b 2=x 20⋅r 43223+r 43223⋅x 20,所以r 23=2-23x 20+1x 20,解方程可得r =12x 20+1x 2032,则r 2=14x 20+1x 203≥2,当且仅当x 20=1x 20,即x 20=1时取等号,故r ≥2,曲线y =1x在点1,1 处的曲率半径r =2.(3)法一:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,故r 23=e 43x +e-23x ,由题意知:e 43x1+e -23x 1=e43x 2+e-23x 2令t 1=e 23x1,t 2=e23x 2,则有t 21+1t 1=t 22+1t 2,所以t 21-t 22=1t 2-1t 1,即t 1-t 2 t 1+t 2 =t 1-t 2t 1t 2,故t 1t 2t 1+t 2 =1.因为x 1≠x 2,所以t 1≠t 2,所以1=t 1t 2t 1+t 2 >t 1t 2⋅2t 1t 2=2t 1t 2 32=2e x 1+x 2,所以x 1+x 2<-ln2.法二:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e 2x=e 4x +3e 2x +3+e -2x令t 1=e 2x 1,t 2=e 2x 2,则有t 21+3t 1+3+1t 1=t 22+3t 2+3+1t 2,则t 1-t 2 t 1+t 2+3-1t 1t 2=0,故t 1+t 2+3-1t 1t 2=0,因为x 1≠x 2,所以t 1≠t 2,所以有0=t 1+t 2+3-1t 1t 2>2t 1t 2+3-1t 1t 2,令t =t 1t 2,则2t +3-1t2<0,即0>2t 3+3t 2-1=(t +1)22t -1 ,故t <12,所以e x 1+x 2=t 1t 2=t <12,即x 1+x 2<-ln2;法三:函数y =e x 的图象在x ,e x处的曲率半径r =e 2x +1 32e x.故r 23=e 43x +e23x 设g x =e 43x +e 23x ,则gx =43e 43x -23e -23x =23e -23x 2e 2x -1 ,所以当x ∈-∞,-12ln2 时g x <0,当x ∈-12ln2,+∞ 时g x >0,所以g x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增,故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证g x 2 =g x 1 >g -ln2-x 2 将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有g x >g -ln2-x ,设函数G x =g x -g -ln2-x (其中x >-12ln2),则G x =g x +g -ln2-x =232e 2x -1 e 23x -2-13 ⋅e -43x >0,故G x 单调递增,G x >G -12ln2 =0,故g x 2 >g -ln2-x 2 ,所以x 1+x 2<-ln2.法四:函数y =e x 的图象在x ,e x 处的曲率半径r =e 2x+132e x,有r 2=e 2x +13e2x=e 4x +3e 2x +3+e -2x ,设h x =e 4x +3e 2x +3+e -2x .则有h x =4e 4x +6e 2x -2e -2x =2e -2x e 2x +1 22e 2x -1 ,所以当x ∈-∞,-12ln2 时h x <0,当x ∈-12ln2,+∞ 时h x >0,故h x 在-∞,-12ln2 上单调递减,在-12ln2,+∞ 上单调递增.故有x 1<-12ln2<x 2,所以x 1,-ln2-x 2∈-∞,-12ln2 ,要证x 1+x 2<-ln2,即证x 1<-ln2-x 2,即证h x 2 =h x 1 >h -ln2-x 2 .将x 1+x 2<-ln2,下证:当x ∈-12ln2,+∞ 时,有h x >h -ln2-x ,设函数H x =h x -h -ln2-x (其中x >-12ln2),则H x =h x +h -ln2-x =2e 2x -1 21+12e -2x +14e -4x >0,故H x 单调递增,故H x >H -12ln2 =0,故h x 2 >h -ln2-x 2 ,所以x 1+x 2<-ln2.2.有一种速度叫“中国速度”,“中国速度”正在刷新世界对中国高铁的认知.由于地形等原因,在修建高铁、公路、桥隧等基建中,我们常用曲线的曲率(Curvature )来刻画路线弯曲度.如图所示的光滑曲线C 上的曲线段AB ,设其弧长为Δs ,曲线C 在A ,B 两点处的切线分别为l A ,l B ,记l A ,l B 的夹角为ΔθΔθ∈0,π2,定义K =ΔθΔs为曲线段AB 的平均曲率,定义K (x )=lim Δx →0ΔθΔs=f (x )1+f (x ) 232为曲线C :y =f (x )在其上一点A (x ,y )处的曲率.(其中f (x )为f (x )的导函数,f (x )为f (x )的导函数)(1)若f (x )=sin (2x ),求K π4;(2)记圆x 2+y 2=2025上圆心角为π3的圆弧的平均曲率为a .①求a 的值;②设函数g (x )=ln (x +45a )-xe x -1,若方程g (x )=m (m >0)有两个不相等的实数根x 1,x 2,证明:x 2-x 1 <1-(5e -2)m3e -3,其中e 为自然对数的底数,e =2.71828⋯.【解析】(1)f (x )=sin (2x ),f (x )=2cos (2x ),f (x )=-4sin (2x ),所以f π4 =2cos π2=0,f π4 =-4sin π2=-4,因此K π4 =f π4 1+f π4 232=-4 1+0 32=4.(2)①由圆的性质知圆x 2+y 2=2025上圆心角为π3的圆弧的弧长为ΔS =π3⋅R .弧的两端点处的切线对应的夹角Δθ=π3,所以该圆弧的平均曲率K =Δθ ΔS=1R =12025=145,也即a =145.②由于a =145,故g x =ln x +1 -xe x -1,x ∈-1,+∞ ,又g (0)=0,g x =1x +1-x +1 e x -1,g x =-1x +12-x +2 e x -1<0,所以g (x )在-1,+∞ 上单调递减,而g 0 =1-1e >0,g 1 =12-2=-32<0.因此必存在唯一的x 0∈(0,1)使得g (x 0)=0且g (x )在-1,x 0 上为正,在x 0,+∞ 为负,即g (x )在-1,x 0 上单调递增,在x 0,+∞ 上单调递减,而g (0)=0,又g 12 =ln 32-12e>ln 32-13>0∵2e >3⇔e >94,ln 32>13⇔e 13<32⇔e <278,g (1)=ln2-1<0,所以∃t ∈12,1 使得g (t )=0,即g (x )的图象与x 轴有且仅有两个交点(0,0),(t ,0),易得g (x )在(0,0)处的切线方程为l 0:y =1-1e x =e -1ex ,在(t ,0)处的切线方程为l t :y =1t +1-t +1 e t -1 x -t ,下面证明两切线l 0,l t 的图象不在g (x )的图象的下方:令h x =g x -1t +1-t +1 e t -1 x -t =g (x )-g (t )(x -t ),则h (x )=g (x )-g (t ).因为h (x )=g (x )<0,所以h (x )在(-1,+∞)单调递减,而h (t )=0,所以h (t )在(-1,t )上为正,在(t ,+∞)为负,即h (x )在(-1,t )上单调递增,在(t ,+∞)单调递减,因此h (x )≤h (t )=g (t )-0=0,即g x ≤1t +1-t +1 e t -1 x -t ,即g (x )的图象恒在其图象上的点(t ,0)处的切线的下方(当且仅当x =t 时重合).同理可证(将t 视为0即可),g x ≤1-1ex设直线y =m (m >0)与两切线l 0,l 1交点的横坐标分别为X 0,X t ,则易得X 0=me e -1,X t =m1t +1-t +1 e t -1+t 且X 0<x 1<x 2<X t ,因为t ∈12,1,故1t +1-t +1 e t -1∈-32,23-32e⊆-32,0 ,所以X t =m 1t +1-t +1 e t -1+t <m -32+t <1-2m3,因此x 2-x 1 <X t -X 0<1-2m 3-mee -1=1-5e -2 m 3e -3.3.定义:若h (x )是h (x )的导数,h (x )是h (x )的导数,则曲线y =h (x )在点(x ,h (x ))处的曲率K =h (x )1+h(x ) 232;已知函数f (x )=e x sin π2+x,g (x )=x +(2a -1)cos x ,a <12,曲线y =g (x )在点(0,g (0))处的曲率为24;(1)求实数a 的值;(2)对任意x ∈-π2,0,mf (x )≥g (x )恒成立,求实数m 的取值范围;(3)设方程f (x )=g (x )在区间2n π+π3,2n π+π2n ∈N * 内的根为x 1,x 2,⋯,x n ,⋯比较x n +1与x n +2π的大小,并证明.【解析】(1)由已知g (x )=-2a -1 sin x +1,g (x )=-2a -1 cos x ,所以2a -1 1+12 32=24,解得a =0(a =1舍去),所以a =0;(2)由(1)得g (x )=x -cos x ,f (x )=e x sin π2+x=e x cos x ,则g x =1+sin x ,对任意的x ∈-π2,0,mf x -gx ≥0,即me x cos x -sin x -1≥0恒成立,令x =-π2,则m ⋅0+1-1=0≥0,不等式恒成立,当x ∈-π2,0时,cos x >0,原不等式化为m ≥sin x +1e x cos x ,令h x =sin x +1e x cos x,x ∈-π2,0 ,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x =1-cos x 1+sin x e x cos 2x≥0,所以h x 在区间-π2,0单调递增,所以h x max =h 0 =1,所以m ≥1,综上所述,实数m 的取值范围为1,+∞ ;(3)x n +1>x n +2π,证明如下:由已知方程f x =g x 可化为e x cos x -sin x -1=0,令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x ,因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0,所以φ x <0,所以φx 在区间2n π+π3,2n π+π2n ∈N * 上单调递减,故φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=12e 2n π+π3-32-1≥12e 2π+π3-32-1>22×3+1×12-32-1>0,φ2n π+π2=-2<0,所以存在唯一x 0∈2n π+π3,2n π+π2,使得φx 0 =0,又x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2 ,则φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n ,所以x n +1>x n +2π.4.(2024·湖北黄冈·二模)第二十五届中国国际高新技术成果交易会(简称“高交会”)在深圳闭幕.会展展出了国产全球首架电动垂直起降载人飞碟.观察它的外观造型,我们会被其优美的曲线折服.现代产品外观特别讲究线条感,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB 运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δ→0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ,y 分别表示y =f x 在点A 处的一阶、二阶导数)(1)已知抛物线x 2=2py (p >0)的焦点到准线的距离为3,则在该抛物线上点3,y 处的曲率是多少?(2)若函数g x =12x +1-12,不等式g e x +e -x 2 ≤g 2-cos ωx 对于x ∈R 恒成立,求ω的取值范围;(3)若动点A 的切线沿曲线f x =2x 2-8运动至点B x n ,f x n 处的切线,点B 的切线与x 轴的交点为x n +1,0 n ∈N * .若x 1=4,b n =x n -2,T n 是数列b n 的前n 项和,证明T n <3.【解析】(1)∵抛物线x 2=2py (p >0)的焦点到准线的距离为3,∴p =3,即抛物线方程为x 2=6y ,即f x =y =16x 2,则f x =13x ,f x =13,又抛物线在点3,y 处的曲率,则K =131+19⋅3232=1322=212,即在该抛物线上点3,y 处的曲率为212;(2)∵g -x =12-x +1-12=2x 2x +1-12=12-12x +1=-g x ,∴g x 在R 上为奇函数,又g x 在R 上为减函数.∴g e x +e -x 2≤g 2-cos ωx 对于x ∈R 恒成立等价于cos ωx ≥2-e x +e -x2对于x ∈R 恒成立.又因为两个函数都是偶函数,记p x =cos ωx ,q x =2-e x +e -x2,则曲线p x 恒在曲线q x 上方,p x =-ωsin ωx ,qx =-e x -e -x 2,又因为p 0 =q 0 =1,所以在x =0处三角函数p x 的曲率不大于曲线q x 的曲率,即p 0 1+p 20 32≤q 01+q 232,又因为p x =-ω2cos ωx ,qx =-e x +e -x 2,p 0 =-ω2,q 0 =-1,所以ω2≤1,解得:-1≤ω≤1,因此,ω的取值范围为-1,1 ;(3)由题可得f x =4x ,所以曲线y =f x 在点x n ,f x n 处的切线方程是y -f x n =f x n x -x n ,即y -2xn 2-8 =4x n x -x n ,令y =0,得-x n 2-4 =2x n x n +1-x n ,即x n 2+4=2x n x n +1,显然x n ≠0,∴x n +1=x n 2+2x n,由x n +1=x n 2+2x n ,知x n +1+2=x n 2+2x n +2=x n +2 22x n ,同理x n +1-2=x n -2 22x n,故x n +1+2x n +1-2=x n +2x n -22,从而lg x n +1+2x n +1-2=2lg x n +2x n -2,设lg x n +2x n -2=a n ,即a n +1=2a n ,所以数列a n 是等比数列,故a n =2n -1a 1=2n -1lg x 1+2x 1-2=2n -1lg3,即lg x n +2x n -2=2n -1lg3,从而x n +2x n -2=32n -1,所以x n =232n -1+132n -1-1,∴b n =x n -2=432n -1-1>0,b n +1b n =32n -1-132n-1=132n -1+1<132n -1≤1321-1=13,当n =1时,显然T 1=b 1=2<3;当n >1时,b n <13b n -1<13 2b n -2<13n -1b 1,∴T n =b 1+b 2+⋯+b n <b 1+13b 1+⋯+13 n -1b 1=b 11-13 n1-13=3-3⋅13n<3,综上,T n <3n ∈N * .5.(2024·高三·浙江宁波·期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs=y1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y 3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【解析】(1)K =ΔθΔs=π3π3=1.(2)y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24 -32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.(3)fx =ln x -1,fx =1x ,故φy =22y 1+y 3=22x ln x 3=223s ln s3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -12ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.6.(2024·高三·辽宁·期中)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,fx 是fx 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f (x )1+f (x ) 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x (x ∈R )曲率K 2的最大值;【解析】(1)因为f x =ln x +x ,则f x =1x +1,f x =-1x 2,所以K 1=f 11+f 1 232=11+2232=1532,故K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,则h x =-sin x ,h x =-cos x ,所以K 2=h x 1+hx 2 32=-cos x1+sin 2x 32,则K 22=cos 2x 1+sin 2x 3=cos 2x2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,则pt =-t 3-3t 22-t t 6=2t -6t 4,显然当t ∈1,2 时,p t <0,p t 单调递减,所以p (t )max =p 1 =1,则K 22最大值为1,所以K 2的最大值为1.7.曲线的曲率定义如下:若f '(x )是f (x )的导函数,f "(x )是f '(x )的导函数,则曲线y =f (x )在点(x ,f (x ))处的曲率K =|f "(x )|1+[f '(x )]232.已知函数f x =e x cos x ,g x =a cos x +x a <0 ,曲线y =g (x )在点(0,g (0))处的曲率为24.(1)求实数a 的值;(2)对任意的x ∈-π2,0,tf x -g x ≥0恒成立,求实数t 的取值范围;(3)设方程f x =g x 在区间2n π+π3,2n π+π2(n ∈N +)内的根从小到大依次为x 1,x 2,⋯,x n ,⋯,求证:x n +1-x n >2π.【解析】(1)由已知g (x )=-a sin x +1,g (x )=-a cos x ,,所以a 1+1232=24,解方程得a =-1(2)对任意的x ∈-π2,0,tf x -gx ≥0,即te x cos x -sin x -1≥0恒成立,令x =-π2,则t ⋅0+1-1≥0,不等式恒成立当x ∈-π2,0时,cos x >0,原不等式化为t ≥sin x +1e x cos x 令h x =sin x +1e x cos x,则hx =cos x e x cos x -e xcos x -sin x sin x +1 e x cos x2=1-sin x cos x -cos x +sin xe x cos 2x=1-cos x 1+sin xe x cos 2x所以h x 在区间-π2,0单调递增,所以最大值为h 0 =1所以要使不等式恒成立必有t ≥1(3)由已知方程f x =g x 可化为e x cos x -sin x -1=0令φx =e x cos x -sin x -1,则φ x =e x cos x -sin x -cos x因为x ∈2n π+π3,2n π+π2,所以cos x <sin x ,cos x >0所以φ x <0,φx 在区间2n π+π3,2n π+π2(n ∈N +)上单调递减,φ2n π+π3 =e 2n π+π3cos 2n π+π3 -sin 2n π+π3 -1=e 2n π+π312-32-1≥e 2π+π312-32-1>22⋅3+112-32-1>0φ2n π+π2=-2<0所以存在唯一x 0∈2n π+π3,2n π+π2,φx 0 =0x n ∈2n π+π3,2n π+π2 ,x n +1-2π∈2n π+π3,2n π+π2φx n +1-2π =e x n +1-2πcos x n +1-2π -sin x n +1-2π -1=e x n +1-2πcos x n +1-sin x n +1-1=ex n +1-2πcos x n +1-e x n +1cos x n +1=ex n +1-2π-ex n +1cos x n +1<0=φx n由φx 单调递减可得x n +1-2π>x n 即x n +1-x n >2π8.(2024·湖南永州·三模)曲线的曲率定义如下:若f (x )是f (x )的导函数,令φ(x )=f (x ),则曲线y =f (x )在点x ,f x 处的曲率K =φ (x )1+f (x ) 232.已知函数f (x )=x 2a +x (a >0),g (x )=(x +1)ln (x +1),且f (x )在点(0,f (0))处的曲率K =24.(1)求a 的值,并证明:当x >0时,f (x )>g (x );(2)若b n =ln (n +1)n +1,且T n =b 1⋅b 2⋅b 3⋯b n (n ∈N ∗),求证:(n +2)T n <e 1-n 2.【解析】(1)f ′(x )=2x a +1=φ(x ),φ′(x )=2a,f ′(0)=1,a >0,∵f (x )在点(0,f (0))处的曲率K =24,∴2a(1+12)32=24,解得a =2.当x >0时,h (x )=f (x )-g (x )=12x 2+x -(x +1)ln (x +1),h ′(x )=x +1-ln (x +1)-1=x -ln (x +1),令u (x )=x -ln (x +1),则u ′(x )=1-1x +1=xx +1>0,∴u (x )在x >0时单调递增,∴u (x )>u (0)=0,∴h ′(x )>0,∴函数h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,因此f (x )>g (x ).(2)证明:由(1)可得:12x 2+x >(x +1)ln (x +1),∴ln (x +1)x +1<x (x +1)2(x +1)2,x >0,令x =n ∈N *,则:ln (n +1)n +1<n (n +2)2(n +1)2,∴T n =b 1⋅b 2⋅b 3⋅⋯⋅b n <12n ×1×322×2×432×3×542×4×652×⋯⋯×(n -1)(n +1)n 2×n (n +2)(n +1)2=12n ×12×n +2n +1要证明:(n +2)T n <e 1-n 2,只要证明:2ln (n +2)-(n +1)ln2-ln (n +1)-1+n2<0即可,n =1时,左边=2ln3-2ln2-ln2-12<0n ≥2时,令v (x )=2ln (x +2)-(x +1)ln2-ln (x +1)-1+x 2,v ′(x )=2x +2-ln2-1x +1+12=s (x ),s ′(x )=1(x +1)2-2(x +2)2=-x 2+2(x +1)2(x +2)2<0,∴v ′(x )<v ′(2)=23-ln2<0,∴v (x )在(2,+∞)上单调递减,∴v (x )<v (2)=4ln2-3ln2-ln3=ln2-ln3<0,综上可得:(n +2)T n <e1-n2成立.9.曲率是曲线的重要性质,表征了曲线的“弯曲程度”,曲线曲率解释为曲线某点切线方向对弧长的转动率,设曲线C :y =f x 具有连续转动的切线,在点x ,f x 处的曲率K =f x1+f x 232,其中f x为f x 的导函数,f x 为f x 的导函数,已知f x =x 2ln x -a 3x 3-32x 2.(1)a =0时,求f x 在极值点处的曲率;(2)a >0时,f x 是否存在极值点,如存在,求出其极值点处的曲率;(3)g x =2xe x -4e x +a 2x 2,a ∈0,1e,当f x ,g x 曲率均为0时,自变量最小值分别为x 1,x 2,求证:x1ex 2>e 2.【解析】(1)当a =0时,f x =x 2ln x -32x 2,x >0,可得f x =2x ln x +x -3x =2x (ln x -1),令f x =0,可得x =e ,当0<x <e 时,f x <0,当x >e 时,f x >0,所以当x =e 为f x 在极小值点,又f x =2ln x ,所以f e =2ln e =2,所以K =f e 21+f e 2232=2[1+02]32=2;(2)由f x =x 2ln x -a 3x 3-32x 2,可得f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,令h (x )=f x =2x ln x +x -ax 2-3x =2x ln x -2x -ax 2,则h x =2ln x -2ax ,令h x =0时,可得a =ln x x ,令φ(x )=ln x x ,可得φ (x )=1-ln xx 2,当0<x <e 时,φ x >0,φ(x )=ln xx 单调递增,当x >e 时,φ x <0,φ(x )=ln x x 单调递减,则φ(x )max =1e,所以0<a <1e时,f x =2ln x -2ax =0有解,且有两解x 1,x 3且1<x 1<e <x 3,x 1为f x 的极小值点,x 3为f x 的极大值点,当a =1e 时,f x =2ln x -2ax =0有解,且有唯一解,但此解不是f x 极值点,当a >1e时,f x =2ln x -2ax =0无解,所以f x 无极值点,所以当0<a <1e 时,f x 存在极值点,所以K =f x1+f x 2 32=0;(3)由题意可得g x =2xe x -4e x +a 2x 2,可得g x =2(x +1)e x -4e x +2ax ,要g x ,f x 曲率为0,则g x =f (x )=0,即2ln x -2ax =2a +2xe x =0,可得a =ln x x ,a 2=-xe x ,所以0<a <1e 时,φ(x )=ln xx有两解x 1,x 3,1<x 1<e <x 3,可证x 1x 3>e 2,由(2)可得ln x 1-ax 1=0,ln x 3-ax 3=0,可得ln x 1+ln x 3=ax 1+ax 3,ln x 1-ln x 3=ax 1-ax 3.要证明x 1x 3>e 2,即证明ln x 1+ln x 3>2,也就是a (x 1+x 3)>2.因为a =ln x 1-ln x 3x 1-x 3,所以即证明ln x 1-ln x 3x 1-x 3>2x 1+x 3,即ln x 1x 3<2(x 1-x 3)x 1+x 3,令x1x 3=t ,则0<t <1,于是ln t <2(t -1)t +1,令f (t )=ln t -2(t -1)t +1,则f(t )=1t -4(t +1)2=(t -1)2(t +1)2>0,故函数f (t )在(0,1)上是增函数,所以f (t )<f (1)=0,即ln t <2(t -1)t +1成立.所以x 1x 3>e 2成立.又因为a 2<a ,则-x 2e x 2=ln e-x2e-x 2<ln x 3x 3,由(2)可得φ(x )=ln xx在(e ,+∞)上单调递减,因为e -x 2>e ,x 3>e ,所以x 1ex 2=x 1e -x2>x 1x 3>e 2,10.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇,衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f x 是f x 的导函数,f x 是f x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =f x1+f x 232.(1)求曲线f x =ln x +x 在1,1 处的曲率K 1的平方;(2)求余弦曲线h x =cos x x ∈R 曲率K 2的最大值;(3)余弦曲线h x =cos x x ∈R ,若g x =e x h x +xh x ,判断g x 在区间-π2,π2上零点的个数,并写出证明过程.【解析】(1)因为f x =ln x +x ,所以f x =1x +1,f x =-1x2,所以K 1=f 11+f 1 232=11+2232=1532,∴K 1 2=15322=153=1125.(2)因为h x =cos x x ∈R ,h x =-sin x ,h x =-cos x ,所K 2=h x 1+h x 2 32=-cos x 1+sin 2x32,K 22=cos 2x 1+sin 2x 3=cos 2x 2-cos 2x3,令t =2-cos 2x ,则t ∈1,2 ,K 22=2-t t3,设p t =2-t t 3,t ∈1,2 ,则pt =-t 3-3t 22-t t 6=2t -6t4,显然当t ∈1,2 时,p t <0,p t 在1,2 上单调递减,所以p t max =p 1 =1,所以K 22最大值为1,所以K 2的最大值为1.(3)g x 在区间-π2,π2上有且仅有2个零点.证明:g x =e x cos x -x sin x ,所以g x =e x cos x -sin x -x cos x +sin x ,①当x ∈-π2,0时,因为cos x ≥0,sin x ≤0,则cos x -sin x >0,-x cos x +sin x >0,∴g x >0,g x 在-π2,0上单调递增,又g 0 =1>0,g -π2 =-π2<0.∴g x 在-π2,0上有一个零点,②设φx =e x -x ,则φ x =e x -1,当x ∈0,π4时,φx ≥0,φx 单调递增,φx =e x -x ≥φ0 =1,又cos x ≥sin x >0,∴g x =e x cos x -x sin x ≥e x sin x -x sin x =sin x e x -x >0恒成立,∴g x 在0,π4上无零点.③当x ∈π4,π2 时,0<cos x <sin x ,g x =e x cos x -sin x -x cos x +sin x <0,∴g x 在π4,π2 上单调递减,又g π2 =-π2<0,g π4 =22e π4-π4>0.∴g x 在π4,π2上必存在一个零点,综上,g x 在区间-π2,π2上有且仅有2个零点.。
曲率半径的两种求解方法
曲率半径的两种求解方法作者:汪邦家孙丽来源:《中学物理·高中》2014年第07期高中物理教材中出现了曲率半径,并且在高考中也出现过求曲率半径的试题.那什么是曲线的曲率半径呢?曲率半径如何求解?很多学生都发出这样的疑问.本文将讨论曲率半径的概念及求曲率半径的两种求解方法.1平面曲线的曲率半径工程技术中用曲率来描述曲线的弯曲程度.如图1所示,设曲线C是光滑的(曲线上每一处都有切线,且切线随切点的移动而连续转动).在曲线C上选定一端点M0作为度量弧s的基点.设曲线上点M对应于弧s,在点M处切线的倾角为a,曲线上另外一点M′对应于弧s+Δs,在点M′处切线的倾角为a+Δa,那么,弧段MM′的长度为|Δs|,当动点从M移动到M′时切线转过的角度为|Δa|.用比值|Δa||Δs|来表达弧段MM′的平均弯曲程度,把这比值叫做弧段MM′的平均曲率,并记作=|ΔaΔs|,当Δs→0时,上述平均曲率的极限叫做曲线C在点M处的曲率,记作K,K=|dads|,把ρ=1K=|dsda|称为曲线C在点M的曲率半径.设曲线的直角坐标方程为y=f(x),则ρ=1K=(1+y′2)3/2|y″|.设曲线的参数方程为x=φ(t),,则ρ=1K=[]-1.1抛物线上的曲率半径例1(2011年安徽高考题)现将一物体与水平面成a角的方向以速度v0抛出,如图2所示.则在轨迹最高点P处的曲率半径是多少?方法1数学公式法解斜抛运动参数方程x=φ(t)=v0cosa•t,-12gt2,可得φ′(t)=v0cosa,φ″(t)=0(1)--g(2)把(1)、(2)两式代入ρ=1K=[]-得ρ=[v20cos2a+(v0sina-gt)2]3/2v0gcosa(3)运动到轨迹最高点历时t=v0sinag(4)把(4)代入(3),得ρ=v20cos2ag.方法2物理方法一般的曲线运动可以分为很多小段,每小段都可以看作圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.而曲线上某点的曲率半径,就是在曲线上包含该点在内的一段弧,当这段弧极小时,可以把把它看作是某个圆的弧,则此圆的半径就是曲线在该点的曲率半径,如图3.这样在分析质点经过曲线上某点的运动时,就可以采用圆周运动的分析方法来处理了.如图3中,当质点运动到A点对应的曲率半径为ρ,速度为vA,向心加速度为an,由向心加速度公式可得an=v2Aρ.解物体在在其轨迹的最高点P处只有水平速度,其水平速度为v0cosa,最高点法向加速度an=g=v0cosa)2ρ,所以曲率半径ρ=v20cos2ag.例2将一小球以v0=10 m/s的初速度从楼顶水平抛出,小球下落t=3 s时位于轨迹曲线上的P点,求曲线在P位置的曲率半径和此时小球的法向加速度.方法1数学公式法平抛运动参数方程x=φ(t)=v0t,得φ′(t)=v0,φ″(t)=0(1)把(1)、(2)两式代入ρ=[]-得ρ=(v20+g2t2)3/2v0g(3)把v0=10 m/s,t=3 s代入(3)式,得ρ=80 m.此时小球瞬时速度v=v20+(gt)2=20 m/s,所以an=v2ρ=5 m/s2.方法2物理方法如图4所示,下落3 s时,竖直速度vy=gt=103 m/s.此时瞬时速度v=v20+(gt)2=20 m/s,设其方向与水平方向夹角为θ,则tanθ=vyv0=3,得θ=60°.把重力加速度g沿该点法向和切向分解,法向分加速度an=gcos60°=5 m/s2.由an=v2ρ得ρ=v2an=2025 m=80 m.1.2椭圆上的曲率半径例3质点沿轨道方程为x2a2+y2b2=1的椭圆从A点开始做逆时针运动,如图5所示.求A、B两点的曲率半径.方法1数学公式法解椭圆的参数方程为x=φ(θ)=acosθ,可得φ′(θ)=-asinθ,φ″(θ)=-acosθ(1)-bsinθ(2)把(1)、(2)两式代入ρ=[]-得ρ=[a2sin2θ+b2cos2θ]3/2ab(3)A点θ=0,代入(3)式得ρA=b2a(4)B点θ=90°,代入(3)式得ρB=a2b(5)方法2物理方法解如图6所示,半径为b的圆柱面被两平面相截,其中一个平面与圆柱面轴线垂直,第二个平面与第一个平面交角为θ,且满足cosθ=ba.两平面的交线与圆柱面相切,如图所示.由图5可知,第一个平面与圆柱面的交线是一个半径为b的圆,第二个平面与圆柱面的交线是一半长轴为b,半短轴为a的椭圆.如图6所示建立直角坐标系,坐标原点在圆心O处,y轴过两个平面交线与圆柱面的切点C.x轴与圆的交点A、y轴与圆的另一个交点B,沿z轴方向在第二个平面上的射影正好是椭圆上的A′、B′.设一质点在半径为b的圆周上做速率为v的匀速圆周运动,则此质点沿z轴方向在第二个平面上的运动将沿椭圆轨道运动.这个射影的运动就是此处选择的运动,在此运动下求椭圆轨道点A′、点B′的曲率半径易知,A点的速度v,法向加速度v2b.A点的射影A′的速度和法向加速度分别为vA′=vcosθ=abv,(aA′)n=(aA)n=v2b.由这两式得A′处的椭圆曲率半径ρA′=v2A′(aA′)n=a2b.同理,由点B的速度v和法向加速度v2b,得B点的射影B′点的速度和法向加速度vB′=v,(aB′)n=(aB)ncosθ=av2b2,由这两式得B′处的椭圆曲率半径ρB′=v2B′(aB′)n=b2a.2立体曲线的曲率半径螺旋线的曲率半径例5已知等距螺旋线在垂直z轴方向的截面圆半径为R,螺距为h,如图7所示.一质点沿此螺旋线做匀速率运动,在垂直z轴方向的投影转过一周所用的时间为T.求该质点在做等距螺旋线运动时螺旋轨迹的曲率半径.方法1数学公式法此题属于立体曲线的曲率半径求解问题,上面给出的平面曲线的曲率半径求解公式在此已经不适用.对于一个以参数化形式给出的空间曲线x=φ(t),,z=ψ(t).其曲率半径计算公式为ρ=(x′2+y′2+z′2)3/2(z″y′-y″z′)2+(x″z′-z″x′)2+(y″x′-x″y′)2.解设此质点沿z轴方向的速率为v∥,螺旋线运动方程为x=φ(θ)=Rcosθ,z=ψ(θ)=v∥θ2πT,得x′=φ′(θ)=-Rsinθ,x″=φ″(θ)=-Rcosθ(1)-Rsinθ(2)z′=ψ′(θ)=v∥t2π,z″=ψ″(θ)=0(3)把(1)、(2)、(3)式代入ρ=[x′2+y′2+z′2]3/2(z″y′-y″z′)2+(x″z′-z″x′)2+(y″x′-x″y′)2,得ρ=4π2R2+v2∥T24π2R(4)质点沿z轴方向做匀速直线运动,v∥T=h(5)把(5)式代入(4)式得ρ=4π2R2+h24π2R.方法2物理方法解质点在垂直轴方向做匀速圆周运动的分速度为v⊥=2πRT(1)沿z轴方向匀速直线运动速度为v∥=hT(2)设质点沿螺旋线运动速度v,则v2=v2⊥+v2∥(3)把(1)、(2)代入(3)得v2=4π2R2+h2T2(4)质点运动的加速度a=ΔvΔt=Δ(v⊥+v∥)Δt=Δv⊥Δt=0,这里Δv∥Δt=0,可知加速度与质点做半径为R的圆周运动的加速度相同,即a=an=(2πT)2R=4π2RT2(5)把(4)、(5)代入ρ=v2a得ρ=4π2R2+h24π2R.从数学和物理两种角度出发都可以求解曲率半径,充分体现了数学工具在处理物理问题中的重要地位,体现了数学和物理在处理同一问题时的和谐统一美.。
平面曲线曲率半径的运动学探究
平面曲线曲率半径的运动学探究以曲线和曲面为代表的几何特征在现代生活中随处可见,研究者对其在现代大型建筑设计、工业生产制造、物体运动学规律等诸多领域进行了广泛深入的探究。
本文详细分析了平面曲线曲率几何学特征以及其对应的运动学规律,试图从多个角度对曲线曲率问题进行全方位的解读与探索,同时利用电脑编程求解,进一步研究了椭圆曲线在不同长短半轴比下的曲率半径变化规律。
标签:平面曲线;曲率半径;运动学分析;椭圆曲线曲率;程序求解一、概述在现今社会生活中,以曲线和曲面为代表的几何特征处处可见。
建筑设计中的直曲结合、汽车外形流线型曲面的制造加工以及各种物体的曲线运动等,都是生活中对曲线、曲面的应用。
因此,在现实生活应用的基础上对各种曲线曲面几何特征的研究具有重要意义。
其中,平面曲线的曲率半径在数学和物理学中具有相通之处,由此又激发了我们从不同的学科角度对一个概念进行深入理解的灵感。
平面曲线在各种领域得到广泛应用。
在综合地质勘探的编录中,[1]地质学家利用曲率圆的某一段圆弧来近似地代表岩层的一段走向,即“以曲代直”;利用曲率半径来编录岩层走向变化大、有褶皱构造的坑道,并用这一编录结果与实际情况作比较。
勘测结果显示,这种方法具有一定的实用价值。
另外,科研人员根据平面曲线曲率半径的运动学规律制造各种机器零件。
例如,数控车床加工时,常常利用刀具切割多曲率圆弧面;在数控车床上加工多曲率圆弧面工件时,[2]不同曲率圆弧交接点的坐标值、加工工艺和刀具的应用非常重要,它不仅具备加工程序的简洁性,还会影响工件的加工质量和加工效率。
在工业制造中,加工特殊管道时,也需要对刀具的曲线加工路径以及刀具自身曲率半径进行深入的研究,用于工厂生产。
本文系统地从数学几何定理以及物理学物体曲线运动的角度探讨了平面曲线曲率的数学物理意义,从而全面认识平面曲线的几何特征的数学和运动学规律。
然后进一步以椭圆曲线为例,探讨了这一广泛存在于天体运动以及工业曲线加工领域的特征曲线的曲率半径变化规律,并通过数值程序的求解得到了不同位置的曲率半径,研究了椭圆曲线在不同位置的曲率半径大小。
数二曲率半径公式
曲率的倒数就是曲率半径。
曲线的曲率。
平面曲线的曲率就是是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。
K=lim|Δα/Δs|,Δs趋向于0的时候,定义k就是曲率。
曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度特殊的如:圆上各个地方的弯曲程度都是一样的(常识)而曲率半径就是它自己的半径;直线不弯曲,所以曲率是0,0没有倒数,所以直线没有曲率半径. 圆形越大,弯曲程度就越小,也就越近似一条直线.所以说,圆越大曲率越小,曲率越小,曲率半径也就越大. 如果在某条曲线上的某个点可以找到一个相对的圆形跟他有相等的曲率, 那么曲线上这个点的曲率半径就是该圆形的半径(注意,是这个点的曲率半径,其他点有其他的曲率半径).也可以这样理解:就是把那一段曲线尽可能的微分,直到最后近似一个圆弧,这个圆弧对应的半径即曲线上这个点的曲率半径.曲率/曲率半径应用题一飞机沿抛物线路径y=(x^2)/10000(y轴铅直向上,单位为m)作俯冲飞行,在坐标原点O处飞机的速度为v=200m/s。
飞行员体重G=70kg。
求飞机俯冲至最低点即原点O处时座椅对飞行员的反力。
解: y=x^2/10000 y'=2x/10000=x/5000 y"=1/5000 要求飞机俯冲至原点O处座椅对飞行员的反力,令x=0,则:y'=0y"=1/5000代入曲率半径公式ρ=1/k=[(1+y'^2)^(3/2)]/∣y"∣=5000米所以飞行员所受的向心力F=mv^2/ρ=70*200^2/5000=560牛得飞机俯冲至原点O 处座椅对飞行员的反力R=F+mg=560+70*9.8=1246N。
高中物理竞赛_话题4:曲率半径问题
话题4:曲率半径问题一、曲率半径的引入在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。
因为在0t ∆→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。
对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。
因为直线运动不能反映速度方向变化的因素。
亦即,它不能全面反映加速度的所有特征。
如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。
也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。
可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。
二、曲线上某点曲率半径的定义在向心加速度公式2n v a ρ=中ρ为曲线上该点的曲率半径。
圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。
我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。
曲率半径是微积分概念,中学数学和中学物理都没有介绍。
曲率k 是用来描述曲线弯曲程度的概念。
曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1kρ=。
这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。
二、曲线上某点曲率半径的确定方法1、 从向心加速度n a 的定义式2n v a ρ=出发。
将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2n v a ρ=求出该点的曲率半径ρ。
例1、将1kg 的小球从A 点以10/m s 的初速度水平抛出,设重力加速度210/g m s =,求:(1)在抛出点的曲率半径; (2)抛出后1s 时的曲率半径。
如何求解曲率半径
如何求解曲率半径作者:王国华吴跃文来源:《中学物理·高中》2013年第03期有这样一道力学问题:在xOy的竖直平面内,有一根支在原点O的弯杆,其形状可以用来y=x2k描写,其中k为不为零的正常数,在杆上穿有一个质量为m的滑块,如图1所示.若不考虑摩擦,求滑块从高度为y处滑到最低点O时,杆对滑块的作用力大小.该题的求解思路为:物体滑到最低点O时,受竖直方向的支持力和重力作用,物体在该点的运动可以看作圆周运动一部分,由牛顿第二定律知N-mg=mv2ρ(1)其中滑到O点的速度可由机械能守恒很容易得到,v2=2gy,关键在于如何去求抛物线顶点O的曲率半径ρ.下面介绍几种该题中曲率半径的求解方法:方法一数学方法数学上曲率半径的计算需要用到高等数学的知识.曲线上某点的曲率半径公式ρ=(1+y′2)3/2|y″|(2)相应地,我们可以直接利用上面的曲率半径公式进行求解.由抛物线方程y=x2k,得方法二判别式法利用曲率圆与曲线相切的数学特点,通过初等数学的方法求得曲率半径.如图2所示,由于曲率圆与抛物线相切于O点,首先设曲率圆方程其中ρ即为曲率半径.联立抛物线方程y=x2k,消去x,可得一元二次方程由于两曲线只有一个交点,即上述方程只有一个解,对应判别式方法三利用曲线运动的加速度由于学生在高中阶段没有学习导数,也没有深入学习曲线的轨迹方程,所以上述两种方法对大部分同学不太适用,但是我们可以利用物理方法巧妙地求解曲率半径.由于曲线运动的速度方向总在该点的切线方向上,建立内禀坐标系,可知其法向加速度an=limΔt→0ΔvnΔt=v2ρ,这里的ρ即为曲线的曲率半径.该题中物体通过O点的情形完全类似于平抛运动初始位置,故我们类比平抛运动,只要求得作平抛运动的物体在最高点的曲率半径即可.如图4所示,物体在抛出点O,初速度v0水平,只受重力mg,方向竖直向下,与初速度垂直,故有又由平抛物体的轨迹方程上述第三种方法从动力学角度,利用曲线在该点的向心加速度和曲率半径的关系,很容易得到曲率半径的结果.该题中求解的是平抛运动的特殊点——抛出点的曲率半径,而这种方法还可以求解抛物线上任意一点的曲率半径.如下题所示.例由某一高度以初速度v0水平射出一粒子弹,取t=0为发射时刻,试求子弹在时刻t的曲率半径.解析如图5所示,设t时刻子弹速度为v,则显然有v=v20+(gt)2,分析子弹受力,可知重力沿法向的分量为mgcosα,由牛顿第二定律可知综上所述,对于求解曲率半径问题,不必死记硬背其数学公式,可以分析其特点,通过简单的物理方法或数学方法进行求解,具体选择哪种方法,取决于具体的问题情境.。
曲率半径的计算公式物理
曲率半径的计算公式物理物理术语“曲率半径”一般指表面或曲线的曲率,也即表面或曲线的“弯曲程度”。
曲率半径可以用来计算散乱现象,如穿透表面的光线,因此,曲率半径的计算物理公式是应用物理学中不可缺少的知识点。
首先,我们需要了解表面的曲率可以用泰勒-利昂-拉格朗日特殊曲率公式(TLLR)表示:K = K1 + K2其中K1表示曲线的一阶导数,K2表示曲线的二阶导数。
根据公式,我们可以知道,曲线曲率半径r可以表示为:r =1/K 。
为方便计算,通常将上式写成:r =1/K1+K2由此可见,曲率半径计算公式物理中一般需要求解表面和曲线的曲率,因此,在计算曲率半径时,需要首先求解曲线的一阶导数和二阶导数来计算曲率K,然后再求解曲率半径r。
当然,出于实际应用的考虑,曲率半径计算公式物理还可以用梯形公式求解:r=1/K=1/[dy/dx]^2公式中的dy/dx表示曲线的斜率,即曲线的一阶导数,曲线的二阶导数K可以用斜率的二次导数表示:K=d^2y/dx^2由此,曲率半径r也可以由一阶导数和二阶导数计算出来:r=1/[d^2y/dx^2]由此可见,曲率半径计算公式物理可以用泰勒-利昂-拉格朗日特殊曲率公式、梯形公式和一阶导数和二阶导数来求解,对于更复杂的应用,可以使用几何分析等其他方法来求解曲率半径。
本文分析了曲率半径计算公式物理的基础知识,首先介绍了泰勒-利昂-拉格朗日特殊曲率公式、梯形公式以及一阶导数和二阶导数,然后详细阐述了如何用这些公式求解曲率半径,最后提出了对于更复杂问题可以使用几何分析等方法。
从上文可以看出,曲率半径的计算公式物理是应用物理学中不可缺少的知识点,在日常生活中可以用来计算光线传播、传热通量等等现象,从而更好的理解物理学的规律。
高考数学中的曲率与曲率半径的计算方法
高考数学中的曲率与曲率半径的计算方法在高考数学中,曲率与曲率半径是一个比较重要的概念,在平面几何和空间几何中都有应用。
曲率指的是曲线在某一点处的弯曲程度,而曲率半径则是曲率的倒数。
对于考生来说,了解曲率与曲率半径的计算方法,能够帮助他们更好地理解和解决相关考题。
一、曲率的定义和计算方法1. 弧长的导数曲线在某一点处的曲率定义为该点处切线与曲线上足够靠近该点的两个点的切线的极限夹角的大小,即:$$\lim_{\Delta s\to0}\frac{\Delta\alpha}{\Delta s}$$其中,$\Delta s$为曲线上两个足够靠近该点的点之间的弧长,$\Delta\alpha$为这段曲线在该点处切线的转角。
由于$\Delta\alpha$较难直接求解,我们可以通过对式子进行简化,得到:$$\lim_{\Delta s\to0}\frac{\Delta\alpha}{\Delta s}=\lim_{\Deltas\to0}\frac{\Delta(\tan\Delta\alpha)}{\Delta\alpha}\cdot\frac{\Delta\al pha}{\Deltas}=\lim_{\Delta\theta\to0}\frac{\tan\Delta\theta}{\Delta\theta}=\frac{d \alpha}{ds}$$其中,$\Delta\theta$为所求点处两条足够靠近该点的切线夹角,$d\alpha$为这段曲线在该点处切线的转角微分。
这里要注意的是,当弧长趋近于0时,我们通常会取$\Delta\alpha$为两条切线的夹角$\theta$,而不是切线的转角$d\alpha$。
2. 参数方程的第二类曲率对于参数方程$x=x(t)$,$y=y(t)$,曲线的切向量可以表示为:$$\vec{T}=\frac{dx}{dt}\vec{i}+\frac{dy}{dt}\vec{j}$$那么,曲线在某一点处的曲率可以表示为:$$k=\left\lvert\frac{d\vec{T}}{ds}\right\rvert=\sqrt{\left(\frac{d\ve c{T_x}}{ds}\right)^2+\left(\frac{d\vec{T_y}}{ds}\right)^2}$$其中,$\lvert\cdot\rvert$表示向量的模,$\vec{T_x}$和$\vec{T_y}$分别表示$\vec{T}$在$x$和$y$方向上的分量。
曲率及其曲率半径的计算讲解
于是
da
y
1 y2
dx.又知 ds
1 y2 dx.
从而,有
| y | K (1 y2 )3 2
.
例1
计算等双曲线x y 1在点(1,1)处的曲率.
K
| y | (1 y2 )3 2
解 由y 1 ,得
x
1 y x 2
,y
2 x3
.
因此,y|x11,y|x12.
1 2.
(1 y2 )3 2 (1 (1)2 )3 2 2 2
抛物线顶点处的曲率半径为
r 1 1.25.
K 所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单位长.
提示:设直线方程为y=ax+b,则y =a, y = 0.于是
K
| (1
y | y2 )3
2
0.
2.若曲线由参数方程
x j (t)
y
(t
)
给出,那么曲率如何计算?
提示:
K
|
j(t) (t) j(t) [j2 (t) 2 (t)]3
(t)
Ds0 Ds
在 lim Da da 存在的条件下K da .
Ds0a .
ds 设曲线的直角坐标方程是yf(x),且f(x)具有二阶导数.
因为tan a y ,所以
sec 2a da y, da y y ,
dx
dx 1 tan2 a 1 y2
M1
M2
N1
N2 )j
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
设曲线C是光滑的,曲线 线C上从点M 到点M 的弧
曲率半径概念
1 概念
来源:为了平衡曲线的弯曲程度。
平均曲率,这个定义描述了AB曲线上的平均弯曲程度。
其中表示曲线段AB上切线变化的角度,为AB弧长。
例:对于圆,。
所以:圆周的曲率为,是常数。
而直线上,所以,即直线“不弯曲”。
对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令,即定义
,为了方便使用,一般令曲率为正数,即:。
2 计算公式的推导:
由于,所以要推导与ds的表示法,ds称为曲线弧长的微分(T5-28,P218)
因为,所以。
令,同时用代替得
所以或
具体表示;
1、时,
2、时,
3、时,(令)
再推导,因为,所以,两边对x求导,得,推出。
下面将与ds代入公式中:
,即为曲率的计算公式。
3 曲率半径:
一般称为曲线在某一点的曲率半径。
几何意义(T5-29)如图为在该点做曲线的法线(在凹的一侧),在法线上取圆心,以ρ为半径做圆,则此圆称为该点处的曲率圆。
曲率圆与该点有相同的曲率,切线及一阶、两阶稻树。
应用举例:求上任一点的曲率及曲率半径(T5-30)
解:由于:
所以:,。
曲率和曲率半径的计算公式
曲率和曲率半径的计算公式在我们的数学世界里,曲率和曲率半径可是相当有趣又重要的概念。
你要是能把它们搞清楚,那在解决好多数学问题的时候,就能轻松应对啦!先来说说曲率。
曲率啊,简单理解就是描述曲线弯曲程度的一个量。
那怎么来计算它呢?对于函数 y = f(x),其曲率的计算公式是 k = |y''| / (1 + y'²)^(3/2) 。
这里的 y' 表示函数的一阶导数,y'' 表示二阶导数。
咱们来举个例子感受一下。
比如说有一条抛物线 y = x²。
首先,对它求一阶导数,y' = 2x ,再求二阶导数,y'' = 2 。
然后把它们代入曲率的公式里,就能算出在某个点的曲率啦。
接下来再讲讲曲率半径。
曲率半径呢,就是曲率的倒数。
它的计算公式就是 R = 1 / k 。
给大家分享一个我在教学中的小趣事。
有一次上课,我刚讲到曲率和曲率半径的计算公式,下面的同学一个个都皱着眉头,满脸疑惑。
其中有个特别积极的同学举手说:“老师,这也太复杂了,感觉脑袋都要炸啦!”我笑着回答他:“别着急,咱们一步一步来,就像爬楼梯,只要一个台阶一个台阶地走,总能到顶的。
”然后我就带着他们从最简单的函数开始,一点点推导计算,让他们自己动手去感受这个过程。
慢慢地,同学们紧锁的眉头开始舒展开了,眼睛里也有了亮光。
等到下课的时候,那个一开始抱怨的同学跑过来跟我说:“老师,我好像有点懂啦!”看着他们逐渐掌握这些知识,我心里那叫一个欣慰。
在实际应用中,曲率和曲率半径的计算可有着大用处呢。
比如在工程设计里,要设计一条弯曲的道路或者桥梁,就得先算出曲率和曲率半径,来保证行驶的安全和舒适。
在物理学中,研究曲线运动的时候,这两个概念也能帮助我们更好地理解物体的运动状态。
总之,曲率和曲率半径的计算公式虽然看起来有点复杂,但只要咱们多练习、多思考,就能把它们拿下。
相信大家在以后的学习和生活中,遇到需要用到它们的时候,都能轻松应对,游刃有余!。
巧用各种运动求曲率半径
根据 图线 的对 称性 , 可得余 弦曲线 任 一点 则 的 曲率 半 径 。
5 利 用匀 速 直 线 运 动 和 一 般 变 速 直 线 运 动 的 合运 动
设 A 点 的 曲率 半径 为 p,I 2  ̄v ]
一
一
,
;g r i
即 一 l 1 i0 l I o 0 n + s, s c
运 动 的 轨 迹 为 椭 圆
一- 一 1
当质 点运 动到 P点 时 ,
口 一
d ’b
~
 ̄ + 一 / v 0 / +A s o  ̄1 i 7t n 3
l As v t — i 。 n
s 一
如 图 6所 示 在椭 圆上 取 一点 A( ) 物 体 x, ,
摘 要 : 文 结 合 物 理探 究 式教 学 法 的 概 念 、 理 学科 的 特 点 和 新 课 改 的 要 求 分 析 了探 究 式 教 学 法在 教 学 中 的 局 本 物
限性 , 并提 出 了一 些 适 合 我 国 目前 开 展 探 究 式 教 学 的 策 略 , 旨在 为 物 理 学教 学 和 新 一轮 课 改 的 实施提 供 一 定 参 考 。
5 i 一 / n . 、。 : : = ,
题 目 求 解 曲线 .一 的曲率半 径 随 的 ) ,
分布 p z 。 ( )
J ‘ y A
,
,
则 一
+
一一 a b
,
所 l兰 以一 一 D
则 l D一 。
,
《
0
.
:
.
7 利 用匀 变 速 曲线 运 动 与 匀 速 圆周 运 动 的 合
关 键 词 : 究教 学 法 ; 限性 ; 对 策 略 探 局 应
巧用各种运动求曲率半径
巧用各种运动求曲率半径作者:侯位锋来源:《物理教学探讨》2011年第07期曲率半径在数学上有严格的意义和表达式,而曲率半径的计算需要用到高等数学的知识。
在中学阶段,我们可巧用各种运动来求曲率半径,具体举例如下。
1 利用平抛运动题目求抛物线y=ax2(a>0)上,任意一点的曲率半径。
解析可以构建一个初速度为v0的平抛运动,建立抛出点为坐标原点,初速度方向为x轴的坐标系(如图1所示)。
则x=v0t,y=12gt2。
抛物线的轨迹方程为y=ax2式中a=g2v02。
抛物线上任一点A的速度v=v02+2gy,设A点的曲率半径为ρ,则v2ρ=gcosθ,又因cosθ=v0v,所以ρ=v3gv0,化简此式得到:ρ=12a(1+4a2x2)32。
2 利用匀速率运动题目四质点A、B、C、D在同一平面上运动。
每时刻,A速度总对准B,速度大小为常量u,B速度总对准C,速度大小同为u,C速度总对准D,速度大小同为u,D速度总对准A,速度大小同为u。
某时刻,A、B、C、D恰好逆时针方向按序位于各边长为l的正方形四个顶点上,试求此时A的运动轨道在此位置的曲率半径ρ。
解析经过Δt时间,A、B、C、D位置变化如图2所示。
A的速度变化是Δu,方向与u垂直,Δu=uΔθ,又因uΔt=lΔθ,则A的加速度为a=Δu/Δt=u2/l,方向与u垂直。
又因A做匀速率运动,无切向加速度,a心=a,根据ρ=u2/a心,所以ρ=l。
3 利用匀速直线运动与匀速圆周运动的合运动题目半径为R的轮子在水平直线MN上方纯滚动,轮子边缘上任意点P的运动轨迹不妨称为上滚轮线。
如图3所示,将上滚轮线绕MN向下翻转180°,成为下滚轮线。
下滚轮线可看成R轮子在下方沿直线MN纯滚动时轮子边缘点P的轨迹。
求此轨迹最低点的曲率半径ρ。
解析点P的运动可以看成是水平方向的匀速运动(设速度为v0),与竖直平面内的匀速圆周运动(角速度为ω)的合运动。
根据纯滚动可知ω=v0R而当P点运动到轨迹最低点时,速度(对地)2v0,向心加速度为a心=v02R又因ρ=(2v0)2a心,ρ=4R。
高中物理竞赛_话题4:曲率半径问题
话题4:曲率半径问题一、曲率半径的引入在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。
因为在0t ∆→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。
对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。
因为直线运动不能反映速度方向变化的因素。
亦即,它不能全面反映加速度的所有特征。
如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。
也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。
可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。
二、曲线上某点曲率半径的定义在向心加速度公式2n v a ρ=中ρ为曲线上该点的曲率半径。
圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。
我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。
曲率半径是微积分概念,中学数学和中学物理都没有介绍。
曲率k 是用来描述曲线弯曲程度的概念。
曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1kρ=。
这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。
二、曲线上某点曲率半径的确定方法1、 从向心加速度n a 的定义式2n v a ρ=出发。
将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2n v a ρ=求出该点的曲率半径ρ。
例1、将1kg 的小球从A 点以10/m s 的初速度水平抛出,设重力加速度210/g m s =,求:(1)在抛出点的曲率半径; (2)抛出后1s 时的曲率半径。
如何计算抛物线某点处的曲率和曲率半径
用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。
对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。
今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。
这种方法不属于主流方法,因此不能用它代替常规方法。
介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。
举一个最简单的例子:y=-x2,我们作出它的图像设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。
我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。
接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。
质点在该点处速度大小为v=√(g/2+2a2g)。
接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。
我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。
我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。
根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。
从而可以求出r=(1/2+2a2)√(1+4a2)我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。
在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。
与上面算出的半径相等!因而,曲率半径K=1/r=2/(1+4a2)3/2抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。
质点 曲率半径-概述说明以及解释
质点曲率半径-概述说明以及解释1.引言1.1 概述:质点和曲率半径是物理学和数学中非常重要的概念,它们在描述和研究运动学和几何学问题中起着至关重要的作用。
质点是指在物理学中用来研究物体运动的一个理想化模型,它被假定为没有体积和形状,只具有质量和位置的点。
曲率半径则是描述曲线在某一点处弯曲程度的量,它是描述曲线局部性质的重要参数。
本文将首先介绍质点的概念,包括其基本定义和性质。
随后将详细解释曲率半径的定义,并讨论曲率半径在几何学和物理学中的应用。
最后,我们将总结本文的内容,探讨质点和曲率半径在实际问题中的意义,并展望未来可能的研究方向和应用领域。
通过深入理解和研究质点和曲率半径,我们可以更好地理解物体的运动规律和曲线的几何性质,为相关领域的研究和应用提供重要的理论基础。
json"1.2 文章结构": {"本文将分为三个部分来讨论质点和曲率半径的相关内容。
首先,在正文部分,我们将介绍质点的概念,包括其定义和特点。
然后,我们将详细解释曲率半径的定义以及其在几何学中的重要性。
最后,我们将探讨质点在曲率半径中的具体应用,以帮助读者更好地理解这一概念。
在结论部分,我们将总结本文的主要内容,并探讨质点和曲率半径在实际生活中的意义,以及可能的未来发展方向。
"}1.3 目的:本文旨在探讨质点和曲率半径的概念,探究它们在数学和物理领域中的重要性和应用。
通过深入分析质点的特点和曲率半径的定义,本文旨在帮助读者更加深入地理解这两个概念,以及它们之间的关系。
同时,通过展示质点在曲率半径中的具体应用,本文旨在启发读者对数学和物理领域的进一步探索和研究。
最终,本文旨在为读者提供一份全面而深入的了解,帮助他们更好地掌握和运用质点和曲率半径的知识。
2.正文2.1 质点的概念:质点是物理学中一个基本的概念,它是一个没有体积但有质量的点。
在描述物体的运动时,我们经常将其简化为质点,以便更好地理解和推导问题。
带你用初等数学知识推导曲率中心和半径
带你用初等数学知识推导曲率中心和半径大家看了小编上一篇浅谈π与e的关系的文章,是不是还意犹未尽呢?下面小编将从初等数学的角度带大家推导一下曲率中心和半径的公式。
公式曲率半径:曲率半径公式曲率中心:曲率中心公式定义类比于圆的两切线的垂直平分线交于圆心,我们假设任一曲线无限接近于一点P(x。
,y。
)的两切线的垂直平分线也交于一点,如下图示例图形推导过程有了定义,那我们就直接开门见山,开始推导曲率中心的公式吧:l1:y-f(x。
)=-(1/f'(x。
))(x-x。
)l2:y-f(x。
+Δ x)=-(1/f'(x。
+Δ x))[x-(x。
+Δ x)] ,其中Δ x->0我们把y消去后就可以得到f(x。
)-(x-x。
)/f'(x。
)=f(x。
+Δ x)-[x-(x。
+Δ x)]/f'(x。
+Δ x)移项得{[f'(x。
+Δ x)-f'(x。
)](x-x。
)-f'(x。
)Δ x}/(f'(x。
)f'(x。
+Δ x))=f(x。
+Δ x)-f(x。
)——(1)式由于当Δ x->0时,有f'(x。
)=[f(x。
+Δ x)-f(x。
)]/Δ xf''(x。
)=[f'(x。
+Δ x)-f'(x。
)]/Δ x因此(1)式等号两边同除Δ x->0得[f''(x。
)(x-x。
)-f'(x。
)]/(f'(x。
)f'(x。
+Δ x))=f'(x。
) ——(2)式由于Δ x->0,因此,f'(x。
+Δ x)=f'(x。
)所以(2)式可以写成[f''(x。
)(x-x。
)-f'(x。
)]/(f'(x。
)^2)=f'(x。
)移项得x=x。
-[f'(x。
)^3+f'(x。
)]/f''(x。
圆周运动曲率半径公式
圆周运动曲率半径公式1 应用曲率半径的数学公式推导椭圆的曲率半径在高等数学中,二维曲线y=y(x)的曲率半径公式是(1)其中对于图1中标准的正椭圆,其方程为(2)图1 正椭圆及其准线其中a、b分别为椭圆的半长轴、半短轴,图中c为半焦距,下同。
将式(2)两边对变量x求导,经整理可得(3)将式(3)两边对变量x求导,并将式(3)代入可得(4)将椭圆方程式(2)代入即得(5)于是,将式(3)、式(5)代入式(1)即得该正椭圆的曲率半径:(6)若将椭圆方程式(2)代入式(6),消去y后又可得(7)这时ρ显示为x的一元函数。
式(7)中的e=c/a是椭圆的偏心率。
参见图1,由准线知识知,椭圆上任一点距离右焦点的距离(8)将式(8)代入式(7)消去x后可得(9)这便是极坐标形式的椭圆曲率半径公式,ρ由极坐标r唯一地确定。
此外,参见图1,由于2a-r=r′,所以式(9)又可改写成(10)这即为椭圆曲率半径的最简公式,它兼具对称性,因此最方便记忆。
式(6)、式(7)、式(9)、式(10)是椭圆曲率半径的四个公式,其中式(6)最为常见,式(7)、式(9)最方便使用,式(10)则最便于记忆。
若令式(7)中的x=±a或式(9)中的r=a±c,则求得图1中椭圆左、右顶点的曲率半径若令式(7)中的x=0或式(9)中的r=a,则求得图1中椭圆上、下顶点的曲率半径2 应用匀速率圆周运动投影的方法求椭圆的曲率半径如图2、图3所示,将图2中斜面上的匀速率圆周运动在水平面内投影,即得一变速率椭圆运动,见图3。
斜面的倾角θ满足cosθ=b/a。
图2 斜面上的匀速率圆周运动图3 水平面内的投影椭圆运动在图2的坐标系O′-x′y′中,运动质点P的位置矢量r′可表示成(11)其中i′、j′分别是两坐标轴正方向上的单位矢量。
质点P的速度矢量和加速度(即法向加速度)矢量a′分别可表示成其中速率是常量,加速度a′的方向与位置矢量r′的方向相反。