3.2 三维波动方程初值问题ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故当 u 是球对称函数时,方程(2.2)可化为
utt
a2
urr
2 r
u r
wenku.baidu.com
,
或者等价地写成
r 0,t 0
(2.3)
(ru)tt rutt a2 (rurr 2ur ) a2 (ru)rr , 令 ru = v,则有 vtt a2vrr , 其通解可表示为
v F(r at) G(r at), r 0,t 0,
z r cos ,
r 0, 0 , 0 2 ,
12
是球面 SrM 上的点的坐标, d 是单位球面上的面积元,且 有 dS r2 sin d d r2d ,则
u(M ,t) u(x, y, z,t) limu(r,t) u(0,t) ——球平均法 r 0
下面证明 ru 满足一维波动方程
t
4
2 0
(x at sin cos, y at sin sin,
0
z at cos )sindd t
2
(x at sin cos,
4 0 0
y at sin sin, z at cos )sin d d. (2.6)
11
(2) Poisson公式(5)的推导
推导思路——球平均法
( )d
xat
1
其中 2at
xat
( )d 为初始位移
xat
在 [x at, x at] 上的算
术平均值,
8
1
xat
( )d 为初始速度 在 [x at, x at]上的算术均值
2at xat
受此启发,在以M(x,y,z)为中心,以at为半径的球面上作初
始函数 和 的平均值,分别为
1
§3.2 三维波动方程初值问题
三维齐次波动方程的球对称解 三维齐次波动方程的泊松公式和
球平均法 泊松公式的物理意义 三维非齐次波动方程的初值问题
和推迟势
2
2. 三维波动方程初值问题
三维波动方程可描述声波、电磁波和光波等在空间中的传播, 称为球面波。 基本思路:将三维问题转化为一维问题
2.1 三维齐次波动方程的球对称解
乙 1 (, , )dS, 1 (, , )dS.
4 a2t 2 SaMt
4 a2t 2 SaMt
则问题(2.1)的解应该是(待证)
乙 u(x, y, z,t)
t
1
(, , )dS +t
1
(, , )dS
t 4 a2t2 SaMt
4 a2t 2 SaMt
9
乙 1 (, , ) dS+ 1 (, , ) dS, (2.5)
一般情况下,ru 未必满足一维波动方程。设法找一个与u有
关的球对称函数 u , 通过 u 把 u 求出来。
考虑 u 在球面 SrM 上的平均值,即
乙 u(r,t) 1 udS 1 u(, , ,t)d, (2.7)
4 r2 SrM
4 S1M
x r sin cos, 其中 y r sin sin,
[ru (r,t)]tt a2[ru (r,t)]rr (2.8) 设 BrM 表示中心在 M 的半径为r的球域。对方程(2.1)的两 边在 BrM 上积分,并利用高斯公式及(2.7),有
uttdxdydz a2 [(ux )x (uy )y (uz )z ]dxdydz
x at sin cos, y at sin sin, dS a2t2 sin d d z at cos ,
10
于是
u(x,
y,
z,t)
t
t
4
1 a 2t 2
2 0
0
(
,
,
)a
2t
2
sin
d
d
+t
4
1 a2t
2
2 0
(, , )a2t2 sin d d
0
t
Partial Differential Equations
Autumn 2013
Instructor : Y. Huang ylhuang@nuist.edu.cn
Room 721, Shangxian Building School of Mathematics & Statistics, NUIST
4 a2 t SaMt
t
4 a2 SaMt
t
——三维齐次波动方程初值问题的Poisson公式
其中 SaMt 为M(x,y,z)为中心,以at为半径的球面。 为简化计算,将公式(2.5)在球坐标下化为累次积分,球面 SaMt
的方程为 ( x)2 ( y)2 ( z)2 (at)2.
设 P(, , ) 为球面上的点,则
考虑初值问题
utt a2 (uxx uyy uzz ), (x, y, z) R3,t 0
u
t0
(x,
y,
z), ut
t0
(x,
y,
z), ( x,
y,
z) R3
其中 , 满足一定的光滑性条件。
(2.1)
3
x r sin cos,
引入球坐标系 (r,,),

y
r
sin
sin ,
r at 0.
2ar atr
7
2.2 三维齐次波动方程的泊松公式和球平均法
(1) 主要结果
一维齐次波动方程的达朗贝尔解
u(x,t) 1 [(x at) (x at)] + 1
xat
( )d
2
2a xat
可改写成
u(x,t)
t
t
1 2at
xat
(
xat
)d
+t
1 2at
xat
则类似于半界弦的振动情况,可得初值问题(2.3)-(2.4)的解
6
1 2r
[(r
at
) (r
at)
(r
at)
(r
at)]
u(r, t )
1
[(r
1
r at
( )d,
2ar rat
at)(r at) (at r)(at
r at r)]
0;
2r
1
r at
( )d,
5
其中F(r + at)是沿 r 负方向传播,为收敛波,G(r -at)是沿 r 正方向传播的行波,为发散波。 从而,
u(r,t) F(r at) G(r at) , r 0,t 0, r
其中 F,G 是任意两个二阶连续可微函数。 若考虑初始条件
u(r, 0) (r),ut (r, 0) (r), r 0, (2.4)
z r cos
0 r ,0 ,0 2 ,
则方程(2.1)可化为
utt
a2
1 r2
r
r
2
u r
1
r2 sin
sin
u
1
r2 sin
2u
2
(2.2)
4
所谓球对称解,是指在球面上各点的值都相等的解(设球心
为原点),即 u(x, y, z,t) u(r,t) 与 和 无关。
相关文档
最新文档