数电知识点总结 (1)

合集下载

数电重点知识总结

数电重点知识总结

数电重点知识总结
以下是数电重点知识总结:
1. 逻辑代数基本定理:包括代入定理、反演定理、对偶定理。

2. 逻辑函数:描述输入与输出之间的函数关系,通过真值表、逻辑函数表达式、逻辑图、波形图和卡诺图来表示。

3. 最小项和最大项:最小项是n变量m个因子的乘积,最大项是m个因子的和。

4. 化简方法:包括公式法、并项法、吸收法、消项法、消因子法和配项法等。

5. 卡诺图法:用于将逻辑函数化为最小项之和的形式,通过画出卡诺图并找出可合并项来进行化简。

6. 门电路:包括与门、或门、非门、与非门、或非门等,以及它们的互补输出。

7. 三态门:具有高、低和开路三种状态。

8. 组合逻辑电路:任意时刻的输出仅仅取决于该时刻的输入,与之前的电路状态无关。

9. 常用的组合逻辑电路:包括编码器、译码器、数据选择器和加法器等。

10. 组合逻辑电路的竞争与冒险:可能产生尖峰脉冲,有竞争不一定有竞争
冒险,可以通过加滤波电容、引入选通脉冲或修改逻辑等方式消除竞争冒险。

11. 二进制数的算术运算:无符号二进制数的加法运算与十进制加法相同,减法同十进制减法,不够减借位;乘法由左移被乘数与加法运算组成;除法由右移除数与减法运算组成。

带符号二进制数的算术运算中,负数通常用补码表示,可以通过补码和反码计算得到。

以上内容仅供参考,如需更多信息,建议查阅相关教材或咨询专业人士。

(完整版)数电知识点汇总

(完整版)数电知识点汇总

数电知识点汇总第一章:1,二进制数、十六进制与十进制数的互化,十进制化为8421BCD代码2,原码,补码,反码及化为十进制数3,原码=补码反码+1重点课后作业题:题1.7,1.10第二章:1,与,或,非,与非,或非,异或,同或,与或非的符号(2种不同符号,课本P22,P23上侧)及其表达式。

A☉A☉A……A=?(当A的个数为奇数时,结果为A,当A的个数为偶数时,结果为1)A⊕A⊕A……A=?(当A的个数为奇数时,结果为A,当A的个数为偶数时,结果为0)2,课本P25,P26几个常用公式(化简用)3,定理(代入定理,反演定理,对偶定理),学会求一表达式的对偶式及其反函数。

4,※※卡诺图化简:最小项写1,最大项写0,无关项写×。

画圈注意事项:圈内的“1”必须是2n个;“1”可以重复圈,但每圈一次必须包含没圈过的“1”;每个圈包含“1”的个数尽可能多,但必须相邻,必须为2n个;圈数尽可能的少;要圈完卡诺图上所有的“1”。

5,一个逻辑函数全部最小项之和恒等于16,已知某最小项,求与其相邻的最小项的个数。

7,使用与非门时多余的输入端应该接高电平,或非门多余的输入端应接低电平。

8,三变量逻辑函数的最小项共有8个,任意两个最小项之积为0.9,易混淆知识辨析:1)如果对72个符号进行二进制编码,则至少需要7位二进制代码。

2)要构成13进制计数器,至少需要4个触发器。

3)存储8位二进制信息需要8个触发器。

4)N进制计数器有N个有效状态。

5)一个具有6位地址端的数据选择器的功能是2^6选1.重点课后作业题:P61 题2.10~2.13题中的(1)小题,P62-P63题2.15(7),题2.16(b),题2.18(3)、(5)、(7),P64题2.22(3)、2.23(3)、2.25(3)。

第三章:1,二极管与门,或门的符号(课本P71,P72)2,认识N沟道增强型MOS管,P沟道增强型MOS管,N沟道耗尽型,P沟道耗尽型的符号,学会由符号判断其类型和由类型推其符号。

数电知识点总结 (1)

数电知识点总结 (1)

目录第一章数制与编码 (3)一、二进制 (3)二、二进制数与十进制数的相互转换 (3)三、十六进制 (3)四、二进制编码 (3)五、二-十进制编码 (3)六、字符编码 (3)第二章逻辑代数基础 (4)一、概述 (4)二、逻辑代数中的三种基本运算 (4)三、逻辑代数的基本公式和常用公式 (4)四、逻辑代数的基本定理 (4)五、逻辑函数及其表示方法 (4)六、逻辑函数的化简方法 (5)七、具有无关项的逻辑函数及其化简 (6)第三章门电路 (7)一、概述 (7)二、数字逻辑信号 (7)三、CMOS门电路 (7)四、74HC系列门电路的电特性 (8)五、TTL电路 (9)第四章组合逻辑电路 (10)一、组合逻辑电路的分析 (10)二、组合逻辑电路的设计 (10)三、组合逻辑电路中的竞争冒险 (10)四、若干典型的组合逻辑集成电路 (11)第五章触发器 (12)一、触发器的必备特点 (12)二、触发器的电路结构与动作特点 (12)第六章时序逻辑电路 (13)一、时序逻辑电路的基本概念 (13)二、时序电路逻辑功能的表示方法 (13)三、时序逻辑电路的分析方法 (14)四、若干经典的时序逻辑集成电路 (14)第七章脉冲波形的变换与产生 (16)一、555定时器的电路结构与工作原理 (16)二、用555定时器构成的施密特触发器 (16)三、集成施密特触发器 (17)四、用555定时器构成的多谐振荡器 (17)五、占空比可调的多谐振荡器电路 (19)六、石英晶体多谐振荡器 (19)第八章数模与模数转换器 (22)一、数模转换器的概念 (22)二、数模转换原理 (22)三、数模转换器的构成及不同类型数模转换器的特点 (22)四、DAC的转换精度与转换速度 (22)五、模数转换器的基本原理 (23)六、模数转换器的主要技术指标 (24)第一章数制与编码一、二进制二进制指用2个数码0、1计数的方式。

其特点是:逢二进一、借一为二;整数部分的位权为2n-1,小数部分的位权为2-m,n为整数的位数,m为小数的位数。

现代电子技术基础(数字部分)知识点

现代电子技术基础(数字部分)知识点

一、数电知识要点第一章 数制与编码1、码制:各种码制之间的转换(整数,小数)2、带符号数的原码、反码和反码3、二进制编码:自然二进制码、格雷码4、BCD 码:8421BCD 码、余三码等第二章 逻辑函数及其化简1、逻辑代数的基本运算及复合运算:与、或、非、与非、或非、异或、同或与运算: 全1得1,有0得0;或运算:有1得1,全0得0; 非运算:10 01==异或:相同得0,相异得1同或:相同得1,相异得02、逻辑运算基本公式及常用规则:1) 十个基本公式2) 逻辑运算常用规则:代入规则;反演规则;对偶规则3、逻辑函数表示方法1)真值表2)逻辑函数表达式:与或表达式;或与表达式;与非-与非表达式;或非-或非表达式;最小项表达式;最大项表达式(概念、性质、两者之间的关系)3)逻辑电路图(与电路分析设计结合):由逻辑表达式到电路图;由电路图写逻辑表达式;4)卡诺图(化简:最多四变量)求逻辑函数的最简与或表达式和或与表达式第三章组合逻辑电路1、集成电路主要电气指标:输入/输出电压;输入/输出电流;噪声容限;扇出系数;输出结构:推拉式输出;开路输出;三态输出2、常用组合逻辑模块3-8译码器、数据选择器、加法器、数值比较器3、组合逻辑电路分析分析步骤:1)由给定的逻辑图逐级写出逻辑函数表达式;2)由逻辑表达式列出真值表;3)分析、归纳电路的逻辑功能。

4、组合电路的设计设计步骤:列真值表—写出适当的逻辑表达式—画电路图。

其中第二步写逻辑表达式时根据设计要求有所不同:1)用门电路设计:与或电路/与非-与非电路:卡诺图化简求最简与或表达式或与电路/或非-或非电路:卡诺图化简求最简或与表达式2)用3-8译码器+与非门设计:写最小项表达式3)用3-8译码器+与门设计:写最大项表达式4)用数据选择器设计:通过卡诺图降维得出数据选择器的各位地址信号Ai和各路数据Di的表达式5、逻辑险象的判别和消除第四章时序电路分析1、各类触发器的特性方程、约束方程、状态表、状态图(RS,JK,D)2、集成计数器74163工作原理、功能及应用(如何构成任意模的计数器、序列信号发生器)3、时序电路的分析1)由触发器构成的米里型/莫尔型同步时序电路的分析步骤:分析电路类型—写激励方程和输出方程—求次态方程—状态表、状态图—功能。

数电面试知识点总结

数电面试知识点总结

数电面试知识点总结一、基本概念1.1 电路和信号电路是指由电阻、电容、电感等元件组成的系统,用于控制电流和电压的流动。

信号则是指携带信息的电流或电压,可以是模拟信号或数字信号。

1.2 基本元件常见的电路元件有电阻、电容、电感、二极管和晶体管等。

电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于控制电流方向,晶体管用于放大、开关和稳定电压等功能。

1.3 信号处理信号处理是指利用电路对信号进行加工、处理和传输的过程,包括放大、滤波、混频、解调等操作。

1.4 模拟和数字模拟信号是连续变化的信号,如声音、光线等;数字信号则是离散的信号,如二进制数等。

模拟电路和数字电路分别处理模拟和数字信号。

1.5 基本定律基本电路定律包括欧姆定律、基尔霍夫定律、麦克斯韦方程等,用于描述电路中电压、电流和电阻之间的关系。

二、模拟电路2.1 放大电路放大电路是模拟电路的重要组成部分,包括共射放大器、共集放大器、共阴极放大器等,用于放大模拟信号的幅度。

2.2 滤波电路滤波电路用于滤除或选择特定频率范围的信号,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

2.3 混频电路混频电路用于将不同频率的信号进行混合,产生新的频率信号,如频率合成器、调频解调器等。

2.4 模拟集成电路模拟集成电路是集成了大量模拟电路元件的集成电路,包括放大器、滤波器、混频器等,用于实现各种模拟信号处理功能。

三、数字电路3.1 逻辑门逻辑门是数字电路的基本组成单元,包括与门、或门、非门、异或门等,用于实现逻辑运算和数字信号处理的功能。

3.2 组合逻辑电路组合逻辑电路由多个逻辑门组成,通过不同的逻辑运算来实现特定的数字逻辑功能,如加法器、比较器、多路选择器等。

3.3 时序逻辑电路时序逻辑电路包括寄存器、计数器、触发器等,用于实现时序控制和状态存储等功能。

3.4 存储器存储器用于存储数字信号,包括静态随机存储器(SRAM)和动态随机存储器(DRAM)等,分为RAM和ROM,用于存储计算机的程序和数据。

数电知识点总结

数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。

数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。

本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。

1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。

数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。

1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。

组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。

常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。

常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。

1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。

时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。

在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。

在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。

2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。

数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。

2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。

信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。

2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。

数电知识点

数电知识点

数电知识点数字电路知识点一:数字电路的概念与分类•数字电路:用离散的电信号表示各种信息,通过逻辑门的开关行为进行逻辑运算和信号处理的电路。

•数字电路的分类:1.组合逻辑电路:根据输入信号的组合,通过逻辑门进行转换得到输出信号。

2.时序逻辑电路:除了根据输入信号的组合,还根据时钟信号的变化进行状态的存储和更新。

知识点二:数字电路的逻辑门•逻辑门:由晶体管等元器件组成的能实现逻辑运算的电路。

•逻辑门的种类:1.与门(AND gate):输出为输入信号的逻辑乘积。

2.或门(OR gate):输出为输入信号的逻辑和。

3.非门(NOT gate):输出为输入信号的逻辑反。

4.与非门(NAND gate):输出为与门输出的逻辑反。

5.或非门(NOR gate):输出为或门输出的逻辑反。

6.异或门(XOR gate):输出为输入信号的逻辑异或。

7.同或门(XNOR gate):输出为异或门输出的逻辑反。

知识点三:数字电路的布尔代数•布尔代数:逻辑运算的数学表达方式,适用于数字电路的设计和分析。

•基本运算:1.与运算(AND):逻辑乘积,用符号“∙”表示。

2.或运算(OR):逻辑和,用符号“+”表示。

3.非运算(NOT):逻辑反,用符号“’”表示。

•定律:1.与非定律(德摩根定理):a∙b = (a’+b’)‘,a+b =(a’∙b’)’2.同一律:a∙1 = a,a+0 = a3.零律:a∙0 = 0,a+1 = 14.吸收律:a+a∙b = a,a∙(a+b) = a5.分配律:a∙(b+c) = a∙b+a∙c,a+(b∙c) = (a+b)∙(a+c)知识点四:数字电路的设计方法•数字电路设计的基本步骤:1.确定输入和输出信号的逻辑关系。

2.根据逻辑关系,使用布尔代数推导出逻辑表达式。

3.根据逻辑表达式,使用逻辑门进行电路设计。

4.进行电路的逻辑仿真和验证。

5.实施电路的物理布局和连接。

知识点五:数字电路的应用•数字电路的应用领域:1.计算机:CPU、内存、硬盘等。

数电知识点总结

数电知识点总结

数电知识点总结数字电子学(Digital Electronics)是电子工程中的一个重要分支,研究的是数字信号的获取、处理和传输。

它是现代信息技术的基础,无论是计算机、通信设备还是家用电器等,都离不开数字电子学的支持。

下面将对一些数电的基本知识点进行总结。

一、数字信号与模拟信号1. 数字信号是在一定时间内以离散形式存在的信号,它的值只能是离散的有限个或无限个数值,常用0和1表示。

而模拟信号则是连续变化的信号,它的值可以在一定范围内任意取值。

2. 数字信号的离散性使得它具有抗干扰能力强、易于存储和处理等优点,因此在信息传输和处理中被广泛应用。

二、布尔代数和逻辑门1. 布尔代数是一种关于逻辑关系和运算的数学分支,它研究的是逻辑命题的运算规则。

布尔代数是数字电子学的基础,通过对逻辑命题的运算以及其对应的逻辑电路的设计,实现对数字信号的处理和转换。

2. 逻辑门是用来实现布尔代数运算的基本电子元件。

常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。

逻辑门根据输入信号的组合产生输出信号,并实现了数字电路中的基本逻辑运算。

三、逻辑电路的设计与分析1. 逻辑电路是由逻辑门按照一定的连接方式组成的电路,它实现了逻辑运算的功能。

逻辑电路有组合逻辑电路和时序逻辑电路两种类型。

2. 组合逻辑电路的输出仅取决于当前输入信号的状态,而与过去的输入信号无关。

它的设计利用了布尔代数的运算规则,通过逻辑门来实现。

3. 时序逻辑电路的输出不仅依赖于当前输入信号的状态,还可能依赖于过去的输入信号的状态。

它需要通过触发器等时序元件来实现。

四、编码器和解码器1. 编码器是一种将输入信号转换为相应输出信号的逻辑电路。

常见的编码器有十进制到二进制编码器、BCD码到十进制数码的编码器等。

2. 解码器则是将输入信号进行解码,根据其所代表的信息生成相应的输出信号。

解码器的种类繁多,例如二-四解码器、三-八解码器等。

五、多路选择器和触发器1. 多路选择器是一种能够根据控制信号选择不同输入的逻辑电路。

数字电路知识点总结(精华版)

数字电路知识点总结(精华版)

数字电路知识点总结(精华版)数字电路知识点总结(精华版)第一章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与十六进制数的转换二、基本逻辑门电路第二章逻辑代数逻辑函数的表示方法有:真值表、函数表达式、卡诺图、逻辑图和波形图等。

一、逻辑代数的基本公式和常用公式1.常量与变量的关系A + 0 = A,A × 1 = AA + 1 = 1,A × 0 = 02.与普通代数相运算规律a。

交换律:A + B = B + A,A × B = B × Ab。

结合律:(A + B) + C = A + (B + C),(A × B) × C = A ×(B × C)c。

分配律:A × (B + C) = A × B + A × C,A + B × C = (A + B) × (A + C)3.逻辑函数的特殊规律a。

同一律:A + A = Ab。

摩根定律:A + B = A × B,A × B = A + Bc。

关于否定的性质:A = A'二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量 A 的地方,都用一个函数 L 表示,则等式仍然成立,这个规则称为代入规则。

例如:A × B ⊕ C + A × B ⊕ C,可令 L = B ⊕ C,则上式变成 A × L + A × L = A ⊕ L = A ⊕ B ⊕ C。

三、逻辑函数的化简——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与或表达式。

1.合并项法利用 A + A' = 1 或 A × A' = 0,将二项合并为一项,合并时可消去一个变量。

大学数电知识点总结

大学数电知识点总结

大学数电知识点总结一、数电基本概念1. 数字电子学的概念和发展历史- 数字电子学是指以电子技术为基础进行数字电路设计和数字系统分析的一门学科。

它是传统的电子技术与计算机技术的结合,是先进的信息技术的一部分。

- 数字电子学的起源可以追溯到20世纪40年代,随着计算机和通信技术的发展,数字电子学逐渐发展成熟。

目前,数字电子学已经成为电子信息类专业的一门重要基础课程。

2. 数字电子学的基本概念- 数字电子学主要研究数字电路的设计、分析和实现技术,包括数字电路的原理与设计方法、数字系统的组成结构、数字信号的处理与传输等内容。

- 数字电子学的基本概念包括数字信号与模拟信号的区别、数字电路的基本原理、数字逻辑门的种类与功能等内容。

3. 数字信号与模拟信号的区别- 数字信号是离散的,表示离散的数值,其数值是以二进制形式表示。

而模拟信号是连续的,表示连续的数值,其数值可以是任意的实数。

- 数字信号与模拟信号在传输、处理和存储方面有着不同的特点和应用场景,数字电子学主要研究数字信号的处理、传输与存储技术。

4. 数字电路的基本原理- 数字电路是由数字逻辑门连接而成的电路,可以实现逻辑运算、数据存储和信号处理等功能。

数字电路的基本原理包括布尔代数、数字逻辑门、数字电路的组合与时序等内容。

5. 数字逻辑门的种类与功能- 数字逻辑门是数字电路的基本组成单元,根据不同的逻辑功能可以分为与门、或门、非门、异或门等,每种门电路具有不同的逻辑功能与应用场景。

二、数字逻辑门的基本应用1. 与门(AND Gate)- 与门是英特尔公司制造的一种逻辑门,它具有两个或两个以上输入,一个输出。

只有当所有输入均为1时,输出为1,否则输出为0。

- 与门的基本应用包括逻辑乘法器、数据选择器、移位寄存器等。

2. 或门(OR Gate)- 或门是一种逻辑门电路,它具有两个或两个以上输入,一个输出。

只要有一个输入为1,输出就为1;当所有输入均为0时,输出为0。

数电知识点总结(整理版)

数电知识点总结(整理版)

数电复习知识点第一章1、了解任意进制数的一般表达式、2-8-10-16 进制数之间的相互转换;2、了解码制相关的基本概念和常用二进制编码(8421BCD格雷码等);第三章1 、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号;2 、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);4、掌握逻辑函数的常用化简法(代数法和卡诺图法);5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);第四章1、了解包括M0爭内的半导体元件的开关特性;2、掌握TTL门电路和M0S1电路的逻辑关系的简单分析;3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;4、掌握0D门、0C门及其逻辑符号、使用方法;5、掌握三态门及其逻辑符号、使用方法;6、掌握CMOS专输门及其逻辑符号、使用方法;7、了解正逻辑与负逻辑的定义及其对应关系;8、掌握TTL与CMOS1电路的输入特性(输入端接高阻、接低阻、悬空等);第五章1 、掌握组合逻辑电路的分析与设计方法;2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);4、掌握用集成译码器实现逻辑函数的方法;5、掌握用2n 选一数据选择器实现n 或者n+1 个变量的逻辑函数的方法;1、掌握各种触发器(RS D、JK、T、T')的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等);2、了解各种RS触发器的约束条件;3、掌握异步清零端Rd和异步置位端Sd的用法;2、了解不同功能触发器之间的相互转换;第七章1 、了解时序逻辑电路的特点和分类;2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程);3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;4、了解异步时序逻辑电路的简单分析;5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;6、掌握集成计数器实现任意进制计数器的方法;7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;第八章1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成及工作原理,掌握相关参数的计算方法;2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数的计算或者改变方法;第九章1、了解ROM和RAM的基本概念;2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。

数电主要知识点总结

数电主要知识点总结

数电主要知识点总结一、存储器单元存储器单元是数字电路的基本元件之一,它用来存储数据。

存储器单元可以是触发器、寄存器或存储器芯片。

触发器是最简单的存储器单元,它有两个状态,分别为1和0。

寄存器是一种多位存储器单元,它可以存储多个位的数据。

存储器芯片是一种集成电路,它可以存储大量的数据。

存储器单元的作用是存储和传输数据,它是数字电路中的重要组成部分。

二、逻辑门逻辑门是数字电路的另一个重要组成部分,它用来执行逻辑运算。

逻辑门有与门、或门、非门、异或门等。

与门用于执行逻辑与运算,或门用于执行逻辑或运算,非门用于执行逻辑非运算,异或门用于执行逻辑异或运算。

逻辑门可以组成各种复杂的逻辑电路,比如加法器、减法器、乘法器、除法器等。

逻辑门的作用是执行逻辑运算,它是数字电路中的核心部分。

三、数字电路的分类数字电路可以分为组合逻辑电路和时序逻辑电路。

组合逻辑电路是一种没有反馈的逻辑电路,它的输出完全由输入决定。

组合逻辑电路的设计是固定的,不受时间影响。

时序逻辑电路是一种有反馈的逻辑电路,它的输出不仅受输入决定,还受上一次的输出影响。

时序逻辑电路的设计是随时间变化的,受时间影响。

四、数字电路的应用数字电路在计算机、通信、控制等领域有广泛的应用。

在计算机中,数字电路用于执行逻辑和算术运算,控制数据存储和传输。

在通信中,数字电路用于信号处理、调制解调、编解码等。

在控制中,数字电路用于逻辑控制、定时控制、序列控制等。

五、数字电路的设计数字电路的设计是一个复杂的过程,需要考虑多种因素。

首先要确定系统的功能和性能要求,然后选择适当的存储器单元和逻辑门,设计适当的逻辑电路,进行仿真和验证,最后进行集成和测试。

六、数字电路的发展数字电路的发展经历了多个阶段。

从最初的离散元件到集成电路,再到超大规模集成电路,数字电路的集成度越来越高,性能越来越强。

数字电路的发展推动了计算机、通信、控制等领域的快速发展,改变了人们的生活方式,促进了社会的进步。

数电期末总结基础知识要点

数电期末总结基础知识要点

数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。

数电知识点总结考研

数电知识点总结考研

数电知识点总结考研一、数字电路基础1. 数字电路的概念数字电路是由数字逻辑门电路构成的各种数字系统,它主要用于处理和传输数字信息。

数字电路包括组合逻辑电路和时序逻辑电路两个部分。

2. 逻辑代数逻辑代数是描述逻辑运算规律的数学工具,它包括逻辑常数、逻辑变元、逻辑运算、代数运算等。

3. 组合逻辑电路组合逻辑电路是不含有存储元件的数字电路,它的输出只依赖于当前的输入信号。

常见的组合逻辑电路包括门电路、译码器、编码器、多路选择器、多路反相器、比较器等。

4. 时序逻辑电路时序逻辑电路是含有存储元件的数字电路,它的输出不仅受到当前的输入信号影响,还受到之前的输入信号历史影响。

常见的时序逻辑电路包括触发器、倒计数器、移位寄存器、计数器、序列检测器等。

5. 简单计算机系统简单计算机系统是由CPU、存储器、输入输出设备、总线等部分组成的计算机系统。

它的工作过程包括指令执行、数据传输、中断处理等。

二、数字信号处理基础1. 信号与系统信号与系统是数字信号处理的基础,它包括信号的分类、信号的运算、线性系统、离散时间系统、连续时间系统等内容。

2. 时域分析时域分析是对信号在时间域内的运算和处理技术,它包括时域波形、时域运算、时域特性分析等内容。

3. 频域分析频域分析是对信号在频域内的运算和处理技术,它包括傅里叶变换、离散傅里叶变换、频域滤波、频域特性分析等内容。

4. 信号采样与重构信号采样与重构是数字信号处理的重要技术,它包括纳奎斯特采样定理、采样定理的应用、信号重构方法等内容。

5. 数字滤波器数字滤波器是数字信号处理的重要工具,它包括FIR滤波器、IIR滤波器、数字滤波器设计方法等内容。

三、数字通信基础1. 数字调制与解调数字调制技术是数字通信的基础,它包括调制信号的生成、常用数字调制方式、调制信号的解调等内容。

2. 数字传输信道数字传输信道是数字通信的重要组成部分,它包括数字信号传输模式、数字信号传输中的数据损失、数字信号传输中的误码率等内容。

数字电路总结知识点

数字电路总结知识点

数字电路总结知识点一、基本原理数字电路是以二进制形式表示信息的电路,它由数字信号和逻辑元件组成。

数字信号是由禄电平、高电平表示的信号,逻辑元件是由逻辑门组成的。

数字电路的设计和分析都是以逻辑门为基础的。

逻辑门是用来执行逻辑函数的元件,比如“与”门、“或”门、“非”门等。

数字电路的基本原理主要包括二进制数制、布尔代数、卡诺图、逻辑函数和逻辑运算等内容。

二进制数制是数字电路中最常用的数制形式,它使用0和1表示数字。

布尔代数是描述逻辑运算的理论基础,它包括基本逻辑运算、逻辑运算规则、逻辑函数、逻辑表达式等内容。

卡诺图是用于简化逻辑函数的图形化方法,它可以简化逻辑函数的表达式,以便进一步分析和设计数字电路。

二、逻辑门逻辑门是数字电路的基本元件,它用来执行逻辑函数。

常见的逻辑门包括与门、或门、非门、异或门、与非门、或非门等。

这些逻辑门都有特定的逻辑功能和真值表,它们可以用于组合成复杂的逻辑电路。

逻辑门的特点有两个,一个是具有特定的逻辑功能,另一个是可以实现逻辑函数。

逻辑门的逻辑功能对应着二进制操作的逻辑运算,它可以实现逻辑的“与”、“或”、“非”、“异或”等功能。

逻辑门的实现是通过逻辑元件的布局和连接来完成的,比如用传输门和与门实现一个或门。

三、组合逻辑电路组合逻辑电路是由逻辑门组成的电路,它执行逻辑函数,但没有存储元件。

组合逻辑电路的特点是对输入信号的变化立即做出响应,并且输出信号仅依赖于当前的输入信号。

常见的组合逻辑电路包括加法器、减法器、多路选择器、译码器等。

加法器是一个重要的组合逻辑电路,它用来执行加法运算。

有半加器、全加器和多位加法器等不同类型的加法器,它们可以实现不同精度的加法运算。

减法器是用来执行减法运算的组合逻辑电路,它可以实现数的减法运算。

多路选择器是一个多输入、单输出的组合逻辑电路,它根据控制信号选择其中的一个输入信号输出到输出端。

译码器是用来将二进制码转换成其它码制的组合逻辑电路,它可以将二进制数码转换成BCD码、七段码等。

数电知识点总结

数电知识点总结

数电知识点总结数电,即数字电子技术,是现代电子科学和技术的重要组成部分。

它研究如何使用数字信号来处理和传输信息。

在这篇文章中,我们将对数电的一些基本概念和知识点进行总结和讨论。

一、数电基础理论1. 二进制二进制是计算机中常用的数字表示方式,使用0和1来表示数字。

它是整个数电系统中的基础。

2. 逻辑门逻辑门是数电中常用的基本单元。

有与门、或门、非门等。

通过组合不同的逻辑门可以实现各种电路功能。

3. 真值表真值表是描述逻辑门输入输出关系的表格。

它能够帮助我们清晰地了解逻辑门的工作原理和功能。

4. 布尔代数布尔代数是一种逻辑系统,它基于二进制值和逻辑运算。

它能够简化和优化逻辑电路的设计。

二、数电电路设计1. 加法器加法器是数电中重要的电路,用于实现数字的加法运算。

全加器是最基本的加法器。

2. 编码器编码器用于将一个多位数字编码为一个较小的码。

常见的是4-2编码器和8-3编码器等。

3. 解码器解码器正好与编码器相反,它用于将一个码解码为一个多位数字。

常见的是2-4解码器和3-8解码器等。

4. 翻转器翻转器是一种存储元件,可以存储和改变输入信号的状态。

常见的有RS触发器、D触发器和JK触发器等。

三、数电应用领域1. 计算机计算机是数电应用最广泛的领域之一。

计算机内部的逻辑电路和芯片基于数电原理。

2. 通信数字通信是现代通信技术的基础。

数电提供了快速、准确和可靠的数字信号处理方法。

3. 数字电视机数字电视机通过数电技术将模拟信号转换为数字信号,并在数字领域进行处理。

4. 数字音频设备数字音频设备使用数电技术处理和转换音频信号,提供更高的音频质量和灵活性。

结语数电是现代科技的基石之一,它通过数字信号的处理和传输,推动了科学技术的发展。

本文简要总结了数电的基础理论、电路设计和应用领域等知识点。

深入了解数电原理和应用,不仅能够更好地理解数字技术的工作原理,而且可以为我们进行相关领域的研究和应用提供帮助。

希望本文对读者有所启发和帮助。

《数字电子技术》知识点

《数字电子技术》知识点

《数字电子技术》知识点《数字电子技术》知识点第1章 数字逻辑基础1.数字信号、模拟信号的定义 2.数字电路的分类 3.数制、编码其及转换 要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 之间进行相互转换。

举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= (100101.01)2= ( 25.4)16= (00110111.00100101)8421BCD 4.基本逻辑运算的特点与运算:见零为零,全1为1; 或运算:见1为1,全零为零;与非运算:见零为1,全1为零; 或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非运算:零变 1, 1变零; 要求:熟练应用上述逻辑运算。

5.数字电路逻辑功能的几种表示方法及相互转换。

①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。

②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。

③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。

⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。

⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。

要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。

6.逻辑代数运算的基本规则 ①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。

这个规则称为反演规则。

②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。

数电期末知识点总结

数电期末知识点总结

数电期末知识点总结一、数字逻辑1. 数字系统数字系统是一种表示数值和计算的方式。

常见的数字系统有二进制、八进制、十进制和十六进制。

二进制是计算机内部用的数字系统,十六进制则是计算机系统常见的数字系统。

2. 基本逻辑门基本逻辑门包括与门、或门、非门、异或门、同或门等。

这些逻辑门可以用来构建各种数字逻辑系统。

3. 逻辑函数逻辑函数可以表示为逻辑表达式或者真值表。

逻辑函数的不同表示方式可以用来进行数字逻辑系统的设计和分析。

4. 布尔代数布尔代数是逻辑函数的数学理论基础。

在数字逻辑系统的设计和分析中,布尔代数是非常重要的基础知识。

5. 组合逻辑电路组合逻辑电路是由逻辑门直接连接而成的数字逻辑系统。

组合逻辑电路的设计和分析是数字逻辑课程的重点内容之一。

6. 时序逻辑电路时序逻辑电路是由组合逻辑电路和时钟信号组成的数字逻辑系统。

时序逻辑电路的设计和分析是数字逻辑课程的另一个重要内容。

二、数字电路1. 数字集成电路数字集成电路是由大量的逻辑门和触发器等数字元件组成的电路芯片。

数字集成电路是数字逻辑系统的基础。

2. 二极管逻辑电路二极管逻辑电路是由二极管直接连接而成的数字逻辑系统。

二极管逻辑电路在数字逻辑发展的早期有重要的应用。

3. TTLTTL是一种重要的数字电路技术标准。

TTL技术具有高速、稳定、可靠等特点,是数字集成电路的主要技术之一。

4. CMOSCMOS是另一种重要的数字电路技术标准。

CMOS技术具有低功耗、高密度等特点,是数字集成电路的主要技术之一。

5. FPGAFPGA是一种灵活可编程的数字逻辑芯片。

FPGA具有很高的可编程性和并行性,可以实现各种复杂的数字逻辑系统。

6. ASICASIC是一种专门定制的数字逻辑芯片。

ASIC可以根据特定的应用需求进行设计和制造,具有很高的性能和可靠性。

三、数字信号处理1. 采样采样是将连续信号转换为离散信号的过程。

在数字信号处理中,采样是非常重要的步骤。

2. 量化量化是将连续信号的幅度值转换为离散值的过程。

数电基本知识点总结

数电基本知识点总结

数电基本知识点总结一、数字信号1.1 数字信号的概念数字信号是由一系列离散的数值组成的信号,它可以使用二进制形式表示。

在数字电子技术中,数字信号是处理的对象,通过数字信号的处理可以实现各种功能和应用。

1.2 数字信号的特点数字信号具有以下特点:1)离散性:数字信号是由一系列离散的数值组成的,相邻的数值之间有间隔。

2)可靠性:数字信号的传输和处理相对容易,不易受到噪声和干扰的影响,具有较高的可靠性。

3)易处理:数字信号可以进行数学运算和逻辑运算,易于进行处理和分析。

1.3 数字信号的表示数字信号可以使用二进制、八进制、十进制、十六进制等形式进行表示,其中,二进制是最常用的表示形式。

在数字电子技术中,常用的是二进制形式。

1.4 数字信号的产生数字信号可以通过模拟信号的采样和量化来进行产生。

采样是对模拟信号进行时间间隔的离散取样,量化是对采样后的信号进行幅度离散化。

1.5 数字信号的传输数字信号可以通过数字通信系统进行传输,数字通信系统可以利用数字调制、解调技术来实现数字信号的传输和接收。

数字通信系统在通信领域中有着重要的应用。

1.6 数字信号的处理数字信号可以通过数字信号处理技术进行处理,包括滤波、变换、编码、解码等操作,可以实现对信号的提取、分析和处理。

二、数字电路2.1 数字电路的概念数字电路是由数字元器件构成的电路,用来进行数字信号的处理和运算。

数字电路可以实现逻辑运算、数学运算、存储等功能。

2.2 数字电路的分类数字电路按照其功能可以分为组合逻辑电路和时序逻辑电路。

组合逻辑电路是由逻辑门构成的,其输出仅依赖于当前的所有输入;时序逻辑电路则包含了时序逻辑元件,其输出还依赖于其先前的输入。

2.3 逻辑门逻辑门是数字电路的基本组成单元,用来进行逻辑运算。

常见的逻辑门有与门、或门、非门、异或门等,它们通过对输入信号进行逻辑运算得到输出信号。

2.4 组合逻辑电路组合逻辑电路由多个逻辑门组成,它的输出仅依赖于当前的输入信号。

数字电子技术》知识点

数字电子技术》知识点

《数字电子技术》知识点第1章数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换。

举例1:()10= ( )2= ( )16= ( )8421BCD解:()10= 2= ( 16= 8421BCD4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变1,1变零;要求:熟练应用上述逻辑运算。

5.数字电路逻辑功能的几种表示方法及相互转换。

①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。

②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。

③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。

⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。

⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。

要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。

6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。

这个规则称为反演规则。

②对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y',Y'称为函Y 的对偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数电复习知识点
第一章
1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换;
2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等);
第三章
1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号;
2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;
3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);
4、掌握逻辑函数的常用化简法(代数法和卡诺图法);
5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;
6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);
第四章
1、了解包括MOS在内的半导体元件的开关特性;
2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析;
3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;
4、掌握OD门、OC门及其逻辑符号、使用方法;
5、掌握三态门及其逻辑符号、使用方法;
6、掌握CMOS传输门及其逻辑符号、使用方法;
7、了解正逻辑与负逻辑的定义及其对应关系;
8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等);
第五章
1、掌握组合逻辑电路的分析与设计方法;
2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;
3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);
4、掌握用集成译码器实现逻辑函数的方法;
5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法;
第六章
1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等);
2、了解各种RS触发器的约束条件;
3、掌握异步清零端Rd和异步置位端Sd的用法;
2、了解不同功能触发器之间的相互转换;
第七章
1、了解时序逻辑电路的特点和分类;
2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程);
3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;
4、了解异步时序逻辑电路的简单分析;
5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;
6、掌握集成计数器实现任意进制计数器的方法;
7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;
第八章
1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成及工作原理,掌握相关参数的计算方法;
2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数的计算或者改变方法;
第九章
1、了解ROM和RAM的基本概念;
2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。

第一章数制和码制
1、什么是数制、码制
2、二进制、十进制、八进制、十六进制相互转换,不同数制数的的大小排列
3、求二进制数的反码、补码(包括无符号数、有符号数)
4、十进制数对应的8421BCD码、余三码、格雷码
第二章、逻辑代数
0、什么是逻辑代数,逻辑变量的取值特点
1、与、或、非、与非、或非、与或非、异或、同或运算,运算符号、逻辑符号、逻辑功能、运算关系
2、逻辑代数基本公式:运算规则、运算法则、交换律、结合律、分配率、摩根定律公式
3、逻辑代数常用公式:吸收率I、II;冗余律;
4、逻辑代数基本定理:代入定理、反演定理、对偶定理,求反演式、对偶式
5、什么是逻辑函数
卡诺图化简?逻辑函数式(最小项表达式)?真值表?6、逻辑函数的表示方法:真值表、逻辑函数式、逻辑图、波形图以及相互之间的转换逻辑问题抽象
7、逻辑函数化简(公式、卡诺图)
第三章
1、什么是门电路
2、正负逻辑的概念
3、二极管、三极管、MOS管开关特性:静态开关特性、动态开关特性(主要是结论)
4、二极管与门、或门原理,写表达式
5、CMOS反相器、CMOS与非门、CMOS或非门,认识电路写表达式
6、CMOS反相器阈值电压值、输入噪声容限值及其意义
7、CMOS门电路无输入特性,输出特性:输出低电平电流、输出高电平电流
8、CMOS门电路传输延迟时间意义
9、OD门、TS门给出逻辑符号电路会写表达式、分析功能;OD门输出并联使用功能。

10、CMOS传输门功能(根据逻辑符号分析)、双向模拟开关功能分析
11、CMOS门电路多于不用输入端的处理(不影响逻辑功能、不能悬空)
12、三极管反相器分析
13、TTL反相器:输入高、低电平各三极管的工作状态(导通、截止、饱和、倒置工作情况)
14、TTL反相器阈值电压值、输入噪声容限电压值及其意义
15、TTL反相器输入特性曲线读出输入短路电流值(输入低电平电流值)、输入高电平电流值、理解输出高电平电流、输出低电平电流(极限值);TTL反相器扇出系数的计算及其意义。

16、TTL反相器输入负载特性:开门电阻(值)、关门电阻(值)
17、TTL反相器传输延迟时间的意义
18、TTL与非门(多发射极三极管实现的逻辑功能)、或非门,认识电路并写逻辑表达式
19、普通TTL门、CMOS输出端能否并联使用
20、OC门、TS门逻辑符号给定电路分析逻辑功能并画波形图。

第四章组合逻辑电路
1、组合逻辑电路、时序逻辑电路的概念区别,电路区别
2、组合逻辑电路分析(真值表分析逻辑功能)
3、组合逻辑电路设计(分立门电路器件设计、中规模集成电路设计译码器、数据选择器等)组合逻辑电路设计的步骤(最简与或表达式、与非-与非表达式、最简与或非表达式)
4、编码器:输入信号端与输出编码端的关系;互斥编码器、优先编码器区别
010?0,其余全为1,则输出编码为Y2'Y1'Y0'?' 74HC148功能,若输入I5
74HC147功能。

5、译码器:输入编码端与输出信号端的关系;
74HC138功能分析:基本功能、扩展功能;两片74HC138级联构成4线-16线译码器;74HC138设计组合逻辑函数;
6、数据选择器:概念(含义);输入信号、输出端的关系;74HC153、74HC151基本功能、扩展功能、级联;数据选择器设计组合逻辑函数。

7、加法器:全加器、半加器的概念,会设计;74HC283构成8421BCD码转余三BCD码。

8、数值比较器,输入、输出信号关系;数值比较器级联。

9、判断一个电路是否存在竞争冒险;消除竞争冒险的方法
第五章触发器
1、触发器从逻辑功能上分为几种、从CLK信号控制方面(电路结构)分几种
2、SR锁存器、电平触发的SR触发器(D触发器),认识电路会分析功能。

3、各种触发器要认识逻辑符号,会画波形图。

4、主从SR触发器、主从JK触发器,CLK有效期间接收信号的特点(主从JK触发器的一次变化现象)。

5、边沿触发器认识逻辑符号,注意异步清零端、异步置1端的逻辑控制(优先权最高)。

6、触发器逻辑功能表示形式(方法)有几种,给定触发器会给出其不同的表示形式。

相关文档
最新文档