最新电磁场与电磁波必考重点填空题经典
电磁场与电磁波总复习
一、 填空题(10)——已写入的答案——力佐提供1.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 垂直 。
2.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互 平行 。
3.矢量z y x e e e A ˆˆˆ++=的大小为 3 。
4.矢量场)(r A穿过闭合曲面S 的通量的表达式为:()sA r d s ∙⎰⎰ 。
5.磁感应强度沿任一曲面S 的积分称为穿过曲面S 的 磁能量 。
6.从场角度来讲,电流是电流密度矢量场的 通量 。
7.矢量场)(r A在闭合曲线C 上环量的表达式为:C()d r A r ∙⎰ 。
8.如果一个矢量场的旋度等于零,则称此矢量场为 无旋场 。
9.如果一个矢量场的散度等于零,则称此矢量场为 无散场 。
10.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于0 。
11.恒定磁场是无散场,故磁感应强度沿任一闭合曲面的积分等于 0 。
12.一个标量场的性质,完全可以由它的 梯度 来表征。
13. 亥姆霍兹定理告诉我们,研究任何一个矢量场应该从矢量的 散度与旋度 两个角度去研究。
14.从矢量场的整体而言,无散场的 旋度 不能处处为零。
15.从矢量场的整体而言,无旋场的 散度 不能处处为零。
16.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 静电场 。
17.由恒定电流所产生的磁场称为 恒磁场 。
18.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为: =B H μ .19. 在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D 和电场E满足的方程为: =D E ε . 20. 麦克斯韦 方程是经典电磁理论的核心。
21.所谓矢量线,乃是这样一些曲线,在曲线上的每一点上,该点的切线方向与矢量场的方向 相同 。
22.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 矢位(矢势) 函数的旋度来表示。
电磁场与电磁波试题
电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
电磁场与电磁波复习材料(填空题答案)
电磁场与电磁波复习材料填空1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D 和电场E 满足的方程为:D=εE 。
2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位所满足的方程为▽2ø=ρV /ε。
3.时变电磁场中,坡印廷矢量的数学表达式为S=E ╳H 。
4.在理想导体的表面, 电场强度的切向分量等于零。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为:。
6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生全反射。
7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于零。
8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 右手螺旋关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用磁失位函数的旋度来表示。
11.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为:B=μH 。
12.设线性各向同性的均匀媒质中,02=∇φ称为 拉普莱斯方程。
13.时变电磁场中,数学表达式H E S⨯=称为 坡印延矢量 。
14.在理想导体的表面,电场强度的切向分量等于零。
15.表达式()S d r A S ⋅⎰称为矢量场)(r A 穿过闭合曲面S 的通量。
16.电磁波从一种媒质入射到理想导体表面时,电磁波将发生全反射。
17.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于零。
18.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互垂直。
19.对横电磁波而言,在波的传播方向上电场、磁场分量为零。
20.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用磁矢位函数的旋度来表示。
21.静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为唯一性定理。
22.在自由空间中电磁波的传播速度为3X108m/s 。
电磁场与电磁波考试试题
电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。
A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。
A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。
A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。
A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。
A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。
A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。
A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。
A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。
A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。
A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。
2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。
3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。
4、位移电流的定义式为________。
5、麦克斯韦方程组的四个方程分别是________、________、________、________。
6、电磁波的波长、频率和波速之间的关系为________。
7、理想导体表面的电场强度________,磁场强度________。
8、均匀平面波的电场强度和磁场强度的比值称为________。
9、线极化波可以分解为两个________极化波的合成。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
《电磁场与电磁波》试题8及答案
6.两相距很近的等值异性的点电荷称为。
7.恒定磁场是场,故磁感应强度沿任一闭合曲面的积分等于零。
8.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互。
9.对平面电磁波而言,其电场、磁场和波的三者符合右手螺旋关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可用磁矢位函数的来表示。
(2)求出媒质1中电磁波的相速。
解
(1)媒质2电磁波的波阻抗
(2)媒质1中电磁波的相速
(2)矢量场 的在点 处的大小
解:
(1)
(2)矢量场 的在点 处的大小为:
(3分)
(2分)
四、应用题(每小题10分,共30分)
18.自由空间中一点电荷电量为2C,位于 处,设观察点位于 处,求
(1)观察点处的电位
(2)观察点处的电场强度。
解:
(1)任意点 处的电位
(3分)
将观察点代入
(2分)
(2)
源点位置矢量
设上极板的电荷密度为 ,则
(1分)
极板上的电荷密度与电场法向分量的关系为
(2分)
由于平行板间为均匀电场,故
(2分)
(2)由:
(3分)
将上面电场代入得:
(2分)
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。极化为 方向,如图3所示。
(1)求出媒质2电磁波的波阻抗;
(1)电容器间电场强度;
(2)电容器极板间电压。
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。
极化为 方向,如图3所示。
(完整word版)电磁场与电磁波波试卷3套含答案
《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
电磁场与电磁波精彩试题问题详解
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ϖ和磁场H ϖ满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S ϖϖϖ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A ϖϖ穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ϖϖ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=ϖ是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+=ϖ,z y x e e eB ˆˆ3ˆ5--=ϖ,求(1)B A ϖϖ+ (2)B A ϖϖ⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆϖ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球任一点的电场强度 (2)球外任一点的电位移矢量。
电磁场与电磁波复习要点
2010-2011(2)电磁场与电磁波期末考试知识点要求题型一、选择题3*8=24分 二、填空题3*6=18分 三、判断题2*9=18分 四、计算题40分第一章 矢量分析和场论基础1、理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。
梯度:x y z u u uu x y z∂∂∂∇=++∂∂∂e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。
y x zA A A x y z∂∂∂∇⋅=++∂∂∂A 散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ()()V S dV d ∇⋅=⋅⎰⎰⎰⎰⎰A A S ,x y zy y x x z z x y z x y zA A A A A A x y z y z z x x y A A A ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭e e e A e e e旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。
斯托克斯定理:()()S L d d ∇⨯⋅=⋅⎰⎰⎰A S A l数学恒等式:()0u ∇⨯∇=,()0∇⋅∇⨯=A 3、理解亥姆霍兹定理的重要意义:若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
u =∇⨯-∇A F 练习册:1-4,7,18;第二、四章 静电场和恒定磁场1、 理解静电场与电位的关系,QPu d =⋅⎰E l ,()()u =-∇E r r2、 理解静电场的通量和散度的意义,d d d 0V S V S V ρ⎧⋅=⎪⎨⋅=⎪⎩⎰⎰⎰D S E l,0V ρ∇⋅=⎧⎨∇⨯=⎩D E 静电场是有散无旋场,电荷分布是静电场的散度源。
电磁学与电磁波复习题
第一套题一、填空题:1. 麦克斯韦方程组的微分形式是: 、 、 和 。
2. 静电场的基本方程积分形式为: 、 。
3. 理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 、 、 和 。
4. 线性且各向同性媒质的本构关系方程是: 、 、 。
5. 电流连续性方程的微分形式为: 。
6. 电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界条件为 、 。
7. 应用镜像法和其它间接方法解静态场边值问题的理论依据是 。
8. 电场强度E 的单位是 ,电位移D的单位是 。
9.静电场的两个基本方程的微分形式为 、10、一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到 。
二、选择题1.在分析恒定磁场时,引入矢量磁位A,并令B A =∇⨯ 的依据是( )a. 0;B ∇⨯=b.;B J μ∇⨯=c.0B ∇=2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是( )。
a. 正确的b. 错误的c. 不能判定其正误3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )。
a. )ln(1aa D C -=πεb. )ln(201aaD C -=πε c. )ln(2101aa D C -=πε4. 点电荷产生的电场强度随距离变化的规律为( )。
2111...lna b c rrr5. N 个导体组成的系统的能量∑==Ni i i q W 121φ,其中iφ是( )产生的电位。
a .所有导体b .除i 个导体外的其他导体c .第i 个导体6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为( )3A /m a 、 2A /m b 、 A/m c 、7. 应用高斯定理求解静电场要求电场具有( )分布。
a 、 线性 b 、 对称性 c 、 任意 8. 如果某一点的电场强度为零,则该点电位的( )。
a 、 一定为零b 、 不一定为零c 、 为无穷大9. 真空中一个电流元在某点产生的磁感应强度d B 随该点到电流元距离变化的规律为( )。
电磁场与电磁波必考重点填空题经典
一、填空题▲1.矢量的通量物理含义是矢量穿过曲面的矢量线的总和;散度的物理意义是矢量场中任意一点处通量对体积的变化率;散度与通量的关系是散度一个单位体积内通过的通量。
2.散度在直角坐标系z A y A x A A div Z Y X ∂∂+∂∂+∂∂=散度在圆柱坐标系zA A r r rA r A div Z r ∂∂+∂∂+∂∂=ϕϕ1)(1 ▲3,矢量函数的环量定义 ⎰⋅=l l d A C ;旋度的定义MAX l S Sl d A A rot ∆⋅=⎰→∆lim 0;二者的关系 ⎰⎰•=•⨯∇lS l d A S d A )(;旋度的物理意义:最大环量密度和最大环量密度方向. 4.旋度在直角坐标系下的表达式)()()(yA x A e x A z A e z A y A e z y z z x y y Z x ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ ▲5.梯度的物理意义:函数最大变化率和最大变化率方向 ;等值面、方向导数与梯度的关系是:方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最大值。
6.用方向余弦cos α 、cos β、cos γ写出直角坐标系中单位矢量l e 的表达式γβαcos cos cos z y x l e e e e ++= ▲7.直角坐标系下方向导数l u ∂∂的数学表达式 γβαcos cos cos zu y u x u ∂∂+∂∂+∂∂;梯度γβαcos cos cos z y x e e e ++ ▲8.亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定;说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度▲9.麦克斯韦方程组的积分表达式分别为 1.⎰=•S Q S d D ;2。
S d t B l d E l S ⎰⎰∂∂-=•;3。
0=•⎰S S d B ;4。
⎰⎰•∂∂+=•S l S d tD J l d H )( 其物理描述分别为1。
《电磁场与电磁波》试题含答案
ρ V ,电位
3.时变电磁场中,坡印廷矢量的数学表达式为 4.在理想导体的表面,电场强度的
5.表达式
� � � ( ) A r ⋅ d S ∫
S
� � A 称为矢量场 ( r ) 穿过闭合曲面 S 的
。 。 。 。 。 场,因此,它可用磁矢
6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 位函数的旋度来表示。
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 播出去,即电磁波。 6.随时间变化的电磁场称为 场。 。
的形式传
7.从场角度来讲,电流是电流密度矢量场的
8.一个微小电流环,设其半径为 a 、电流为 I ,则磁偶极矩矢量的大小为 9.电介质中的束缚电荷在外加
。
作用下,完全脱离分子的内部束缚力时,我们把这种
18.均匀带电导体球,半径为 a ,带电量为 Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面, (如图 1 所示) , (1)判断通过矩形回路中的磁感应强度的方向(在图中标出) ; (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
《电磁场与电磁波》试题 1
填空题(每小题 1 分,共 10 分)
1.在均匀各向同性线性媒质中,设媒质的导磁率为 µ ,则磁感应强度 B 和磁场 H 满足的 方程为: 。
2
�
�
2.设线性各向同性的均匀媒质中, ∇ φ = 0 称为
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
(完整word)电磁场与电磁波考试题
电磁场与电磁波试题一、填空:1。
对于某一标量u 和某一矢量A :∇×(∇u )=0;∇•(∇×A)=02。
对于某一标量 ψ,它的梯度用哈密顿算子表示为∇ψ,在直角坐标系下表示为x y z e e e x y zψψψ∂∂∂++∂∂∂ 3.自由空间中静态电场的两个基本方程的积分形式为0lE dl ⋅=⎰(sqE d S ε⋅=⎰)和sD d S q ⋅=⎰.4.静电场中的电位ϕ满足泊松方程,该方程表达式为2()ργϕγε-∇=(),如果求解空间没有电荷分布。
则该方程变为2()0r ϕ∇=,叫拉普拉斯方程。
5.分析静电矢量场时对于各向同性的线性介质,两个基本场变量之间的关系为D E ε=。
6。
真空中的静电场是有散场和无旋场,真空中的恒定磁场是无散场和有旋场。
7。
传导中的电流密度J E σ=位移电流密度d DJ t∂=∂电场能量密度212eW E ε=磁场能量密度212n W H μ=。
8。
在理想介质中,沿z二、判断1.电磁场是电场和磁场形成的一个统一的整体,对于任何形式的电磁场问题。
电场和磁场总是同时存在的。
(√)2。
矢量场在闭合路径上的环流和在闭合面上的之间都是标量。
()3。
按统一规则绘制出的力线可以确定矢量场中各点矢量的方向,还可以根据力线的疏密判别出各处矢量的大小及变化趋势.(×)4.从任意闭合面穿出的恒定电流为零。
(×)5。
麦克斯韦方程有四个基本矢量场方程,它们并不独立,由两个旋度方程可导出两个相应的散度方程,因此(×)6.位移电流是麦克斯韦假说所提出的电流,它是真实电流一样可以产生磁效应。
()7。
在均匀无耗各向同性媒质中,电磁波的波速(即想速)与波长均为常数,但在导电媒质中则不一样,其波速和波长不再是常数。
(√)8.均匀平面电磁波的极化是用电场强度矢量E 的端点在空间描绘出的轨迹来表示,若该轨迹是圆侧称为圆极化波。
(√)9。
介质极化后会同时产生极化体电荷和极化面电荷.(√) 10。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
电磁场与电磁波自测题集(8套)2
自测题八一、填空题(每题2分.共10分)1、已知真空中有恒定电流J(r).则空间任意点磁感应强度B的旋度为。
2、极化方向既不平行也不垂直于入射面的线极化波斜入射在一个无限大介质平面上.__________________时反射波只有平行极化分量。
3、自由空间中原点处的源(ρ或J)在t时刻发生变化.此变化将在时刻影响到r处的位函数(ψ或A)。
4、在球坐标系中.电偶极子辐射场(远场)的空间分布与坐标的关系是_______。
5、已知体积为V的介质的介电常数为ε.其中的静电荷(体密度为ρ)在空间形成电位分布ψ和电场分布E和D.则空间的静电能量密度为。
空间的总静电能量为________________。
二、选择填空题(每题2分.共10分.每题只能选择一个答案.否则判为错)1、以下关于时变电磁场的叙述中.不正确的是()。
A.电场是有旋场B.电场和磁场相互激发C.电荷可以激发电场D.磁场是有源场2、以下关于在导电媒质中传播的电磁波的叙述中.正确的是()。
A.不再是平面波B.电场和磁场不同相C.振幅不变D.以TE波形式传播3、两个载流线圈之间存在互感.对互感没有影响的是()。
A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.空间介质4、用镜像法求解静电场边值问题时.判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称B.电位ψ所满足的方程是否改变C.边界条件是否改变D.同时选择B和C5、区域V全部用非导电媒质填充.当此区域中的电磁场能量减少时.一定是()。
A.能量流出了区域B.能量在区域中被损耗C.电磁场做了功D.同时选择A和C自测题八答案一、1. μJ(r)2. θ=θB3. t+r/c4. ∝sinθ/r二、1.D 2.B 3.C 4.D 5.A自测题七一、填空题(每题2分.共20分;选择填空题每题只能选择一个答案.否则判为错)1、已知真空中的电荷分布为ρ(r).则空间任意点电场强度E的散度为_______。
电磁场与电磁波填空题及答案试题库
1.介电常数为ε的均匀线性介质中,电荷的分布为()r ρ,则空间任一点E ∇= ____________, D ∇=_____________。
2. /ρε; ρ1. 线电流1I 与2I 垂直穿过纸面,如图所示。
已知11I A =,试问1.l H dl =⎰__ _______;若.0lH dl =⎰ , 则2I =_____ ____。
2. 1-; 1A1. 镜像法是用等效的 代替原来场问题的边界,该方法的理论依据是___。
2. 镜像电荷; 唯一性定理1. 在导电媒质中, 电磁波的相速随频率改变的现象称为_____________, 这样的媒质又称为_________ 。
2. 色散; 色散媒质1. 已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t x ωβ=+, 则电场强度的方向为__________, 能流密度的方向为__________。
2. z e ; x e -1. 传输线的工作状态有________ ____、_______ _____、____________三种,其中________ ____状态不传递电磁能量。
2. 行波; 驻波; 混合波;驻波1. 均匀无耗传输线的输入阻抗Z in = _________。
当终端短路时输入阻抗为Z ins = _________。
1. 真空中有一边长为的正六角 形,六个顶点都放有点电荷。
则在图示两种情形 下,在六角形中心点处的场强大小为图中____________________;图中____________________。
2. ;1. 平行板空气电容器中,电位(其中a、b、c 与d为常数),则电场强度__________________,电荷体密度_____________________。
2. ;1. 在静电场中,位于原点处的电荷场中的电场强度线是一族以原点为中心的__________________ 线,等位线为一族_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题▲1.矢量的通量物理含义是矢量穿过曲面的矢量线的总和;散度的物理意义是矢量场中任意一点处通量对体积的变化率;散度与通量的关系是散度一个单位体积内通过的通量。
2.散度在直角坐标系z A y A x A A div Z Y X ∂∂+∂∂+∂∂=散度在圆柱坐标系zA A r r rA r A div Z r ∂∂+∂∂+∂∂=ϕϕ1)(1 ▲3,矢量函数的环量定义 ⎰⋅=l l d A C ;旋度的定义MAX l S Sl d A A rot ∆⋅=⎰→∆lim 0; 二者的关系 ⎰⎰∙=∙⨯∇lS l d A S d A )(;旋度的物理意义:最大环量密度和最大环量密度方向。
4.旋度在直角坐标系下的表达式)()()(yA x A e x A z A e z A y A e z y z z x y y Z x ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ ▲5.梯度的物理意义:函数最大变化率和最大变化率方向 ;等值面、方向导数与梯度的关系是:方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最大值。
6.用方向余弦cos α 、cos β、cos γ写出直角坐标系中单位矢量l e 的表达式γβαcos cos cos z y x l e e e e ++= ▲7.直角坐标系下方向导数lu ∂∂的数学表达式 γβαcos cos cos z u y u x u ∂∂+∂∂+∂∂;梯度γβαcos cos cos z y x e e e ++ ▲8.亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定;说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度▲9.麦克斯韦方程组的积分表达式分别为 1.⎰=∙S Q S d D ;2.S d t B l d E l S ⎰⎰∂∂-=∙;3.0=∙⎰S S d B ;4.⎰⎰∙∂∂+=∙S l S d tD J l d H )( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源3.磁感应强度的散度为0,说明磁场不可能由通量源产生;4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。
▲10.麦克斯韦方程组的微分表达式分别为 1.ρ=∙∇D ;2.t B E ∂∂-=⨯∇; 3.0=∙∇B ; 4.tD J H ∂∂+=⨯∇ 其物理描述分别为同第九题 11.时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场;一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理▲12.坡印廷矢量的数学表达式 H E S ⨯=;其物理意义 电磁能量在空间的能流密度; 表达式⎰⨯SS d H E )(的物理意义单位时间内穿出闭合曲面S 的电磁能流大小 ▲13.电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。
两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。
产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布; 描述电介质极化程度或强度的物理量是极化矢量P▲14.折射率的定义是v c n /=;折射率与波速和相对介电常数之间的关系分别为r n ε=2, n c v /= ▲15.磁介质是指 在外加磁场的作用下,能产生磁化现象,并能影响外磁场分布的物质; 磁介质的种类可分别有抗磁质 、顺磁质 、铁磁质 、亚铁磁质; 介质的磁化是指 在外磁场作用下,物质中的原子磁矩将受到一个力矩的作用,所有原子都趋于与外磁场方向一致的排列,彼此不再抵消,结果对外产生磁效应,影响磁场分布的现象;描述介质磁化程度地物理量是M 磁化矢量16.介质的三个物态方程分别是E D ε=、H B μ=、E J C γ=17.静态场是指 不随时间变化的场;静态场包括 静电场 、恒定电场 、恒定磁场; 分别是由静止电荷或静止带电体 、载有恒定电流的导体内部及其周围介质 、载有恒定电流的导体的周围或内部产生的。
18.静电场中的麦克斯韦方程组的积分形式分别为1.⎰⎰=∙V S dV S d D ρ2.0=∙⎰l l d E 3.0=∙⎰S S d B 4.⎰⎰∙=∙Sl S d J l d H ; 静电场中的麦克斯韦方程组的微分形式分别为1.ρ=∙∇D 2.0=⨯∇E 3.0=∙∇B 4.J H =⨯∇19.对偶原理的内容是 如果描述两种物理现象的方程具有相同的数学形式,并且具有相似或对应的边界条件,那么它们的数学解形式相同;叠加原理的内容是)b a (,0)(0,02122212均为常数,,那么如果=+∇=∇=∇φφφφb a ;唯一性定理的内容是对于任一静态场,在边界条件给定后,空间各处的场也就唯一的确定了 ▲20.电磁场的亥姆霍兹方程组是1。
022002=∂∂-∇t E E με 2。
022002=∂∂-∇t B B με ▲21.电磁波的极化是指均匀平面波传播过程中,在某一波阵面上电场矢量的振动状态随时间变化的方式。
其三种基本形式分别是左旋极化波 、右旋极化波 、随机极化波▲22.工程上经常用到的损耗正切,其无耗介质的表达式是 0tan =C δ;其表示的物理含义是 无耗介质内部没有传导电流;损耗正切越大说明 介质中传导电流越大,电磁波能量损耗越大;有耗介质的损耗介质是个复数,说明均匀平面波中电场强度矢量和磁场强度矢量之间存在相位差。
▲23.一般用介质的损耗正切不同取值说明介质在不同情况下的性质,一个介质是良介质的损耗正切远小于1 ,属于非色散介质;当表现为良导体时,损耗正切远大于1,属于色散介质。
▲24.波的色散是指不同频率的波将以不同的速率在介质中传播,其相应的介质为色散介质,波的色散是由 介质 特性所决定的。
色散介质分为正常色散和非正常色散介质,前者波长大的波,其相速度 大,群速 小于 相速;后者是波长大的波,其相速度 小,群速 大于 相速;在无色散介质中,不同波长的波相速度 相等 ,其群速 等于 相速。
▲25.色散介质与介质的折射率的关系是 i r in n n -=;耗散介质是指波在其中传播会发生能量损耗的介质26.基波的相速为k /ω;群速就是波包或包络的传播速度,其表达式为 dk d v g ω=;一般情况下,相速与群速不相等,它是由于波包通过有色散的介质,不同单色波分量以不同相速向前传播引起的。
▲27.趋肤效应是指 当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现象;趋肤深度的定义是电磁波的振幅衰减到1-e 时,它透入导电介质的深度;趋肤深度的表达式 αδ1= 二、名词解释▲1.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流位移电流:电介质内部的电量将会随着电场的不断变化而产生一种持续的微观迁移,从而形成的一种电流2.电介质的极化、磁介质的磁化电介质的极化:在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。
磁介质的磁化:在外磁场作用下,物质中的原子磁矩将受到一个力矩的作用,所有原子都趋于与外磁场方向一致的排列,彼此不再抵消,结果对外产生磁效应,影响磁场分布的现象3.静电场、恒定电场、恒定磁场静电场:静止电荷或静止带电体产生的场恒定电场:载有恒定电流的导体内部及其周围介质中产生的电场恒定磁场:载有恒定电流的导体的周围或内部产生的磁场4.泊松方程、拉普拉斯方程泊松方程:在有“源”的区域内,静电场的电位函数φ所满足的方程,即ερφ/2-=∇,这种形式的方程。
拉普拉斯方程:场中某处有电荷密度0=ρ,即在无源区域内,02=∇φ这中形式的方程。
5.对偶定理、叠加原理、唯一性定理对偶原理:如果描述两种物理现象的方程具有相同的数学形式,并且具有相似或对应的边界条件,那么它们的数学解形式相同;叠加原理:)b a (,0)(0,02122212均为常数,,那么如果=+∇=∇=∇φφφφb a ;唯一性定理:对于任一静态场,在边界条件给定后,空间各处的场也就唯一的确定了▲6.镜像法、分离变量法、格林函数法、有限差分法镜像法:利用一个称为镜像电荷的与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场的方法。
分离变量法:把一个多变量的函数表示成为几个单变量函数的乘积后再进行计算的方法。
格林函数法:用镜像法或其他方法找到与待求问题对应的格林函数,然后将它代入第二格林公式导出的积分公式就可得到任一分布源的解得方法。
有限差分法:在待求场域内选取有限个离散点,在各个离散点上以差分方程近似代替各点上的微分方程,从而把以连续变量形式表示的位函数方程转化为以离散点位函数表示的方程组的方法。
▲7.电磁波、平面电磁波、均匀平面电磁波电磁波:是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面 平面电磁波:对应任意时刻t ,在其传播空间具有相同相位的点所构成的等相位面为平面的电磁波均匀平面电磁波:任意时刻,其所在的平面中场的大小和方向都是不变的平面电磁波。
▲8.电磁波的极化电磁波的极化:均匀平面波传播过程中,在某一波阵面上电场矢量的振动状态随时间变化的方式。
▲9.相速、群速相速:恒定相位面在波中向前推进的速度。
群速:一段波的包络上具有某种特性(例如幅值最大)的点的传播速度▲10.波阻抗、传播矢量波阻抗:电磁波在介质中传播时电场与磁场的振幅比传播矢量:用来表示波的传播方向的矢量▲11.驻波、行波、行驻波驻波:幅度随着某一方向按照正弦变化的电磁震荡波行波:向着某一方向传播的平面电磁波。
行驻波:行波与驻波的混合状态▲12.色散介质、耗散介质色散介质:电磁波在其中传播的速度与波的频率有关的介质耗散介质:电磁波在其中传播会出现能量损耗的介质。
▲13.全反射、全折射全反射:当电磁波入射到两种媒质交界面时,如果反射系数|R|=1,则投射到界面上的电磁波将全部反射到第一种媒质中的情况。
全折射:当电磁波以某一入射角入射到两种媒质的交界面时,如果反射系数为零,则全部电磁能量都进入第二种媒质的情况。
三、简答题1.散度和旋度均是用来描述矢量场的,它们之间有什么不同?答:散度描述的是场中任意一点通量对体积的变化率旋度描述的是场中任意一点最大环量密度和最大环量密度方向。
▲2.亥姆霍兹定理的描述及其物理意义是什么?答:亥姆霍茨定理:在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定;物理意义:要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度▲3.分别叙述麦克斯韦方程组微分形式的物理意义答:第一方程:电荷是产生电场的通量源第二方程:变换的磁场是产生电场的漩涡源第三方程:磁感应强度的散度为0,说明磁场不可能由通量源产生;第四方程:传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。