膜片钳实验和技术专题培训课件
合集下载
膜片钳技术数据处理与分析课件
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
16
膜片钳实验数据的处理
信号采集后的滤波
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
17
膜片钳实验数据的处理
Clampfit滤波类型
Lowpass
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
12
膜片钳实验数据的处理
坏点的赋值 (1)Data value at cursor 1:Cursor 1的数值。 (2)Mean between cursor 1..2:Cursor 1-2之间均值。 (3)Mean between cursor 3..4:Cursor 3-4之间均值。 (4)Straight -line fit between cursor 1..2:Cursor 1-2之间的直线拟合
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
10
膜片钳实验数据的处理
Clampfit演示基线调零方法
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
11
膜片钳实验数据的处理
二、坏点的去除
坏点产生的原因 ➢ 刺激伪迹:给标本施加刺激时产生。 ➢ 电容瞬变电流:电容的充放电反应。 ➢ 瞬时脉冲干扰(Glitch):打开电源开关(日光灯、仪器设备开启时) ➢ 手机来电:一过性高频。 ➢人手靠近记录探头:高幅、高频。
14
膜片钳实验数据的处理
膜片钳技术讲座幻灯
1. 膜片钳技术简介
1976 年 德 国 马 普 生 物 物 理 化 学 研 究 所 Neher 和 Sakmann首次在青蛙肌细胞上用双电极钳制膜电 位的同时,记录到乙酰胆碱(Acetylcholine, ACh) 激活的单通道离子电流,从而产生了膜片钳技术 (patch clamp techniques)。 1980 年 Sigworth 等 获 得 10-100GΩ 的 高 阻 封 接 (Giga-seal),1981年Hamill和Neher等对该技术 进行了改进,引进了全细胞记录技术,从而使该 技 术 更 趋 完 善 , 1983 年 10 月 , 《Single-Channel Recording》一书的问世,奠定了膜片钳技术的里 程碑。
内向电流(Inward current) 从细胞外进入细胞内的正离子(如Na+ )电流或从
细胞内流向细胞外的负离子(如Cl-)电流。
外向电流(Outward current)
从细胞内流向细胞外的正离子(如K+)电流或从细
胞外流向细胞内的负离子(如Cl-)电流。
3. 膜片钳系统中的电阻
膜电阻(Membrane resistance, Rm) 指脂质双分子层的跨膜电阻,反映离子是否容易 穿透细胞膜。在细胞膜离子通道关闭时, Rm很大, 可达几百MΩ。不同于膜电容, 各种细胞的Rm 变异 较大。 膜输入阻抗(Membrane input resistance, Rin) 对 Rm 的测量是通过对膜输入阻抗的测量间接得到 的。给细胞膜施加一系列刺激方波,测定跨膜电流, 根据欧姆定律即可求出Rin 。注意要在形成全细胞记 录时测定,在形成高阻封接时, Rin =Rseal。
膜片钳与ltp-ppt课件
LTP原理
电生理记录上反映为EPSP 或EPSC幅度的增加,即 LTP。
2211
记录电极
~
海马脑片LTP
海马脑片上电极的放置
2222
大鼠体重:180-240g
在体LTP
刺激电极: 采用针灸针,多为 双极电极 定位坐标(mm):AP 8,LM 4, DV 3.2-3.5 记录电极:采用针灸针,为 单极电极 定位坐标(mm): AP 4,LM 2, DV 3.2-3.5
1144
膜片钳技术的应用
细胞特性的研究 离子通道的鉴别 电压门控性离子通道的动力学特性研究 突触联系、突触传递的研究 疾病机制研究 药物筛选 其他
1155
突触可塑、学习记忆及其机制的研究
长时程增强(LTP)是评价学习记忆及其突触可塑的常用的电 生理指标。目前,海马脑片离体实验己经广泛用于学习记忆方面 的研究,利用膜片钳技术记录脑片LTP,可在细胞水平研究学习 记忆的机制。 当今从不同方面对突触LTP与学习记忆的关系进行了大量的研 究,其结果大致可概括为: 影响LTP的因素确实对学习研究过程产生明显的影响 影响学习过程的因素也影响LTP形成 诱导海马脑区的LTP形成可提高学习记忆活动,学习过程中伴 有海马脑区LTP的形成。
(1)一般电学性质:通过I-V关系计算单通道电导,观察通道有无整流。通过离子选 择性、翻转电位或其它通道激活条件初步确定通道类型。 (2)动力学:开放时间、开放概率、关闭时间、通道的时间依赖性失活、开放与关闭 类型(簇状猝发样开放与闪动样短暂关闭),化学门控性通道的开、关速率常数等。 (3)通过对全细胞激活曲线或失活曲线的分析,可得到半数激活或失活电压Vh及斜率 因子K。 (4)药理学:阻断剂、激动剂或其它调制因素对通道活动的影响。 (5)综合分析得到最后结论。
膜片钳原理PPT课件
.
5
膜片钳的放大器
膜片钳放大器是膜片钳技术的核心仪器,放大器主 要有差分放大器、频率提升部分、加法器、瞬时补偿和 钳位放大器等部件组成。放大器的核心部分是差分放大 器,此差分放大器是一电流-电压转换器,可将记录到的 电流以电位差的形式输出。到目前为止放大器的发展已 经经历了三代的发展过程。目前普遍应用的膜片钳放大 器有德国HEKA公司的EPC系列(最新的产品是EPC-9)和 美国Axon公司生产的Axon Patch 系列(最新产品是Axon200B),日本NIHONKOHDEN公司的CEZ系列。国产放 大器有华中理共大学的PC-Ⅰ和 PC-Ⅱ系列(最新的产品 是PC-ⅡB),上海生理所的IP-Ⅰ型等。
.
11
电极内液可更换为药物或毒素等非生理 性成分,研究药物对电压依赖性通道的影响, 从而对通道开关动力学的作用达到从微观水 平上研究药物作用的功能机制。也可任意改 变膜片内外液的浓度组分,研究各组分对膜 通 透 性 的 影 响 , 值 得 注 意 的 是 H+ 、 Ca2+ 浓 度要适宜。也可用相应的激动剂作用于膜受 体,在监测离子通道电流流动过程中,了解 经G蛋白介导的第二信使作用,研究跨膜信 息转导的途径。
.
3
膜片钳技术的原理
膜片钳技术是用微管电极接触细胞膜,以千兆欧 姆(gigaohm seal GΩ)以上的阻抗使之封接,使于电 极尖开口处相接的细胞膜的小区域(膜片patch)与其 周围在电学学上分隔,在此基础上固定电位,对此膜 片上的离子通道的离子电流(pA级最小可达0.06pA) 进行检测记录的方法。
.
8
膜片钳的四种工作模式
1.细胞贴附式(cell-attached) 2.全细胞模式(whole -cell recording) 3.内面向外式(inside-out) 4.外面向外式(outside-out)
膜片钳技术原理及相关基本知识ppt课件
冲动,最终形成嗅觉或味觉。
• 机械门控通道
一类是牵拉活化或失活的离子通道,另一类是剪切力敏 感的离子通道,前者几乎存在于所有的细胞膜,研究较多 的有血管内皮细胞、心肌细胞以及内耳中的毛细胞等,后
者仅发现于内皮细胞和心肌细胞
• 水通道
2003年诺贝尔化学奖:
Pete Agre、 Roderick MacKinnon
失活 状态
Inactive
state
复活
recovery 静息 状态
resting state
二、门控特性(Gating):
失活状态不仅是通道处于关闭状态, 而且只有在经过一个额外刺激使通道从 失活关闭状态进入静息关闭状态后,通 道才能再度接受外界刺激而激活开放。
失活
inactivation
开放 状态
.
20
History of Ion Channel Study
• 1955年,Hodgkin和Keens应用电压钳(Voltage
clamp)在研究神经轴突膜对钾离子通透性时发现, 放射性钾跨轴突膜的运动很像是通过许多狭窄空洞 的运动,并提出了“通道”的概念。
• 1963年,描述电压门控动力学的Hodgkin-Huxley模
善,真正开始了定量研究,建立了H-H模型(
膜离子学说),是近代兴奋学说的基石。
.
19
• 1948年,Katz利用细胞内微电极技术记录到了
终板电位;1969年,又证实N-M接触后的Ach 以“量子式”释放,获1976年Nobel奖。
• 1976年 ,德国 的Neher 和Sakmann 发明Patch
激活
activation
open state
.
细胞电生理学与膜片钳技术ppt课件
CCD Camera
Vibration Isolation Table
Micro-Manipulators Remote Controller
Electrophysiology-Apparatus
DAD-VC system
MicroManipulators
CCD Camera
Electrophysiology-Apparatus
钠通道 钙通道 钾通道
神经类钠通道 骨骼肌类钠通道 心肌类钠通道(持久、瞬时)
L-型(心肌窦房结、房室结);T-型(心脏传 导组织);N-型(中枢神经系统神经元和突 触部位);P-型(大脑);Q-型(小脑、海 马、脊髓);R-型(神经细胞)
瞬时外向钾通道 (Ito) 延迟整流钾通f)
失活 状态
Inactive
state
复活
recovery 静息 状态
resting state
二、门控特性(Gating):
失活状态不仅是通道处于关闭状态, 而且只有在经过一个额外刺激使通道从 失活关闭状态进入静息关闭状态后,通 道才能再度接受外界刺激而激活开放。
失活
inactivation
开放 状态
心血管系统主要有: 1.乙酰胆碱激活钾通道(KACh):参与迷走调控。 2. ATP敏感钾通道(KATP):心肌缺血、缺氧开放。 3.钙激活钾通道(KCa):参与血管张力调控。
配体门控离子通道
KACh
KCa
ACh作用于M受体 去极化、[Ca2+]i↑
KATP
细胞内 ATP/ADP↓
增加舒张电位 复极化或超极化 缩短动作电位时程
细胞上,当钙通道尚未激活时,钠通道已经失活。 ➢ 对离子的选择性较低:在细胞外Ca2+浓度([Ca2+]o)下降
膜片钳技术讲座幻灯
膜片钳技术讲座
2002年11月20日
第一部分 膜片钳技术基本概念
第二部分
离子通道基本知识
第一部分
膜片钳技术的基本概念
主要内容
1. 膜片钳技术简介
2. 膜片钳系统中的电位(电压)与电流
3. 膜片钳系统中的电阻
4. 膜片钳系统中的电容
5. 膜片钳系统中的串联电阻和电容补偿 6. 膜片钳系统中的漏减功能 7. 膜片钳系统中的信号滤波
ρ l ρ cot(φ /2) Rp =Rshank+Rtip= + ( 1 - 1) π rs2 π rt rs
ρ为电极内液的电阻率,l为杆部长度;rs 为圆锥形的 起始半径(μm);rt为电极尖端半径(μm);φ为电 极尖端圆锥形的角度。
串联电阻(Series resistance, Rs)和 通路电阻(接触电阻)(Access resistance, Ra)
漏电阻(Leak risistance, RL) 又叫被动反应电阻(Passive resistance),亦即 稳态电阻(Steady-state resistance)。是指细胞膜在 某一钳制电位下离子通道恒定开启时细胞膜的阻抗。 在不同的钳位电压下, RL是不同的。计算公式为:
RL = ΔV/kΔI = ΔW/kΔD
膜片钳记录技术创立以来,记录方式的变化
经典记录模式: 贴附式(Cell-attached 或 on cell) 内膜向外式(Inside-out) 外膜向外式(Outside-out) 全细胞记录方式(Whole-cell recording) 发展记录模式: 穿孔膜记录方式(Perforated patches) 穿孔囊泡记录方式(Perforated vesicles) 高阻封接巨膜片记录方式(Gigaseal-Macropatch) 松散封接记录方式 (Loose patch clamp) 细胞内灌流记录方式(Intracellular perfusion patch) 巨大切割膜片钳记录方式(Giant excised patches)
2002年11月20日
第一部分 膜片钳技术基本概念
第二部分
离子通道基本知识
第一部分
膜片钳技术的基本概念
主要内容
1. 膜片钳技术简介
2. 膜片钳系统中的电位(电压)与电流
3. 膜片钳系统中的电阻
4. 膜片钳系统中的电容
5. 膜片钳系统中的串联电阻和电容补偿 6. 膜片钳系统中的漏减功能 7. 膜片钳系统中的信号滤波
ρ l ρ cot(φ /2) Rp =Rshank+Rtip= + ( 1 - 1) π rs2 π rt rs
ρ为电极内液的电阻率,l为杆部长度;rs 为圆锥形的 起始半径(μm);rt为电极尖端半径(μm);φ为电 极尖端圆锥形的角度。
串联电阻(Series resistance, Rs)和 通路电阻(接触电阻)(Access resistance, Ra)
漏电阻(Leak risistance, RL) 又叫被动反应电阻(Passive resistance),亦即 稳态电阻(Steady-state resistance)。是指细胞膜在 某一钳制电位下离子通道恒定开启时细胞膜的阻抗。 在不同的钳位电压下, RL是不同的。计算公式为:
RL = ΔV/kΔI = ΔW/kΔD
膜片钳记录技术创立以来,记录方式的变化
经典记录模式: 贴附式(Cell-attached 或 on cell) 内膜向外式(Inside-out) 外膜向外式(Outside-out) 全细胞记录方式(Whole-cell recording) 发展记录模式: 穿孔膜记录方式(Perforated patches) 穿孔囊泡记录方式(Perforated vesicles) 高阻封接巨膜片记录方式(Gigaseal-Macropatch) 松散封接记录方式 (Loose patch clamp) 细胞内灌流记录方式(Intracellular perfusion patch) 巨大切割膜片钳记录方式(Giant excised patches)
膜片钳实验与技术PPT精选文档
3
目
一、离子通道的概念 二、离子通道的分子结构 三、离子通道的分类 四、离子通道的研究技术 五、膜片钳实验方法 六、膜片钳改良模式及其它研究方法
录
4
一、离子通道的概念
离子通道(ion channels)是镶嵌在细胞膜脂 质双分子层上的一种 特殊整合蛋白,在特 定情况下,形成具有 高度选择性的亲水性 孔道,允许适当大小 和电荷的离子以被动 转运的方式通过。
5
6
离子通道具有两大共同特征,即离子选择性及门控特性。选择 性包括通道对离子大小的选择性及电荷选择性,如安静时神经细胞膜
离子通道对K+的通透性比Na+大100倍,而神经兴奋时,对Na+通透
性又比K+大10~20倍。通道闸门的开启和关闭过程称为门控 (gating)。通道可表现为三种状态,即备用、激活及失活状态。
7
二、离子通道的分子结构
随着生物物理学和分子生物学的迅速发展,新的研究技术 的应用,特别是膜片钳片技术与分子克隆、基因突变和异体表达 等技术的结合,使离子通道的研究迅速进入到分子、亚分子水平, 人们已开始有能力从分子水平来确定通道的分子结构和解释离子 通道的孔道特性。
8
1.电压门控离子通道的基本结构
28
1、电压钳技术 电压钳技术是1949年Cole及Marmont设计的,后经Hodgkin、 Huxley 和Katz等加以改进,并成功地应用于枪乌贼巨轴突动作电位 期间离子电流的研究。
他们直接测定了膜电流并分析了电流的离子成分,推算出动作电位期间钠电导和钾电导的变化,其基本概念至今仍被沿用。鉴于 Hodgkin、Huxley 和Eccles 对通道研究的突出贡献,获得1963年诺贝尔医学或生理学奖。
经纯化、克隆和测定表明,离子通道蛋白 是由多个亚基构成的复合体。电压门控离子 通道由α、β、γ、δ等亚基构成,但不同 的离子通道的组成略有差异,如钠通道由α、 βα12、、ββ、2和γβ和3 δ、亚β基4亚组基成组,成钾,通钙道通由道α由和αβ1、 亚基组成等。在各亚基中,α亚基是构成离 子通道的主要功能单位,而其它亚基则只起 调节作用。
目
一、离子通道的概念 二、离子通道的分子结构 三、离子通道的分类 四、离子通道的研究技术 五、膜片钳实验方法 六、膜片钳改良模式及其它研究方法
录
4
一、离子通道的概念
离子通道(ion channels)是镶嵌在细胞膜脂 质双分子层上的一种 特殊整合蛋白,在特 定情况下,形成具有 高度选择性的亲水性 孔道,允许适当大小 和电荷的离子以被动 转运的方式通过。
5
6
离子通道具有两大共同特征,即离子选择性及门控特性。选择 性包括通道对离子大小的选择性及电荷选择性,如安静时神经细胞膜
离子通道对K+的通透性比Na+大100倍,而神经兴奋时,对Na+通透
性又比K+大10~20倍。通道闸门的开启和关闭过程称为门控 (gating)。通道可表现为三种状态,即备用、激活及失活状态。
7
二、离子通道的分子结构
随着生物物理学和分子生物学的迅速发展,新的研究技术 的应用,特别是膜片钳片技术与分子克隆、基因突变和异体表达 等技术的结合,使离子通道的研究迅速进入到分子、亚分子水平, 人们已开始有能力从分子水平来确定通道的分子结构和解释离子 通道的孔道特性。
8
1.电压门控离子通道的基本结构
28
1、电压钳技术 电压钳技术是1949年Cole及Marmont设计的,后经Hodgkin、 Huxley 和Katz等加以改进,并成功地应用于枪乌贼巨轴突动作电位 期间离子电流的研究。
他们直接测定了膜电流并分析了电流的离子成分,推算出动作电位期间钠电导和钾电导的变化,其基本概念至今仍被沿用。鉴于 Hodgkin、Huxley 和Eccles 对通道研究的突出贡献,获得1963年诺贝尔医学或生理学奖。
经纯化、克隆和测定表明,离子通道蛋白 是由多个亚基构成的复合体。电压门控离子 通道由α、β、γ、δ等亚基构成,但不同 的离子通道的组成略有差异,如钠通道由α、 βα12、、ββ、2和γβ和3 δ、亚β基4亚组基成组,成钾,通钙道通由道α由和αβ1、 亚基组成等。在各亚基中,α亚基是构成离 子通道的主要功能单位,而其它亚基则只起 调节作用。
培训学习资料-膜片钳技术-2022年学习资料
Patch Clamp 1976 ve-sonras1-a0.-10
第一次记录:-1.M-11
·1980年Sigworth等在记录电极内施加5-50cmH0-的负压吸引,得到10-100GΩ的高阻封接 Giga-seal,大大降低了记录时的噪声,实-现了单根电极既钳制膜片电位又记录单通道电-流的突破。-12
第一次记录:-A-改进:千兆欧G2封接-13
1981年Hamil1和Neher等对该技术进行了改-进,引进了膜片游离技术和全细胞记录技术,-从而使该技 更趋完善,具有1pA的电流灵-敏度、1μm的空间分辨率和10μs的时间分-辨率。-14
1983年10月-《Single--Channel Recording.》-一书问世,奠定了膜片钳技术的里 碑。-Sakmann和Neher也因其杰出的工作和突出-贡献,荣获1991年诺贝尔奖。-15
THE PATCH-CLAMP TECHNIQUE-Erwin Neher-Bert Sakmann-Ge many-1991 Nobel Laureates-gigaseal'-pipet-pipette-hum n hair-cell-16
Single-Channel-Recording-1983年10月第一版-Edited by Bert S kmann and Erwin Neher-KSingle-Channel Recording-封面
Isolated neuronal-cell body-maintained in-culture-Cel body-Patch pipette-patch-clamp-technique-for recordi g-electrical activity-DEET-50μm-Ejection
膜片钳技术数据处理与分析PPT精选课件
一、基线的调零
基线的确认 全细胞记录基线易确认,单通道记录基线不易确认。
• 单通道开放时间较长 • 所记录的时间较短 • 同时开放的通道数目较多且长时间持续开放 确定通道电流的方向:电流方向向上,最负向是基线位置,反之亦然。 如何确定:膜片两侧液体、钳制电位
通道开放
单通道电流基线的确认 如果通道开放时电流向上,则基线在最下面的位置
16
膜片钳实验数据的处理
信号采集后的滤波
17
膜片钳实验数据的处理
Clampfit滤波类型
Lowpass
Highpass
Байду номын сангаас
Bandpass
Notch
Electrical Interference
18
膜片钳实验数据的处理
Lowpass 最为常用。 Clampfit根据采样定理与Nyquist定理自动算出f-3dB范围并显示 在该框底部。 7种类型: (1)8-pole Bessel:数据失真小,普遍用于时域数据。 (2)Boxcar:数码滤波器,用于时域数据。当前数据点及其前 后一些数据点(取决于Smoothing points,取3-99中的奇数)的 平均值赋予当前数据点,完成滤波。
12
膜片钳实验数据的处理
坏点的赋值 (1)Data value at cursor 1:Cursor 1的数值。 (2)Mean between cursor 1..2:Cursor 1-2之间均值。 (3)Mean between cursor 3..4:Cursor 3-4之间均值。 (4)Straight -line fit between cursor 1..2:Cursor 1-2之间的直线拟合值。 (5)Fixed value(pA/mV):输入一个固定的数值。
基线的确认 全细胞记录基线易确认,单通道记录基线不易确认。
• 单通道开放时间较长 • 所记录的时间较短 • 同时开放的通道数目较多且长时间持续开放 确定通道电流的方向:电流方向向上,最负向是基线位置,反之亦然。 如何确定:膜片两侧液体、钳制电位
通道开放
单通道电流基线的确认 如果通道开放时电流向上,则基线在最下面的位置
16
膜片钳实验数据的处理
信号采集后的滤波
17
膜片钳实验数据的处理
Clampfit滤波类型
Lowpass
Highpass
Байду номын сангаас
Bandpass
Notch
Electrical Interference
18
膜片钳实验数据的处理
Lowpass 最为常用。 Clampfit根据采样定理与Nyquist定理自动算出f-3dB范围并显示 在该框底部。 7种类型: (1)8-pole Bessel:数据失真小,普遍用于时域数据。 (2)Boxcar:数码滤波器,用于时域数据。当前数据点及其前 后一些数据点(取决于Smoothing points,取3-99中的奇数)的 平均值赋予当前数据点,完成滤波。
12
膜片钳实验数据的处理
坏点的赋值 (1)Data value at cursor 1:Cursor 1的数值。 (2)Mean between cursor 1..2:Cursor 1-2之间均值。 (3)Mean between cursor 3..4:Cursor 3-4之间均值。 (4)Straight -line fit between cursor 1..2:Cursor 1-2之间的直线拟合值。 (5)Fixed value(pA/mV):输入一个固定的数值。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙酰胆碱门控离子通道
由α1γα2βδ 五个亚基组成,呈五边形排列。每个亚基有 4个跨膜区段即M1~4,由五个亚基的M2共同构成孔道的内壁。在 α1和α2亚基N端的细胞外部分各有一个ACh结合位点,当两个 ACh分子与α亚基结合后,便引起通道蛋白的构象变化和通道开 放,主要引起Na+内流增多。
三、离子通道的分类
经纯化、克隆和测定表明,离子通道蛋白 是由多个亚基构成的复合体。电压门控离子 通道由α、β、γ、δ等亚基构成,但不同 的离子通道的组成略有差异,如钠通道由α、 β1 、 β2和β3 、 β4亚基组成,钙通道由α1、 α2、β、γ和δ亚基组成,钾通道由α和β 亚基组成等。在各亚基中,α亚基是构成离 子通道的主要功能单位,而其它亚基则只起 调节作用。
离子通道具有两大共同特征,即离子选择性及门控特性。选择 性包括通道对离子大小的选择性及电荷选择性,如安静时神经细胞膜
离子通道对K+的通透性比Na+大100倍,而神经兴奋时,对Na+通透
性又比K+大10~20倍。通道闸门的开启和关闭过程称为门控 (gating)。通道可表现为三种状态,即备用、激活及失活状态。
然而,你是否知道?有一篇论文,它的作者当时还
不太有名,刊登的杂志也不算顶级,可是论文发表20年 来,已神话般地被世界各地的科技工作者引用了一万二
千余次,遍及生物医学的众多领域,而且近年来还在以
平均每年约一千多篇的速度继续被引用,它就是由
Hamill,Marty,Neher,Sakmann和Sigworth等五人于 1981年发表在《欧洲生理学杂志》上的著名论文
◦非门控离子通道 ◦门控离子通道 ◦电压门控性通道 ◦化学门控性通道 ◦机械门控性通道
1、非门控性离子通道
有些离子通道始终处于开放状态,离子可随时进出细胞, 并不受外界信号的明显影响,这些通道称为非门控离子通道。 如神经和肌肉细胞静息电位就是由于细胞膜上的离子通道允许 K+自由进出细胞,而引起的K+电化学平衡电位,此种K+通道即 属于非门控性离子通道。
<Improved Path-Clamp Technigues for High-Resolution
Current Recording from Cells and Cell-free Membrane Patches>。在此之前五年,身为德国科学家的Neher和 Sakmann共同发明了膜片钳技术(1976),并于15年后 共同荣获1991年诺贝尔 生理学或医学奖。
2.化学门控离子通道的基本结构
当各种化学物质与化学门控离子通道相应部位结合后,会导致 通道蛋白发生构型变化,引起通道开放,产生离子电流。体内这种离 子通道的种类很多,主要包括各种神经递质门控离子通道、ATP敏感 钾通道和钙依赖性钾通道等。
神经递质门控离子通道又称为离子通道受体,主要有乙酰胆碱门 控离子通道、GABA门控离子通道及谷氨酸门控离了通道三大类。
膜片钳实验和 技术
在《膜片钳技术及应用》(2003)一书的序言中写道:
通常,一篇非常专业的科技论文公开发表后,若被其他的论文引用数 次,其作者就会感到欣慰;假如被别的作者引用十次以上,就可称得上 是一篇好论文;要是有幸被引用几十上百次,甚至几百次,那它无疑是 一篇高质量杰作,通常发表在权威的专业期刊或者是著名的科学杂志上, Байду номын сангаас“Nature” ,“ Science”, “ Cell”和“ Neuron”等。
2、电压门控离子通道
电压门控离子通道(voltage-gated ion channels)又称电压依赖性离子通道,这 一类通道的开启或关闭受膜电位的变化决 定,具有电压依赖性和时间依赖性。电压 门控离子通道一般以最容易通过的离子命 名,如钠离子通道、钙离子通道及钾离子 通道等。
电压门控钠离子通道
当膜去极化时,每一个功能区的S4肽段做螺旋运动而使正电荷移 出产生微弱而短暂的门控电流,导致通道构象变化。当四个结构域S4肽 段均发生这种构象变化时,则通道便处于激活开放状态,因此,S4肽段 又称为激活闸门(activation gate, m闸门)在通道开放后,很快Ⅲ结构 域门的)S,6与形Ⅳ成功一能“区活的瓣S”1之,间将的通肽道链内构口成阻失塞活,闸调门控(通in道ac的tiv失at活io过n g程at。e, h闸
电压门控钾离子通道
钾离子通道(potassium channels,简称钾通道)是广泛存在、 种类最多、最为复杂的一大类离子通道,仅电压门控钾通道就已克 隆出几十种亚型,根据其电流动力学特点可分为延迟外向整流钾通 道、瞬时外向钾通道和内向整流钾通道三类。
二、离子通道的分子结构
随着生物物理学和分子生物学的迅速发展,新的研究技术 的应用,特别是膜片钳片技术与分子克隆、基因突变和异体表达 等技术的结合,使离子通道的研究迅速进入到分子、亚分子水平, 人们已开始有能力从分子水平来确定通道的分子结构和解释离子 通道的孔道特性。
1.电压门控离子通道的基本结构
钠离子通道(sodium channels,简称钠通道),是选择性 地容许Na+跨膜通过的离子通道。根据其对钠通道阻滞剂河豚毒素 (tetrodotoxin, TTX)和μ-食鱼螺毒素(μ-conotoxin,μ- CTX) 的敏感性不同分为神经类、骨骼肌类和心肌类钠通道三类。
电压门控钙离子通道
钙离子通道(calcium channels,简称钙通道)是选择性容许 Ca2+跨膜通过的离子通道。根据肌细胞和神经元电压门控离子通道 对膜电位变化的敏感性,将神经元质膜电压门控钙离子通道分为T、 L及N三种类型,后来应用不同的毒素阻断钙电流的某种特定的成分, 在神经元又增加了P、Q和R型,共6型。
目录
一、离子通道的概念 二、离子通道的分子结构 三、离子通道的分类 四、离子通道的研究技术 五、膜片钳实验方法 六、膜片钳改良模式及其它研究方法
一、离子通道的概念
离子通道(ion channels)是镶嵌在细胞膜脂 质双分子层上的一种 特殊整合蛋白,在特 定情况下,形成具有 高度选择性的亲水性 孔道,允许适当大小 和电荷的离子以被动 转运的方式通过。