修订版-线性代数习题三答案
上海交通大学 线性代数教材 课后答案 习题3
习 题 三 (一)1.求下列矩阵的特征值与特征向量.(1)133353331A ⎛⎫ ⎪=--- ⎪ ⎪⎝⎭答案特征值为2,1321-===λλλ(二重)对应的特征向量. 1111c ⎛⎫ ⎪- ⎪ ⎪⎝⎭,23231110,,01c c c c --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数.(2)212533102A -⎛⎫⎪=- ⎪ ⎪--⎝⎭答案特征值为1231λλλ===-(三重)对应的特征向量. 11,1k k -⎛⎫⎪- ⎪ ⎪⎝⎭为任意非零常数. (3) 563101121A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭答案特征值为1232λλλ===(三重)对应的特征向量. 12122110,,01c c c c -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数. (4) 222214241A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭答案特征值为1236,3λλλ=-==(二重).对应的特征向量分别为:112,2k ⎛⎫ ⎪ ⎪ ⎪-⎝⎭232210,01k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。
(5) 322010423A -⎛⎫⎪=- ⎪⎪-⎝⎭答案特征值为1231,1λλλ===-(二重) 。
对应的特征向量分别为. 110,1k ⎛⎫ ⎪ ⎪ ⎪⎝⎭231120,02k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。
(6) 0100100000010010A ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭答案特征值为121λλ==-(二重) 341λλ==(二重) 。
对应的特征向量分别为. 120101,1010k k -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭340101,1010k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭12,k k 为不同时为零的任意常数,34,k k 为不同时为零的任意常数。
线性代数试题及答案3
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于(D)A.m+nB.-(m+n)C.n-mD.m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于(B)A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎭⎫⎝⎛21131D120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A*中位于(1,2)的元素是(B)A.–6B.6C.2D.–24.设A是方阵,如有矩阵关系式AB=AC,则必有(D)A.A=0B.B≠C时A=0C.A≠0时B=CD.|A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于(C)A.1B.2C.3D.46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则(D)A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中(C)A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是(A)A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有(A)A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是(B)A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有(A)A.k≤3B.k<3C.k=3D.k>312.设A是正交矩阵,则下列结论错误的是(B)A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则(D)A.A 与B 相似B.A 与B 不等价C.A 与B 有相同的特征值D.A 与B 合同 14.下列矩阵中是正定矩阵的为(C )A.2334⎛⎝ ⎫⎭⎪ B.3426⎛⎝ ⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪ D.111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数课本第三章习题详细答案
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,
线性代数第三章习题及答案
习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
线性代数课后习题解答第三章习题解答
第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线代第3章习题答案
第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。
《线性代数》课后习题答案
《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
线性代数第三章习题及解答
解:取 α1 = (1, 0, 0)T , α2 = (0, 1, 0)T , β1 = (−1, 0, 0)T , β2 =
(0, −1, 0) α1 + α2 + β1 + β2 = 0, 但 α1 , α2 线性无关, 且 β1 , β2 也线性无关 (3) 若只有当 λ1 , . . . , λm 全为 0 时,等式 λ1 α1 + · · · + λm αm + λ1 β1 +· · ·+λm βm = 0 才能成立, 则 α1 , α2 , . . . , αm 线性无关, β1 , β2 , . . . , βm
证明:因为 n = R(e1 , . . . , en ) ≤ R(α1 , . . . , αn ) ≤ n 于是 R(α1 , . . . , αn ) = n, 则 α1 , α2 , . . . , αn 线性无关
7. 设向量组 α1 , α2 , . . . , αm 线性相关,且 α1 ̸= 0, 证明:存在某
2
(0, 0, 0)T , β3 = (−1, −1, 1)T 5. 利用初等行变换求下列矩阵的列向量组的一个最大线性无关
组, 并把其余列向量用最大线性无关组线性表示 . 25 31 17 43 75 94 53 132 (1) 75 94 54 134 25 32 20 48 25 31 17 43 25 31 17 75 94 53 132 0 1 2 解: 75 94 54 134 −→ 1 3 0 25 32 20 48 0 1 3 α1 α2 α3 α4 25 31 17 43 1 0 0 8 5 0 1 2 3 0 1 0 −1 −→ 0 0 1 2 −→ 0 0 1 2 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3
线性代数 习题三答案
线性代数习题三答案
《线性代数习题三答案》
线性代数作为数学的一个重要分支,对于理工科的学生来说是一个非常重要的课程。
在学习线性代数的过程中,习题是一个非常重要的部分,通过做习题可以加深对知识点的理解,提高解题能力。
今天我们就来看一下线性代数习题三的答案。
1. 习题一:
已知矩阵A= [1, 2; 3, 4],求矩阵A的转置矩阵。
答案:A的转置矩阵记为A^T,即A^T= [1, 3; 2, 4]。
2. 习题二:
已知向量a= [1, 2, 3],b= [4, 5, 6],求向量a和b的内积。
答案:向量a和b的内积记为a·b,即a·b= 1*4 + 2*5 + 3*6 = 32。
3. 习题三:
已知矩阵A= [1, 2; 3, 4],求矩阵A的行列式。
答案:矩阵A的行列式记为|A|,即|A|= 1*4 - 2*3 = 4-6 = -2。
通过以上习题的答案,我们可以看到线性代数中一些基本概念的运用,比如矩阵的转置、向量的内积、矩阵的行列式等。
这些概念在实际应用中有着广泛的用途,比如在工程、物理、经济等领域都会涉及到线性代数的知识。
因此,掌握好线性代数的基础知识,对于我们未来的学习和工作都是非常有帮助的。
希望通过对习题三的答案的学习,大家能够更加深入地理解线性代数的知识,提高解题能力,为将来的学习和工作打下坚实的基础。
线性代数课本第三章习题详细答案
第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。
大学-线性代数习题答案03
大学数学-线性代数习题答案第三章矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫ ⎝⎛--340313021201(下一步:r 2+(-2)r 1,r 3+(-3)r 1.)~⎪⎪⎭⎫ ⎝⎛---020*********(下一步:r 2÷(-1),r 3÷(-2).)~⎪⎪⎭⎫ ⎝⎛--010*********(下一步:r 3-r 2.)~⎪⎪⎭⎫ ⎝⎛--300031001201(下一步:r 3÷3.)~⎪⎪⎭⎫ ⎝⎛--100031001201(下一步:r 2+3r 3.)~⎪⎪⎭⎫ ⎝⎛-100001001201(下一步:r 1+(-2)r 2,r 1+r 3.)~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫ ⎝⎛----174034301320(下一步:r 2⨯2+(-3)r 1,r 3+(-2)r 1.)~⎪⎪⎭⎫ ⎝⎛---310031001320(下一步:r 3+r 2,r 1+3r 2.)~⎪⎪⎭⎫ ⎝⎛0000310010020(下一步:r 1÷2.)~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步:r 2-3r 1,r 3-2r 1,r 4-3r 1.)~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步:r 2÷(-4),r 3÷(-3),r 4÷(-5).)~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步:r 1-3r 2,r 3-r 2,r 4-r 2.)~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步:r 1-2r 2,r 3-3r 2,r 4-2r 2.)~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步:r 2+2r 1,r 3-8r 1,r 4-7r 1.)~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步:r 1↔r 2,r 2⨯(-1),r 4-r 3.)~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步:r 2+r 3.)~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201.2.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A .解⎪⎪⎭⎫ ⎝⎛100001010是初等矩阵E (1,2),其逆矩阵就是其本身.⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1,2(1)),其逆矩阵是E (1,2(-1))⎪⎪⎭⎫ ⎝⎛-=100010101.⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4.(1)设⎪⎪⎭⎫ ⎝⎛--=113122214A ,⎪⎪⎭⎫ ⎝⎛--=132231B ,求X 使AX =B ;解因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ,⎪⎭⎫ ⎝⎛-=132321B ,求X 使XA =B .解考虑A T X T =B T .因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫ ⎝⎛---==-417142)(1T T T B A X ,从而⎪⎭⎫ ⎝⎛---==-4741121BA X .5.设⎪⎪⎭⎫ ⎝⎛---=101110011A ,AX =2X +A ,求X .解原方程化为(A -2E )X =A .因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A ⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X .6.在秩是r 的矩阵中,有没有等于0的r -1阶子式?有没有等于0的r 阶子式?解在秩是r 的矩阵中,可能存在等于0的r -1阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎭⎫ ⎝⎛=010*********A ,R (A )=3.0000是等于0的2阶子式,010001000是等于0的3阶子式.7.从矩阵A 中划去一行得到矩阵B ,问A ,B 的秩的关系怎样?解R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式,故A 的秩不会小于B 的秩.8.求作一个秩是4的方阵,它的两个行向量是(1,0,1,0,0),(1,-1,0,0,0).解用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001,此矩阵的秩为4,其第2行和第3行是已知向量.9.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎭⎫ ⎝⎛---443112112013;解⎪⎪⎭⎫ ⎝⎛---443112112013(下一步:r 1↔r 2.)~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步:r 2-3r 1,r 3-r 1.)~⎪⎪⎭⎫ ⎝⎛----564056401211(下一步:r 3-r 2.)~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为,41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步:r 1-r 2,r 2-2r 1,r 3-7r 1.)~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步:r 3-3r 2.)~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2,71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步:r 1-2r 4,r 2-2r 4,r 3-3r 4.)~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步:r 2+3r 1,r 3+2r 1.)~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步:r 2÷16r 4,r 3-16r 2.)~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10.设A 、B 都是m ⨯n 矩阵,证明A ~B 的充分必要条件是R (A )=R (B ).证明根据定理3,必要性是成立的.充分性.设R (A )=R (B ),则A 与B 的标准形是相同的.设A 与B 的标准形为D ,则有A ~D ,D ~B .由等价关系的传递性,有A ~B .11.设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问k 为何值,可使(1)R (A )=1;(2)R (A )=2;(3)R (A )=3.解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时,R (A )=1;(2)当k =-2且k ≠1时,R (A )=2;(3)当k ≠1且k ≠-2时,R (A )=3.12.求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解对系数矩阵A 进行初等行变换,有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解对系数矩阵A 进行初等行变换,有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1,k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解对系数矩阵A 进行初等行变换,有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是⎪⎩⎪⎨⎧====00004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解对系数矩阵A 进行初等行变换,有A =⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301,于是⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1,k 2为任意常数).13.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解对增广矩阵B 进行初等行变换,有B =⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331,于是R (A )=2,而R (B )=3,故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解对增广矩阵B 进行初等行变换,有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201,于是⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k 为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解对增广矩阵B 进行初等行变换,有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫ ⎝⎛-00000010002/102/12/11,于是⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z yy z y x ,即⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1,k 2为任意常数).(4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解对增广矩阵B 进行初等行变换,有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101,于是⎪⎪⎩⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1,k 2为任意常数).14.写出一个以⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x 为通解的齐次线性方程组.解根据已知,可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x x x x ,与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x c x c c x c c x ,或⎩⎨⎧+-=-=432431432x x x x x x ,或⎩⎨⎧=-+=+-04302432431x x x x x x ,这就是一个满足题目要求的齐次线性方程组.15.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解;(2)无解;(3)有无穷多个解?解⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr.(1)要使方程组有唯一解,必须R (A )=3.因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解,必须R (A )<R (B ),故(1-λ)(2+λ)=0,(1-λ)(λ+1)2≠0.因此λ=-2时,方程组无解.(3)要使方程组有有无穷多个解,必须R (A )=R (B )<3,故(1-λ)(2+λ)=0,(1-λ)(λ+1)2=0.因此当λ=1时,方程组有无穷多个解.16.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ.要使方程组有解,必须(1-λ)(λ+2)=0,即λ=1,λ=-2.当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫ ⎝⎛--000001101101,方程组解为⎩⎨⎧=+=32311x x x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x ,即⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数).当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101,方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ,即⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17.设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ~⎪⎪⎭⎫ ⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ.要使方程组有唯一解,必须R (A )=R (B )=3,即必须(1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时,方程组有唯一解.要使方程组无解,必须R (A )<R (B ),即必须(1-λ)(10-λ)=0且(1-λ)(4-λ)≠0,所以当λ=10时,方程组无解.要使方程组有无穷多解,必须R (A )=R (B )<3,即必须(1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时,方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221,方程组的解为⎪⎩⎪⎨⎧==++-=3322321 1x x x x x x x ,或⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1,k 2为任意常数).18.证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T ,使A =ab T .证明必要性.由R (A )=1知A 的标准形为)0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,即存在可逆矩阵P 和Q ,使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=P AQ ,或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=Q P A .令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a ,b T =(1,0,⋅⋅⋅,0)Q -1,则a 是非零列向量,b T 是非零行向量,且A =ab T .充分性.因为a 与b T 是都是非零向量,所以A 是非零矩阵,从而R (A )≥1.因为1≤R (A )=R (ab T )≤min{R (a ),R (b T )}=min{1,1}=1,所以R (A )=1.19.设A 为m ⨯n 矩阵,证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ;证明由定理7,方程AX =E m 有解的充分必要条件是R (A )=R (A ,E m ),而|E m |是矩阵(A ,E m )的最高阶非零子式,故R (A )=R (A ,E m )=m .因此,方程AX =E m 有解的充分必要条件是R (A )=m .(2)方程YA =E n 有解的充分必要条件是R (A )=n .证明注意,方程YA =E n 有解的充分必要条件是A T Y T =E n 有解.由(1)A T Y T =E n 有解的充分必要条件是R (A T )=n .因此,方程YA =E n 有解的充分必要条件是R (A )=R (A T )=n .20.设A 为m ⨯n 矩阵,证明:若AX =AY ,且R (A )=n ,则X =Y .证明由AX =AY ,得A (X -Y )=O .因为R (A )=n ,由定理9,方程A (X -Y )=O 只有零解,即X -Y =O ,也就是X =Y .。
线性代数课后习题3部分答案
1 1 r3 r4 1 r3 r1r1 0 r2 2 0 0 0 0
1 1 0 0
1 1 1 0
向量组的秩为3等于向量的个数,所以1 , 2 , 3线性无关。
• (2)
1 1 1 r r 1 1 1 1 3 1 r2 r1 (1 , 2 , 3 ) 1 3 1 0 2 0 0 1 3 k 0 2 k-1 0
1 r2 ( 2) r3 3 r2 0 r4 5 r2 0 0
2 1 r 1 1 3 r34 (r32) 0 r2 r3 0 0 2 4 0 2 4 0 3 0
2 1 0 1 0 1 2 0 0 0 3 0
1 0 1 0 2 0 1 1 0 2 0 0 0 1 1r2
r ( A) 3 5,
x3 , x5为自由未知量
(x3 ,x5 )T 分别取为(1,0)T ,(0,1)T , 得到两个解:
5 (1)解:将向量按列构成矩阵:
1 1 (1 , 2 , 3 , ) 1 2 2 1 3 0 2 1 2 4 r32 rr11 0 2 2 6 r r4 2 r1 0 3 1 5 0 1 3 1 3 7 0 5 3 11 3 0
1.(3)解:
1 2 3 4 4 1 2 3 4 4 r3 r1 0 1 1 1 3 0 1 1 1 3 A (A,b)= 0 5 3 5 3 1 3 0 1 1 0 7 3 1 3 0 7 3 1 3
+2 =(1,0,3,-2) +(-6,2,0,4) =(-5,2,3,2)
线性代数习题三及答案
郑州航空工业管理学院2006—2007学年第一学期课程考试试卷(A )卷一、填空题(本题总计16分,每小题2分) 1、排列的逆序数是 2、若122211211=a a a a ,则=160030322211211a a a a 3、设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 4、若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 5、已知五阶行列式1234532*********140354321=D ,则=++++4544434241A A A A A6、若n 元齐次线性方程组0Ax =的系数矩阵A 的秩为n-1 ,则其解空间的维数为7、若()Tk 11=α与()T121-=β正交,则=k8、若矩阵A 的特征值分别为1、-1、2 ,则2+-=A A E 二、选择题(本题总计20分,每小题2分)1、 若齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)1(0)1(0)1(321321321x x x x x x x x x λλλ 有非零解,则λ的范围为( )A.0≠λ B.3-≠λC.0≠λ且3-≠λ D.0=λ且3-=λ 2、 设n 阶矩阵A 和B 满足AB=0,则( )A.00==B A 或 B.00==B A 或 C.0B A =+D.0=+B A3、 设A 为三阶矩阵,*A 为A 的伴随矩阵,且21=A ,则=--*A A 2)3(1( )A.2716-B.31- C.31 D.27164、 向量组r ααα,,,21 线性相关且秩为s ,则( ) A.s r = B.s r ≤ C.r s ≤ D.r s <5、 设向量组A 能由向量组B 线性表示,则( )A.)()(A R B R ≤B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥6、 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A ( )A.8 B.8-C.34 D.34-7、 若n 元非齐次线性方程组b Ax =的增广矩阵的秩()n R <b A,,则方程组( )A.有唯一解 B.有无穷多解 C.无解 D.无法判断解的情况 8、 n 阶方阵A 的秩n r <的充要条件为( )A.A 有r 阶子式不等于零 B.A 的1+r 阶子式都为零C.A 的任一个r 阶子式都不等于零D.A 的任1+r 个列向量线性相关,而有r 个列向量线性无关 9、 设非齐次线性方程组b Ax =有两个不同的解为21,αα,则下列向量是方程组的解是( ) A.21αα+B.21αα-C.213132αα+ D.R k k k k ∈+212211,,其中αα10、 已知n 阶方阵A 、B 和C 满足ABC=E ,其中E 为n 阶单位矩阵,则=-1B ( ) A.11--C A B.ACC.CAD.11--A C三、计算题(本题总计56分,5、6每小题10分,其他每小题9分)1. 已知矩阵111111111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,121111001⎛⎫ ⎪=- ⎪ ⎪-⎝⎭B ,求2-AB A 及T B A .2. 求n 阶行列式的值a b b b ba b b b b a b b b b a D =3. 求矩阵的逆⎪⎪⎪⎭⎫ ⎝⎛=343122321A4. 求下列非齐次线性方程组所对应的齐次线性方程组的基础解系及此方程组的通解⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++433546622033225432154315432154321x x x x x x x x x x x x x x x x x x x5. 已知向量组()T 32011=α、()T53112=α、()T13113-=α、()T 94214=α、()T52115=α,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示.6. 求矩阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的特征值和特征向量.四、证明题(本题总计8分)已知向量组(Ⅰ)321,,ααα,(Ⅱ)4321,,,αααα,(Ⅲ)5321,,,αααα,如果各向量组的秩分别为3、3、4.证明:向量组45321,,,ααααα-的秩为4.郑州航空工业管理学院2006—2007学年第二学期考试试卷答案及评分标准(B )卷一、填空题(本题总计20分,每小题 2 分)1、()12n n -;2、0;3、11031102744002A ⎛⎫⎪ ⎪ ⎪⎝⎭或;4、E A -;5、()R A m =;6、3m -;7、2;8、1-;9、 0; 10、1l ≠ 二、选择题(本题总计 10 分,每小题 2分) 1、D ;2、A ;3、C ;4、B ;5、C三、计算题(本题总计60分,每小题10分) 1、解:特征方程11(2)(3)24A E λλλλλ---==---从而A 的特征值为122,3λλ==………………………………………………(4分)当12λ=时,由方程(2)0A E x -=得基础解系1(1,1)T ζ=-,即对应于12λ=的全部特征向量为11k ζ1(0)k ≠;……………………………(7分)当23λ=时,由方程(3)0A E x -=得基础解系2(1,2)T ζ=-,即对应于23λ=的全部特征向量为22k ζ2(0)k ≠.……………………………(10分)2、解:011111112111111000111000nn n n n nn na a a a D c c c c a a a a a ++----- ----…(5分)()(1)212121111n n n n a a a a a a a +⎛⎫=-----⎪⎝⎭…………………(10分)3、解:由010100001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100001010B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求得1A B ==-,*010100001A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,*100001010B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,从而1010100001A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,1100001010B -⎛⎫⎪= ⎪ ⎪⎝⎭ ……………………………………(5分)故11210134102X A CB ---⎛⎫⎪==- ⎪ ⎪-⎝⎭…………………………………………………(10分)4、解:对增广矩阵B 施行初等行变换2141123242235(1)111111111112321133012260012260012260543315012260101151012260000000000000r r r r r r r r r r r B --++-⨯-⎛⎫⎛⎫⎪⎪-----⎪ ⎪= ⎪ ⎪⎪⎪-----⎝⎭⎝⎭---⎛⎫⎪⎪ ⎪⎪⎝⎭即得:1345234551226x x x x x x x x =+++⎧⎨=---⎩ …………………………………………………(4分)取345(,,)T x x x 分别为(1,0,0),(0,1,0),(0,0,1)T T T 得基础解系为:123(1,2,1,0,0),(1,2,0,1,0),(5,6,0,0,1)T T T ζζζ=-=-=-…………………(7分)另外取3450x x x ===得方程组的一个解(1,0,0,0,0)T η= ……………………(9分)原方程组的通解为:112233123,,,x k k k k k k R ζζζη=+++∈其中.…………(10分)5、解:设矩阵()123451211211214,,,,6422463979A ααααα---⎛⎫ ⎪--⎪== ⎪--- ⎪--⎝⎭通过初等行变换,得到其行最简形矩阵为:10103011040001300000A --⎛⎫⎪--⎪⎪ ⎪⎝⎭……………………………………………………(6分)故矩阵A 的1、2、4列即124,,ααα为A 的列向量组的一个最大无关组;…(8分) 且()31241,,10αααα-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,()51243,,43αααα-⎛⎫⎪=- ⎪ ⎪⎝⎭.……………………………(10分)6、解:由1**11A A A A A A--=⇒=,…………………………………………(3分)得()()*131113333183A A A A A A ---===-……………………………(6分)所以()1*111131218612A A A A A ----⎛⎫+=-=- ⎪⎝⎭………………………(8分)()()331166108A A-=-=-=…………………(10分)四、证明题(本题总计10 分) 证:(1)因为2,,n αα线性无关,所以21,,n αα-线性无关,而11,,n αα-线性相关,故1α可由向量组231,,,n ααα-线性表示;……………………………(4分)(2)反证法:假设n α可由向量组121,,,n ααα-线性表示,由(1)知1α可由向量组231,,,n ααα-线性表示,从而n α可由向量组21,,n αα-线性表示,则2,,n αα线性相关,这与后1n -个向量2,,n αα线性无关矛盾. 故n α不能由向量组121,,,n ααα-线性表示. ………………………………………………………………………(10分)郑州航空工业管理学院2006—2007学年第一学期课程考试试卷(B )卷一、填空题(本题总计20分,每小题2分) 9、 排列的逆序数是 10、322211211=a a a a ,则=15044022122111a a a a 11、设A 为四阶矩阵,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=1000230031202121A ,则=*A 12、 已知n 阶方阵A 、B 和C 满足ABC =E ,其中E 为n 阶单位矩阵,则=-1A13、 若A 为n m ⨯矩阵,则非齐次线性方程组b Ax =有无穷个解的充要条件是 14、已知四维列向量()T31521=α、()T1051102=α、()T 11143-=α,且()()()x x x +=++-321523ααα,则=x15、 若n 元齐次线性方程组0Ax =的系数矩阵的秩为5-n ,则其解空间的维数为 16、 已知向量()T0212-=α,则=α17、 若()T 321-=α与()Tk11-=β正交,则=k18、若矩阵A 的特征值分别为1、2、3 ,则=+-E A A 722二、选择题(本题总计20分,每小题2分)11、若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x bx x x bx x x x ax 有非零解,则A.1-=a B.01≠≠b a 且 C.1-≠a D.01==b a 或 12、设n 阶矩阵A 的行列式等于D ,则=-A 5A.D 5B. D 5- C.D n )5(-D.D n 1)5(--13、以下等式正确的是A.⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛d c b a k d kc b kaB.d c b a k kd kc kb ka =C.⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛++d c b a d c d b c a D.ab c ddc b a =14、设向量组B 能由向量组A 线性表示,则A.)()(A R B R ≤B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥15、矩阵A 、B 、C 满足C =AB ,则A .)()(C A R R ≤B.)()(C B R R ≤C.)()(C A R R ≤且)()(C B R R ≤ D.)()(A C R R ≤且)()(B C R R ≤16、设A 为三阶矩阵,*A 为A 的伴随矩阵,且41=A ,则=--*A A 3)4(1 A.2716 B.2716- C.21 D.21-17、设非齐次线性方程组b Ax =有两个不同的解为21,αα,则下列向量是方程组的解是 A.21αα+B.2123αα-C.215252αα+D.R k k k k ∈+212211,,其中αα18、若n 元非齐次线性方程组b Ax =的增广矩阵的秩()n R <b A,,则方程组A.有唯一解 B.有无穷多解 C.无解 D.无法判断解的情况 19、 n 阶方阵A 的元素全为n ,则A 的秩为A.0 B.1 C.1-n D.n 20、若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=AA.8B.8-C.34D.34-三、计算题(本题总计50分,每小题10分)7. 计算n 阶行列式nD n 222232222222221=8. 求矩阵A 的逆⎪⎪⎪⎭⎫ ⎝⎛=121213421A9. 求非齐次线性方程组对应的齐次线性方程组的基础解系及原方程组的通解⎪⎩⎪⎨⎧=--+=--+-=++--5327583313432143214321x x x x x x x x x x x x 10.已知向量组()T40111-=α、()T65122=α、()T 02113--=α、()T147034=α、()T 103145-=α,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示. 11.求矩阵⎪⎪⎪⎭⎫ ⎝⎛-=124042011A 的特征值和特征向量.四、证明题(本题总计10分)已知矩阵n m ⨯A 和m n ⨯B 满足AB=E ,其中E 为m 阶单位矩阵,且n m <, 证明:A 的行向量组和B 的列向量组都线性无关.郑州航空工业管理学院2006 — 2007学年第 一学期考试试卷答案及评分标准( B )卷一、填空题(本题总计 20 分,每小题2分)1. 18;2. 12;3. 216或36;4.BC ;5.R(A)=R(A,b)<n ;6.()T4,3,2,17.5;8.3;9.5;10.420二、选择题(本题总计 20 分,每小题 2 分)1.D ;2.C ;3.D ;4.A ;5.D ;6.D ;7.B ;8.D ;9.B ;10.C 三、计算题(本题总计 50 分,每小题 10 分)1.计算n 阶行列式=n D nn 222221222223222222222221-=-=2,,3r r ni i 2000003000001002222222221--n n(2分)=-122r r 203000001002222022221------n n(6分) )2(2--=n ! (10分)2.求A 的逆矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=121213421A 解:()E A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100121010213001421~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----1013000131050001421 (2分)~⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3103110005115101005251001 (6分)=-1A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3103105115105251 (10分)3.求非齐次线性方程组对应齐次线性方程组的基础解系及非齐次方程组的通解⎪⎩⎪⎨⎧=--+=--+-=++--5327583313432143214321x x x x x x x x x x x x 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------532117583311311~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----421004210011311 ~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000004210011311~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0000042100137011 (2分) 取42,x x 为自由未知量得齐次线性方程组的解:4217x x x +-= 432x x =令⎪⎪⎭⎫ ⎝⎛42x x =⎪⎪⎭⎫ ⎝⎛01,⎪⎪⎭⎫ ⎝⎛10得基础解系 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0011,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1207 (4分) 令⎪⎪⎭⎫ ⎝⎛42x x =⎪⎪⎭⎫ ⎝⎛00得非齐次线性方程组的特解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=04013*η,则通解为 X=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-040131207001121k k 1k ,2k R ∈ (4分)4.A=()54321,,,,ααααα=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----1014064372501011143121~⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000222001101043121 (2分) ~⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000011100110101201 (4分) R(A)=3, 321,,ααα 就是向量组的一个极大无关组 (6分)则 32142αααα-+= (8分) 3215αααα++= (10分)5.求三阶矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-124042011的特征值和特征向量 解:E A λ-=λλλ----12404211=)3)(2)(1(---λλλ=0 (1分)解得 11=λ,22=λ,33=λ (4分)11=λ时,⎪⎪⎪⎭⎫ ⎝⎛-=-024032010E A ~⎪⎪⎪⎭⎫ ⎝⎛000010001得基础解系 =1p ⎪⎪⎪⎭⎫ ⎝⎛100则1p k)0(≠k 即为对应于特征值11=λ的特征向量 (5分)22=λ时,⎪⎪⎪⎭⎫ ⎝⎛---=-1240220112E A ~⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00021102101 (6分)得基础解系 =2p⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-12121,则2p k)0(≠k 即为对应于特征值22=λ的特征向量 (7分) 33=λ时,⎪⎪⎪⎭⎫⎝⎛---=-2240120123E A ~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001000211 (8分) 得基础解系 =3p⎪⎪⎪⎪⎪⎭⎫⎝⎛-0121则3kp )0(≠k 即为对应于特征值33=λ的特征向量 (10分)四、证明题(本题总计 10 分)已知矩阵n m A ⨯和m n B ⨯满足E AB =,其中E 为m 阶单位阵,且n m <,证明:A 的行向量组和B 的列向量组都线性无关.证明:因为EAB=,E为m阶单位阵,则Em=,(2分)RR≤(A())ER≤=. (4分)m))((BR又mR≤((6分)AA))R≤(,m所以mR=)((8分)BA(,mR=)故A的行向量组和B的列向量组的秩与向量个数相等,所以的A行向量组和B的列向量组都线性无关. (10分。
高等数学 线性代数 习题答案第三章
第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。
由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。
线性代数习题三答案
第三章 线性方程组一、温习巩固1. 求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解: 化系数矩阵为行最简式⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛----=000001001-0215110531631121行变换A因此原方程同解于⎩⎨⎧=+-=023421x x x x 令2412,k x k x ==,可求得原方程的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1001001221k k x ,其中21,k k 为任意常数。
2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x解:把增广矩阵),(b A 化为阶梯形⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A因此3),(2)(=<=b A R A R ,所以原方程组无解。
3. 设)1,2,1,3(),1,1,2,3(--=--=βα。
求向量γ,使βγα=+32。
解:⎪⎭⎫ ⎝⎛--=-=31,0,35,3)2(31αβγ 4. 求向量组,)0,2,1,1(,)14,7,0,3(,)2,1,3,0(,)4,2,1,1(4321T T T T -===-=ααααT )6,5,1,2(5=α的秩和一个极大线性无关组。
解:将51,αα 作为列向量构成矩阵,做初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=44000000010110213012422101103033021301601424527121103121301A 所以向量组的秩为3,421,,ααα是一个极大线性无关组。
二、练习提高 ⒈ 判断题⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。
线性代数第三章习题答案
习题三 A 组1. 设1232()3()2()αααααα-++=+,求α,其中1110α⎛⎫ ⎪= ⎪⎪⎝⎭, 2011α⎛⎫ ⎪= ⎪⎪⎝⎭,3340α⎛⎫ ⎪= ⎪⎪⎝⎭。
解123103423221312430103αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+-=+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2. 判定下列向量组是线性相关还是线性无关。
(1)131-⎛⎫ ⎪ ⎪ ⎪⎝⎭,210⎛⎫ ⎪ ⎪⎪⎝⎭,141⎛⎫ ⎪ ⎪⎪⎝⎭;(2)230⎛⎫ ⎪⎪⎪⎝⎭,140-⎛⎫⎪⎪⎪⎝⎭,002⎛⎫ ⎪ ⎪⎪⎝⎭解(1)121121121101101314077011011011101022000000000-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭::::, R(A)=2,线性相关(2)210210*********00102002000002-⎛⎫-⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭::, R(A)=3,线性无关 3. a 取什么值时,下列向量组线性相关?111a α⎛⎫ ⎪= ⎪ ⎪⎝⎭, 211a α-⎛⎫⎪= ⎪ ⎪⎝⎭,311a α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 解 (法一)求系数行列式3211112(1)(2)11a a a a a a a a-=-+=+-+,令其为0,得1a =-。
由此可知,当1a =-时,R(A)<3,即题给向量组线性相关。
(法二)()23121212311110110101,,111101101111111111r r r r r r a a a a a a a a a a a a a a a a a ααα-+--+-+-++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭:::向量组线性相关,所以10a +=,即1a =-4. 设123,,ααα线性无关,证明:1α,12αα+,123ααα++也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩ 所以1230k k k ===,即112123,,αααααα+++线性无关. 5.设1(1,1,1)α=,2(1,2,3)α=,3(1,3,)t α=,问: (1) t 为何值时向量组123,,ααα线性相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 线性方程组一、温习巩固1. 求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解: 化系数矩阵为行最简式⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛----=000001001-0215110531631121行变换A因此原方程同解于⎩⎨⎧=+-=023421x x x x 令2412,k x k x ==,可求得原方程的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1001001221k k x ,其中21,k k 为任意常数。
2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x解:把增广矩阵),(b A 化为阶梯形⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A因此3),(2)(=<=b A R A R ,所以原方程组无解。
3. 设)1,2,1,3(),1,1,2,3(--=--=βα。
求向量γ,使βγα=+32。
解:⎪⎭⎫ ⎝⎛--=-=31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=-T )6,5,1,2(5=α的秩和一个极大线性无关组。
解:将51,ααΛ作为列向量构成矩阵,做初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=4400000000101102130124220101103033021301601424527121103121301A 所以向量组的秩为3,421,,ααα是一个极大线性无关组。
二、练习提高 ⒈ 判断题⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。
(√ ) ⑵ 设A 为n m ⨯矩阵,0=Ax 是非齐次线性方程组b Ax =的导出组,则(a )若0=Ax 仅有零解,则b Ax =有唯一解。
(⨯) (b )若0=Ax 有非零解,则b Ax =有无穷多解。
(⨯) (c )若b Ax =有无穷多解,则0=Ax 有非零解。
(√ )⑶ 设A 为n 阶矩阵,α是n 维列向量,若)(0A R AR T=⎪⎪⎭⎫⎝⎛αα,则线性方程组 00=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛y x A T αα必有非零解。
(√ ) ⑷ 对矩阵()E A M 施行若干次初等变换,当A 变为E 时,相应的E 变为1-A 。
(⨯)⑸ 设向量组321,,ααα线性无关,1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有321,,ααα,21ββ+k 线性相关。
(⨯)⑹ 设n 维列向量组s ααα,,,21Λ线性相关,A 是n m ⨯矩阵,则s A A A ααα,,,21Λ线性相关。
(√ ) ⑺ 若向量组B 能由向量组A 线性表示,B 和A 的秩分别为B R 和A R ,则A B R R >。
(⨯)⑻ 设A 为n m ⨯矩阵,n m r A R <<=)(,则A 的1-r 阶子式不能为0。
(⨯) ⑼ 设n 元齐次线性方程组的一个基础解系为4321,,,ηηηη,则321211,,ηηηηηη+++,4321ηηηη+++仍为该齐次线性方程组的基础解系。
(√ ) ⑽ 集合},0),,,({2121R x x x x x x x x V i n n ∈=⋅==ΛΛ是一个向量空间。
(⨯) ⒉ 填空题⑴ 齐次线性方程组01334=⨯⨯X A 有非零解的充要条件是__3)(<A R _。
⑵ 若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足的条件是04321=+++a a a a 。
⑶ 设三阶矩阵⎪⎪⎪⎭⎫ ⎝⎛-=403212221A ,三维列向量T a )1,1,(=α,已知αA 与α线性相关, 则=a 1- 。
⑷ 若),,0(2k k =β能由)1,1,1(),1,1,1(),1,1,1(321k k k +=+=+=ααα唯一线性表示,则k 满足条件 0≠k 且3-≠k 。
⑸ 设n 阶矩阵A 的各行元素之和均为0,且A 的秩为1-n ,则线性方程组0=Ax 的通解为 111k ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭M 。
⑹ 由向量组T T T T )3,2,6,2(,)7,1,1,5(,)4,1,1,2(,)1,1,3,1(4321-=-=--=-=αααα生成的向量空间的维数为 3 。
⒊ 计算题⑴ λ取何值时,方程组⎪⎩⎪⎨⎧=++=-+=++λλλλλ3213213211x x x x x x x x x 有唯一解,无解或有无穷多解?在有无穷多解时求解。
解:对此线性方程组的增广矩阵进行初等行变换可得[]132131322222111111111111111111011001100111001r r r r r r r r B A b λλλλλλλλλλλλλλλλλλλλλλλλλ↔--+⎡⎤⎡⎤⎢⎥⎢⎥==-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥−−−→---−−−→---⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦M M M M M M M M M M M M所以 当0,1λ≠±时,()()3R A R B ==线性方程组有唯一解。
当0λ=时,()23()R A R B =<=线性方程组无解。
当1λ=±时,()()23R A R B ==<线性方程组有无穷多解。
若1λ=,[]111111010020001000200000r rB A b ⎡⎤⎡⎤⎢⎥⎢⎥=−−→-−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦M M M M M M ,解为12131110;00x x c x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦若1λ=,[]111110110200010000000000r rB A b ----⎡⎤⎡⎤⎢⎥⎢⎥=−−→-−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M MM M M M , 解为1223110010x x c x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。
⑵ 已知321,,ααα线性无关,若13322123,2,2αααααα+++a 线性相关,求a 的值。
解:由题意知存在不全为0的321,,k k k ,使得0)23()2()2(133322211=+++++ααααααk a k k ,整理得 0)3()22()2(332221131=+++++αααk ak k k k k因为321,,ααα线性无关,从而有齐次线性方程组⎪⎩⎪⎨⎧=+=+=+0302202322131k ak k k k k由321,,k k k 不全为0知方程组有非零解,则系数行列式必为023-=⇒a ⑶ 设向量t ααα,,,21Λ是齐次方程组0=Ax 的一个基础解系,向量β不是方程组0=Ax 的解,即0≠βA 。
试证明:向量组t αβαβαββ+++,,,,21Λ线性无关。
解: 设有一组数t k k k ,,,1Λ,使得0)()(11=+++++t t k k k αβαββΛ整理该式得0)(111=++++++t t t k k k k k ααβΛΛ ① 用A 左乘上式两边,注意0=i A α,故有0)(1=+++βA k k k t Λ因为0≠βA ⇒01=+++t k k k Λ ②将②代回①式,得到011=++t t k k ααΛ,因为t αα,,1Λ线性无关,故必有01===t k k Λ,再由②式,可得01====t k k k Λ⑷ 已知向量组T T T b a )0,1,(,)1,2,(,)1,1,0(321==-=βββ与向量组T )3,2,1(1-=α,,)1,0,3(2T =αT )7,6,9(3-=α具有相同的秩,且3β可由321,,ααα线性表示,求b a ,的值。
解:对矩阵()321,,ααα做初等行变换⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛--000210931713602931,所以()2,,321=αααR ,且21,αα是一个极大无关组 又因为()=321,,βββR ()321,,αααR ,所以 b a ba 30011121=⇒=-另一方面,3β可由321,,ααα线性表示,所以3β可由21,αα线性表示,即5001310231=⇒=-b b⑸ 设4元齐次线性方程组(Ⅰ)为⎩⎨⎧=-=+004221x x x x ,又已知某齐次线性方程组(Ⅱ)的通解为T T k k )1,2,2,1()0,1,1,0(21-+。
求:①方程组(Ⅰ)的基础解系;②方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有则求出所有的非零公共解。
①Ⅰ的系数矩阵为⎪⎪⎭⎫⎝⎛-=10100011A ,2)(=A R 故Ⅰ的基础解系含有224=-个解向量,可取为)0,1,0,0(和)1,0,1,1(- ②Ⅱ的通解为2421321221,2,2,k x k k x k k x k x =+=+=-=,代入Ⅰ可得⎩⎨⎧=-+=++-0202221212k k k k k k 21k k -=⇒所以当021≠-=k k 时,Ⅰ与Ⅱ有非零公共解,非零公共解为)1,1,1,1()1,2,2,1()0,1,1,0(121---=-+k k k⑹ 设有向量组(Ⅰ):T T T a )2,1,1(,)3,1,1(,)2,0,1(321+-===ααα和向量组(Ⅱ):T T T a a a )4,1,2(,)6,1,2(,)3,2,1(321+=+=+=βββ。
试问:当a 为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a 为何值时,向量组(Ⅰ)与(Ⅱ)不等价? 解:对βα,构成的矩阵做初等行变换,⎪⎪⎪⎭⎫ ⎝⎛++++-=463232112110221111),,,,,(321321a a a a βββααα⎪⎪⎪⎭⎫ ⎝⎛-+-+-→111100112110221111a a a a 所以,①当1-≠a 时,3),,(321=αααR另外,06463112221,,321≠=+++=a a a βββ,所以3),,(321=βββR故==3),,,,,(321321βββαααR =),,(321αααR ),,(321βββR ,向量组等价②当1-=a 时,⎪⎪⎪⎭⎫ ⎝⎛--→200021101111),,,(1321βααα,所以≠),,(321αααR ),,,(1321βαααR ,即1β不能由321,,ααα线性表示,向量组不等价。