一次函数的概念和性质

合集下载

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质一、一次函数的概念1、概念:一般地,解析式形如y kx b =+(k 、b 是常数,且0k ≠)的函数叫做一次函数。

定义域:一切实数。

2、一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数。

3、常值函数一般的,我们把函数()y c c =为常数叫做常值函数。

二、一次函数的图像与性质1、 一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线. 2、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标是(0)b ,,直线y kx b =+(0k ≠)的截距是b .3、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”) 4、 直线位置关系:如果12b b ≠,那么直线1y kx b =+与直线2y kx b =+平行.反过来,如果直线11y k x b =+与直线22y k x b =+平行,那么12k k =,12b b ≠.5、一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质:当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降. 6、一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限.考点一:一次函数识别【例题1】(2021·上海普陀·八年级期中)下列四个函数中,一次函数是( ) A .y =x 2﹣2xB .y =x ﹣2C .11y x=+D .y x +1【变式训练1】(2021·上海奉贤·八年级期中)下列函数中是一次函数的是( ) A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)考点二:根据一次函数的定义求参数【例题2】(2021·上海市川沙中学南校八年级期中)当k ______时,y kx x =+是一次函数.【变式训练1】(2021·上海普陀·八年级期中)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.【变式训练2】(2021·上海民办华二宝山实验学校八年级阶段练习)已知关于x 函数224(5)1m y m x m -=-++,若它是一次函数,则m =______.考点三:求一次函数的自变量与值域【例题3】(2021·上海杨浦·八年级期末)如果点A(3,)a 在一次函数31yx 的图像上,则a =__________.【变式训练1】(2021·上海市川沙中学南校八年级期中)已知一次函数24y x =+的图象经过点(),8A m ,那么m 的值等于______. 考点四:列一次函数的解析式并求值【例题4】(2021·上海市松江区新桥中学八年级期中)汽车油箱中现有汽油60升,若每小时耗油10升,则油箱中剩余油量y (升)与燃烧的时间x (小时)之间的函数关系式是______.【变式训练1】(2020·上海浦东新·八年级期末)汽车以60千米/时的平均速度,由A 地驶往相距420千米的上海,汽车距上海的路程s (千米)与行驶时间t (时)的函数关系式是_____.考点五:一次函数平移【例题5】(2021·上海市松江区新桥中学八年级期中)将直线112y x =--向上平移4个单位所得的直线表达式为______.【变式训练1】(2021·上海杨浦·八年级期中)将一次函数y =2x ﹣3的图象向上平移___个单位后,图象过原点.【变式训练2】(2021·上海浦东新·八年级期末)如果将函数31y x =-的图象向上平移3个单位,那么所得图象的函数解析式是________. 考点六:一次函数与坐标轴交点【例题6】(2021·上海普陀·八年级期末)将平面直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标轴三角形.如图中的一次函数图像与,x y 轴分别交于点,,A B 那么ABO 为此一次函数的坐标轴三角形.一次函数142y x =-+的坐标轴三角形的面积是_____.【变式训练1】(2021·上海杨浦·八年级期中)一次函数y =﹣2x ﹣3的截距是_____. 【变式训练2】(2021·上海·八年级期中)直线36y x =-与坐标轴所围成的三角形的面积是_____.【变式训练3】(2021·上海奉贤·八年级期末)直线21y x =-与x 轴交点坐标为_____________.考点七:根据一次函数解析式判断其经过象限【例题7】(2021·上海·上外附中八年级期末)一次函数y =2(x +1)﹣1不经过第( )象限 A .一B .二C .三D .四【变式训练1】(2021·上海徐汇·八年级期末)一次函数21y x =-+的图象经过哪几个象限( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限 【变式训练2】(2021·上海崇明·八年级期末)一次函数53y x =-+的图象不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限【变式训练3】(2021·上海金山·八年级期末)在直角坐标系中,一次函数y =12x ﹣1的图像不经过第____象限.考点八:已知函数经过的象限求参数范围【例题8】(2019·上海市西延安中学八年级期中)在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .【变式训练1】(2020·上海市奉贤区弘文学校八年级期末)正比例函数()0y mx m =≠的图像在第二、四象限内,则点(--1m m ,)在( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式训练2】(2020·上海金山·八年级阶段练习)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【变式训练3】(2019·上海市闵行区七宝第二中学八年级期中)如果关于x 的一次函数(3)y m x m =-+的图像不经过第三象限,那么m 的取值范围________.【变式训练4】(2021·上海静安·八年级期末)已知一次函数y =(k ﹣1)x +1的图像经过第一、二、三象限,那么常数k 的取值范围是____.【变式训练5】(2021·上海·上外附中八年级期末)一次函数y =(2m ﹣1)x +m ﹣7的图像不经过第二象限,则m 的取值范围是 ___.【变式训练6】(2017·上海嘉定·八年级期中)若正比例函数25m m y mx +-=的图像经过第二、四象限,则m =____________【变式训练7】(2018·上海普陀·八年级期末)如果关于x 的一次函数y =mx +(4m ﹣2)的图象经过第一、三、四象限,那么m 的取值范围是_____. 考点九:已知两条直线位置关系求参数【例题9】直线2(13)(22)y k x k =-+-与已知直线21y x =-+平行,且不经过第三象限,求k 的值.1.已知一次函数21544m y x +=-与233my x =-+的图像在第四象限内交于一点,求整数m 的值.2.已知两个一次函数144b y x =--和212y x a a=+;(1)a、b为何值时,两函数的图像重合?(2)a、b满足什么关系时,两函数的图像相互平行?(3)a、b取何值时,两函数图像交于x轴上同一点,并求这一点的坐标.3.(1)一次函数3y x b=+的图象与两坐标轴围成的三角形的面积为48,求b的值;(2)一次函数y kx b=+的图像与两坐标围成的三角形的面积是105,求一次函数的解析式.4.1)求直线14222y x y x=-=+和与y轴所围成的三角形的面积;(2)求直线24y x=-与直线31y x=-+与x轴所围成的三角形的面积.5.如图,已知由x轴、一次函数4(0)y kx k=+<的图像及分别过点C(1,0)、D(4,0)两点作平行于y轴的两条直线所围成的图形ABDC的面积为7,试求这个一次函数的解析式.6.在式子()y kx b k b =+,为常数中,3119x y -≤≤≤≤当时,,kb 求的值.7.已知一次函数1121y x k =+-中y 随x 的增大而增大,它的图像与两坐标轴构成的直角三 角形的面积不超过32,反比例函数23k y x-=的图像在第二、四象限,求满足以上条件的k 的 整数值.8.如图,已知函数1y x=+的图象与y轴交于点A,一次函数y kx b=+的图象经过点B(0,1-),并且与x轴以及1y x=+的图象分别交于点C、D;(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形;如果存在,求出点P坐标;如果不存在,说明理由;(3)若一次函数y kx b=+的图象与函数1y x=+的图象的交点D始终在第一象限,则系数k 的取值范围是________(请直接写出结果)题组A 基础过关练一、单选题1.下列关于x的函数中,是一次函数的是()222211.3(1) (3)A y xB y xC y xD y x xx x=-=+=-=+-2.正比例函数y=(1-2m)x的图象经过点(x1,y1)和点(x2,y2)当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>123.(2018·上海金山·八年级期中)一次函数51y x=-的图像经过的象限是()A.一、二、三B.一、三、四C.二、三、四D.一、二、四分层提分4.(2018·上海金山·八年级期中)一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <5.(2020·上海浦东新·八年级期末)直线y =2x ﹣1在y 轴上的截距是( ) A .1 B .﹣1C .2D .﹣2二、填空题6.(2019·上海普陀·八年级期中)如果将直线22y x =-向上平移3个单位,那么所得直线的表达式是___________.7.(2019·上海普陀·八年级期末)已知直线(2)3y k x =-+与直线32y x =-平行,那么k =_______.题组B 能力提升练1.一次函数(2)3y k x k =-+-的图像能否可以不经过第三象限?为什么?2.已知直线26x y k -=-+和341x y k +=+,若它们的交点第四象限,那么k 的取值范围是______________.3.如图,据函数y kx b =+的图像,填空:(1) 当1x =-时,y =____________;(2) 图像与坐标轴的交点坐标是_________________; (3) 当24x -≤≤时,y 的取值范围是______________.4.根据下列条件求解相应函数解析式: (1)直线经过点(45),且与y=2x +3轴无交点; (2)直线的截距为3(123).5.已知函数1y x =+与3y x =-+,求: (1)两个函数图象交点P 的坐标.(2)这两条直线与x 轴围成的三角形面积.6.把一次函数的图像向上平移323y x =-,求平移前的函数图像与函数23y x =--题组C 培优拔尖练1.直线31y =+和x 轴、y 轴分别相交于点A 、点B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有一点P (12m ,)且△ABP 的面积与△ABC 的面积相等,求m 的值.2.函数12y y y =+且12y x m =+,2131y x m =+-. (1)若12y y 与图像的交点的纵坐标为4,求y 关于x 的函数解析式;(2)若(1)中函数y 的图像与x 轴、y 轴交于A 、B 两点,若将此函数绕A 点顺时针旋转90°后交y 轴于C 点,求直线AC 的解析式.3.如图所示,直线323y x =-+与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将DAB ∆沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式.4.直线31y =+与x 轴、y 轴分别交于点A 、点B ,以线段AB 为直角边在第一象限内作等腰Rt ABC ∆,且90BAC ∠=,如果在第二象限内有一点P (a ,12),且ABP ∆的面积与Rt ABC∆的面积相等,求a 的值.。

一次函数的定义和性质

一次函数的定义和性质

一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。

它也被称为线性函数,因为它的图像是一条直线。

一次函数是数学中的基础概念之一,具有一些重要的性质和应用。

一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。

其中,a称为一次项的系数,b称为常数项。

当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。

二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。

斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。

截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。

三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。

当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。

对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。

平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。

四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。

初中数学知识归纳一次函数的概念与性质

初中数学知识归纳一次函数的概念与性质

初中数学知识归纳一次函数的概念与性质一次函数是初中数学中的重要内容,它具有简单的形式和规律性的特点。

本文将围绕一次函数的概念和性质展开论述。

一、一次函数的概念一次函数是指函数的最高次数为1的函数,可以表示为y = kx + b的形式,其中k和b为常数,x为自变量,y为因变量。

在一次函数中,自变量x的系数k称为斜率,表示了函数图像的倾斜程度,斜率正负表示了直线的上升或下降趋势;而常数b称为截距,表示了函数图像与y轴的交点。

二、一次函数的性质1. 函数图像为直线:由于一次函数的形式为y = kx + b,故其图像为一条直线。

直线可以用来表示两个变量之间的线性关系,如时间和距离的关系、成本和产量的关系等。

2. 斜率代表变化率:一次函数的斜率k反映了函数图像的倾斜程度。

斜率的绝对值越大,说明函数图像越陡峭;斜率为正表示上升趋势,斜率为负表示下降趋势。

3. 截距代表初始值:一次函数的常数b即截距,表示了函数图像与y轴的交点。

截距决定了函数图像的起点和y轴的交点位置,也可以理解为函数在x=0处的函数值。

4. 变量之间的线性关系:一次函数表示了两个变量之间的线性关系。

斜率k表示了两个变量之间的变化率,而截距b表示了变量在某个初始值时的数值。

三、一次函数的图像特点一次函数的图像有以下几个特点:1. 函数图像为一条直线,呈现出一致的斜率和截距;2. 当斜率为正时,函数图像从左下方朝右上方倾斜;当斜率为负时,函数图像从左上方朝右下方倾斜;3. 当截距为正时,函数图像与y轴的交点在y轴的正半轴上;当截距为负时,函数图像与y轴的交点在y轴的负半轴上;4. 斜率的绝对值越大,函数图像越陡峭;5. 斜率为零时,函数图像平行于x轴,表示了一个常数函数;6. 一次函数的图像可以通过两个点确定,其中一个点可以是截距,另一个点可以通过斜率确定。

四、一次函数的应用举例一次函数广泛应用于日常生活和工作中的各个领域。

以下是一些具体的应用举例:1. 距离和时间的关系:假设一个汽车以固定速度行驶,那么汽车的行驶距离与时间的关系可以用一次函数来表示。

一次函数的定义及性质

一次函数的定义及性质

一次函数的定义及性质一次函数,也被称为线性函数,是数学中最简单且最常见的函数之一。

它可以用以下一般形式表示:f(x) = ax + b,其中a和b是常数,且a ≠ 0。

在本文中,我们将深入探讨一次函数的定义及其性质。

一、定义一次函数是指形式为f(x) = ax + b的函数,其中a和b为常数,a ≠ 0。

其中,x是自变量,f(x)是函数的值,a称为一次函数的斜率,b称为一次函数的截距。

二、性质一次函数具有以下性质:1. 斜率:一次函数的斜率表示了函数图像在每单位自变量变化时的纵坐标的变化量。

斜率可以通过函数的解析式中的a来确定。

当a>0时,函数图像呈现上升的趋势;当a<0时,函数图像呈现下降的趋势;当a=0时,函数呈现一条水平线。

2. 截距:一次函数的截距是函数图像与y轴的交点,可以通过函数的解析式中的b来确定。

截距表示了当自变量为0时,函数取得的值。

3. 增减性:根据斜率的正负来判断一次函数的增减性。

当斜率a>0时,函数随着自变量的增大而增加;当斜率a<0时,函数随着自变量的增大而减小。

4. 零点:一次函数的零点是指函数图像与x轴的交点,即f(x) = 0的解。

根据一次函数的形式,当ax + b = 0时,可以求得x = -b/a,这就是一次函数的零点。

5. 定义域和值域:一次函数的定义域是所有实数集合R,即函数对于任意实数都有定义。

值域取决于斜率a的正负情况,当a>0时,值域为区间(-∞, +∞);当a<0时,值域为区间(-∞, +∞)。

6. 对称性:一次函数具有x轴的对称性,即对于函数图像上任意一点(a, b),如果(a, -b)也在图像上,则函数具有对称性。

7. 线性关系:一次函数表示了两个变量之间的线性关系,其中x是自变量,f(x)是因变量。

当自变量的增加导致因变量的相应增加时,我们可以说这两个变量呈正相关的线性关系。

总结:一次函数是一种简单但重要的数学函数,具有直线的特点。

初二一次函数的概念及性质

初二一次函数的概念及性质

初二一次函数的概念及性质初二数学学科的一次函数是一个重要的概念,也是我们进一步学习数学的基础。

在本文中,我们将探讨一次函数的概念及其性质,以帮助我们更好地理解和应用这一概念。

1. 一次函数的定义一次函数是指具有形式为 y = kx + b 的函数,其中 k 和 b 是常数,且 k 不等于零。

其中,k 是一次函数的斜率,决定了函数图像的倾斜程度;b 是一次函数的截距,决定了函数图像与 y 轴的交点。

2. 一次函数的图像一次函数的图像可以是一条直线。

斜率 k 的正负决定了直线的倾斜方向(正斜率表示向上倾斜,负斜率表示向下倾斜),而截距 b 决定了直线与 y 轴的位置。

通过确定斜率和截距的值,我们可以画出一次函数的图像,并在图像上标出斜率和截距的意义。

3. 一次函数的性质一次函数具有以下几个重要的性质:3.1 斜率的意义一次函数的斜率表示函数图像上任意两点之间的纵坐标变化与横坐标变化之比。

正斜率表示纵坐标随着横坐标的增加而增加,负斜率表示纵坐标随着横坐标的增加而减少。

斜率越大,函数图像的倾斜程度越大。

3.2 截距的意义一次函数的截距表示函数图像与 y 轴的交点。

通过截距,我们可以确定直线在纵坐标上的位置。

当截距为正时,表示函数图像在 y 轴上方与 y 轴有交点;当截距为负时,表示函数图像在 y 轴下方与 y 轴有交点。

3.3 函数图像的平移一次函数的图像可以通过改变斜率和截距来进行平移。

当斜率 k 不变而截距 b 变化时,函数图像平行于原图像在 y 轴上下平移。

当斜率 k 变化时,函数图像经过旋转和/或缩放。

3.4 函数图像的关于直线对称性一次函数的图像具有关于直线 y = x 的对称性。

即,如果点 (x, y) 在函数图像上,则点 (y, x) 也在函数图像上。

4. 一次函数的应用一次函数的概念及性质在实际生活中有广泛的应用。

例如,我们可以用一次函数来描述物体的速度与时间的关系、成本与产量的关系等。

初中数学 什么是一次函数 它有什么特点

初中数学 什么是一次函数 它有什么特点

初中数学什么是一次函数它有什么特点一次函数,也被称为线性函数,是初中数学中的一个重要概念。

它是一个以x 的一次方程表示的函数,具有以下形式:f(x) = ax + b,其中a 和 b 是常数。

一次函数在数学中有着广泛的应用,并且具有一些特点和性质。

在本文中,我们将详细讨论一次函数的概念、特点和性质。

一次函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。

其中a 被称为斜率,代表了函数图像的倾斜程度;b 被称为截距,表示函数图像与y 轴的交点。

一次函数的特点和性质如下:1. 直线图像:一次函数的图像是一条直线。

这是因为一次函数是一个一次方程,其图像是一个直线。

直线可以通过两个点来确定,因此我们只需要确定两个点就可以画出一次函数的图像。

2. 斜率:一次函数的斜率决定了函数图像的倾斜程度。

斜率表示了函数在x 方向上的变化率。

当斜率为正时,函数图像向上倾斜;当斜率为负时,函数图像向下倾斜;当斜率为零时,函数图像是水平的。

3. 截距:一次函数的截距决定了函数图像与y 轴的交点。

当x = 0 时,我们可以计算出函数的截距。

截距表示了函数图像与y 轴的位置关系。

4. 增减性:一次函数的增减性由斜率来决定。

当斜率为正时,函数是递增的,即随着x 的增大,函数值也增大;当斜率为负时,函数是递减的,即随着x 的增大,函数值减小。

5. 零点:一次函数的零点表示了函数图像与x 轴的交点。

当函数的值为零时,我们可以求解出函数的零点。

零点表示了函数在x 轴上的位置。

6. 平行和垂直:一次函数的平行和垂直关系可以通过斜率来确定。

如果两个一次函数的斜率相等,则它们是平行的;如果一个函数的斜率是另一个函数斜率的倒数的相反数,则它们是垂直的。

7. 线性关系:一次函数是一种线性关系。

线性关系表示了两个变量之间的直接关系。

在一次函数中,x 和f(x) 之间存在着线性关系,即x 的增加或减少会导致f(x) 的相应变化。

通过以上的讨论,我们可以了解一次函数的概念、特点和性质。

一次函数的定义、图象特点和性质

一次函数的定义、图象特点和性质

084. 一次函数的定义、图象特点和性质班级姓名知识要点:1.定义:一般地,形如的函数,叫做正比例函数.形如的函数,叫做一次函数.正比例函数是特殊的一次函数2.一次函数的图象:一次函数y=kx+b(k≠0)的图象是一条直线,图象称为直线y=kx+b.由于确定一条直线,画一次函数的图象只需要找到适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点 .画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.画函数y=2x+3的图像时取点,画函数y=-3x的图像时取点3.一次函数y=kx+b(k≠0)的性质(1)k的正、负决定直线的倾斜方向,也决定函数的增减性;(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;(4)由于k、b的符号不同,直线所经过的象限也不同;4.直线的平行、相交(1)同一平面坐标系内,不重合的两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:当时,两直线平行;当时,两直线相交。

5.点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在函数y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式y=kx+b的一对对应值,那么以P(x0,y0)为坐标的点必在函数y=kx+b的图象上.训练题:1.下列函数中是一次函数的是()A.122-=x yB.x y 1-= C.31+=x y D.1232-+=x x y 2.关于x 的函数()n x m y -+-=21,当 时,此函数是一次函数,当 时,此函数为正比例函数.3.对于函数y =5x+6,y 的值随x 值的减小而_ _. 对于函数1223y x =-, y 的值随x 值的_____而增大.4.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <5.已知函数y=(1-m)x+m-2,当m 时,y 随x 的增大而增大。

一次函数概念、图象与性质

一次函数概念、图象与性质
制。
描点法步骤:首先确定两个点, 然后通过这两点绘制直线。通常 选择函数与坐标轴的交点作为描
点。
一次函数与x轴交点为(-b/k, 0), 与y轴交点为(0, b),其中k为斜
率,b为截距。
斜率对图象影响
斜率k决定了直线的倾斜程度。当k>0时,直线向右上方倾斜;当k<0时,直线向右 下方倾斜。
|k|的大小决定了直线的倾斜角。|k|越大,倾斜角越大,直线越陡峭;|k|越小,倾斜 角越小,直线越平缓。
边际收益分析
利用一次函数描述收益与 销量之间的关系,分析边 际收益。
边际利润决策
根据边际成本和边际收益, 确定最优产量和价格策略。
物理学中运动规律描述
匀速直线运动
通过一次函数表示位移与时间的 关系,描述匀速直线运动规律。
匀变速直线运动
利用一次函数表示速度与时间的关 系,分析匀变速直线运动过程。
自由落体运动
线性关系判断
判断方法
通过观察数据点是否大致分布在一条直线上来判断两个变量之间是否存在线性 关系。
线性关系特点
若两个变量之间存在线性关系,则它们的变化趋势是一致的,即当一个变量增 加时,另一个变量也相应地增加或减少。
02 一次函数图象绘制
直角坐标系中通过在直角坐标系中描点法绘
截距和斜率共同决定了直线的 位置和方向。不同的截距和斜 率组合可以得到不同的直线方 程和图象。
03 一次函数性质分析
单调性
一次函数在其定义域内具有单调性。具体来说,当一次函数的斜率k>0时,函数 在整个定义域内单调递增;当k<0时,函数在整个定义域内单调递减。
一次函数的单调性可以通过其图象直观地反映出来。在平面直角坐标系中,当 k>0时,函数的图象是一条从左下方到右上方的直线,表示函数值随x的增大而 增大;当k<0时,函数的图象是一条从左上方到右下方的直线,表示函数值随x 的增大而减小。

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一次函数是一种形式为y=ax+b的函数,其中a和b是常数,a 称为斜率,b称为截距。

教案:一、概念:一次函数是指形式为y=ax+b的函数,其中a和b是常数,并且a≠0。

二、图像:1. 当a>0时,一次函数的图像是一条斜率为正的直线,向右上方倾斜。

2. 当a<0时,一次函数的图像是一条斜率为负的直线,向右下方倾斜。

3. 当a=0时,一次函数的图像是一条水平直线。

三、性质:1. 斜率:斜率a表示函数图像上每向右移动一个单位,y的变化量。

当a>0时,y随x的增加而增加,当a<0时,y随x的增加而减少。

2. 截距:截距b表示函数图像与y轴的交点,也就是当x=0时的函数值。

3. 变化率:一次函数的变化率恒定,即斜率a固定,表示函数图像上每向右移动一个单位,y的变化量始终相同。

4. 直线性:一次函数的图像是一条直线,没有曲线部分。

四、例题练习:1. 已知一次函数的斜率为2,截距为3,求该一次函数方程。

解:根据斜率-截距的形式,可得到方程为y=2x+3。

2. 已知一次函数的图像过点(3,5),斜率为-1,求该一次函数方程。

解:由于斜率为-1,方程形式为y=-x+b。

将点(3,5)代入可得5=-3+b,解方程得b=8,所以方程为y=-x+8。

五、课堂练习:1. 根据一次函数图像判断斜率的正负。

给出以下函数图像的斜率的正负并说明理由:(a) (b) (c) (d)2. 根据一次函数的斜率和截距,求出函数的方程:(a) 斜率为3,截距为4的一次函数;(b) 斜率为-2,经过点(3,5)的一次函数。

六、拓展思考:一次函数的图像与其斜率和截距有哪些关系?如何根据一次函数的方程确定其图像的性质?。

一次函数基本性质

一次函数基本性质

一次函数基本性质一次函数是初中数学课程中重要函数之一,也是中考必考内容之一,容易与其他知识点相交汇综合。

什么是一次函数呢?下面是店铺整理的什么是一次函数,欢迎阅读。

什么是一次函数一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。

其中x是自变量,y是因变量,k为一次项系数,y是x的函数。

其图象为一条直线。

当b=0时,y=kx+b即y=kx,原函数变为正比例函数(direct proportion function),其函数图象为一条通过原点的直线。

所以说正比例函数是特殊的一次函数。

一次函数表示方法一。

一次函数是一条直线y=kx (o,0)(1,k)y=kx+b(0,b)与y轴的交点1、解析式法用含自变量x的式子表示函数的方法。

2、列表法把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3、图像法用图象来表示函数关系的方法叫做图象法。

一次函数解析式一次函数的解析式为:其中k是比例系数,不能为0;x表示自变量。

且k和b均为常数。

先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出解析式的方法,叫做待定系数法。

一次函数基本性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的交点,坐标为(0,b).当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)形、取、象、交、减。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数.5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直;6.平移时:上加下减在末尾,左加右减在中间图像性质1.作法与图形:通过如下3个步骤:(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,(2)描点:一般取两个点,根据“两点确定一条直线”的道理;(3)连线:可以作出一次函数的图象——一条直线。

一次函数的图像及性质

一次函数的图像及性质

一次函数的图象及性质1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

⑴ 次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数和一次函数图像及性质3、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:即横坐标或纵坐标为0的点.4、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k5、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.例1:已知一次函数y=kx+b 的图象如图所示,求函数表达式.例2、直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,求直线的解析式。

例1:已知一次函数)1()14(+-+=m x m y 。

(1)m 为何值时,y 随x 的增大而减小?(2)m 为何值时,此直线与y 轴交点在x 轴下方? (3)m 为何值时,此直线不经过第三象限?(4)若1=m ,求这个一次函数与两个坐标轴的交点。

一次函数知识点总结小学

一次函数知识点总结小学

一次函数知识点总结小学一次函数是初中数学中的基础知识,也是后续学习二次函数、指数函数等更高级函数的重要基础。

在小学阶段,我们也会开始接触一次函数的概念,虽然不会深入学习它的相关定理和公式,但是了解一些基本知识还是很有必要的。

本文将对一次函数的相关概念、性质、图像以及实际应用进行总结,希望能够帮助小学生更好地理解一次函数。

一、一次函数的基本概念1. 一次函数的定义一次函数是指函数 f(x) = ax + b,其中 a 和 b 是常数且a ≠ 0。

其中 x 是自变量,f(x) 是因变量,a 是斜率,b 是截距。

一次函数描述了一条直线的特性,因此也称为线性函数。

2. 一次函数的定义域和值域一次函数的定义域是所有使得 f(x) 有意义的 x 的取值范围,通常是实数集 R。

而一次函数的值域是所有可能的函数值所组成的集合,通常也是实数集 R。

3. 一次函数的斜率和截距在一次函数 f(x) = ax + b 中,a 表示斜率,代表了函数曲线上的一点对应的斜率,反映了函数曲线的倾斜程度;b 表示截距,代表了函数曲线与 y 轴的交点的纵坐标,反映了函数曲线的位置。

二、一次函数的性质1. 斜率的性质斜率代表了函数曲线的倾斜程度,其性质如下:(1)当 a > 0 时,函数曲线向右上倾斜,当 a < 0 时,函数曲线向右下倾斜;(2)斜率的绝对值表示了函数曲线的倾斜程度,绝对值越大,倾斜程度越大;(3)当 a = 0 时,函数曲线平行于 x 轴,斜率为零。

2. 截距的性质截距代表了函数曲线与 y 轴的交点的纵坐标,其性质如下:(1)当 b > 0 时,函数曲线与 y 轴的交点在原点的上方,当 b < 0 时,函数曲线与 y 轴的交点在原点的下方;(2)截距的绝对值表示了函数曲线与 y 轴的距离,绝对值越大,距离越远;(3)当 b = 0 时,函数曲线经过原点。

3. 函数图像的性质一次函数的图像总是一条直线,其斜率和截距决定了直线的倾斜程度和位置。

一次函数的概念、图象和性质

一次函数的概念、图象和性质

次函数的概念、图象和性质一次函数的概念一、知识要点1.一次函数的定义:形如y=kx+b(k、b是常数,k≠0)的函数叫做一次函数。

注意:(1)判断一个以x为自变量的函数(以后称关于x的函数)是不是一次函数?从其解析式的形式上看,就是它能否化成关于x的一次二项式即kx+b的形式。

其中一次项系数k必须是不为零的常数,常数项b可以为任何常数。

若k=0,它不是一次函数。

(2)要确定一个一次函数,可利用待定系数法,设y=kx+b为所求,只要依据已知条件求出k、b的值即可。

2.一次函数与正比例函数的关系在一次函数y=kx+b中,当b=0时,即y=kx(其中常数k≠0)是正比例函数。

这时又称y 与x成正比例,且比例系数为k。

y=kx+b(k、b是常数,k≠0)b≠0时,它是一般的一次函数b=0时,它是正比例函数二、例题选讲例1.已知关于变量s、t的关系式为3s+2t=5,(1)若t为自变量,则函数s=____,它是关于t的____次函数;(2)若s为自变量,则函数t=___,它是关于s的___函数;(3)s-1与t-1的关系是_____,它的比例系数是____。

提示:3s+2t=5,◇3(s-1)=-2(t-1),◇例2.若函数是关于x的一次函数,求k。

并求出这个一次函数。

解:∵函数是关于x的一次函数,当k=1时,函数为y=2x+2∴y=2x+2为所求。

一次函数的图象一、知识要点1.正比例函数y=kx的图象(1)对于正比例函数y=kx,因为当x=0时,y=0;当x≠0时,y/x=k,所以正比例函数y=kx的图象是一条经过原点和(1,k)点的直线,又称为直线y=kx。

例如:正比例函数它的图象是经过原点和点的一条直线。

(2)当k>0时,直线y=kx经过第一、三象限,它的倾斜角是锐角;当k<0时,直线y=kx经过第二、四象限,它的倾斜角是钝角。

k>0:0<k<10°<α<45°K≥145°≤α<90°k<0k<-190°<α<135°-1≤K<0135°≤α<180°2.一次函数y=kx+b的图象(1)一次函数y=kx+b的图象是过(0,b)点且与直线y=kx平行的一条直线。

初中数学考点教案:一次函数的概念与性质

初中数学考点教案:一次函数的概念与性质

初中数学考点教案:一次函数的概念与性质一次函数的概念与性质一次函数,即线性函数,是初中数学中的重要知识点之一。

一次函数的概念及其性质的掌握不仅在初中阶段具有重要的意义,在高中、大学阶段也都是数学学科重要的基础知识。

因此,本文就初中数学考点教案:一次函数的概念与性质这一话题进行分析和探讨。

一、概念一次函数,又称线性函数,指的是自变量的最高次数为1的函数。

也就是说,一次函数的形式为:$y=kx+b$。

其中,k和b分别称为一次函数的斜率和截距。

斜率k代表的是函数图象与x轴正半轴的夹角的正切值,而截距b则表示函数图象与y轴的交点。

二、性质1.斜率k是一次函数的一个重要的性质。

可以通过斜率来确定函数图象的特点,比如函数是单调递增还是单调递减,是否有最值等等。

值得注意的是,在同一个定义域内,一次函数的斜率在每一段上是相等的。

也就是说,在同一定义域内,一次函数的斜率是不变的。

2.截距b是一次函数的另一个重要的性质。

一个一次函数的截距决定了该函数图象相对于y轴的位置。

截距可以是任意一个实数,而斜率则不能为0。

当截距为正数时,函数图象位于y轴正半轴上;当截距为负数时,函数图象位于y轴负半轴上。

3.一次函数的图象是一条直线。

直线具有以下特点:直线上任何两点都可以唯一确定,直线上有无数个点,直线上任何一点的横、纵坐标之比都是常数。

因此,一次函数的图象必须满足以上特点,任意一条直线都是一次函数的图象。

而且,在平面直角坐标系中,一次函数的图象是一条斜率为k,通过点(0,b)的直线。

4.对于一次函数y=kx+b,当x变化1个单位时,y也会相应地变化k个单位。

这就是一次函数的斜率的含义。

同时,当x=0时,值为b,这就是一次函数的截距的含义。

因此,我们可以通过斜率和截距来预测一次函数图象随自变量变化的规律。

5.一次函数的定义域和值域都是全体实数集。

也就是说,一次函数y=kx+b在任何一个实数x上都有一个对应的实数y值。

三、举例下面,我们通过一组例子来更加深入地理解一次函数的概念和性质。

一次函数的概念与性质

一次函数的概念与性质

一次函数的概念与性质一次函数是数学中常见且重要的函数类型之一。

它的定义可以用以下形式来表示:f(x) = ax + b,其中a和b为常数,且a≠0。

一次函数的图像是一条直线,具有许多独特的性质和特点。

本文将探讨一次函数的概念以及它的性质。

一、一次函数的定义与概念一次函数是一个线性函数,也称为一次多项式函数。

它的定义中包含两个常数项:系数a和常数b。

系数a代表了直线的斜率,决定了图像的倾斜程度和方向;常数b则决定了图像与y轴的交点。

理解一次函数的定义很重要,它让我们能够推断出函数的性质,包括函数图像的斜率、截距和交点等。

通过确定a和b的值,我们可以得到具体的函数表达式,并进一步研究它的性质。

二、一次函数的性质1. 斜率:一次函数的斜率是直线的倾斜度量。

斜率的计算方法为斜率=Δy/Δx,即两点间y坐标的变化量除以x坐标的变化量。

2. 截距:一次函数的图像与y轴的交点称为截距,用常数b表示。

它反映了函数图像的位置关系,当x=0时,函数的值为截距b。

3. 定义域与值域:一次函数的定义域是所有实数集合R,而函数的值域则取决于斜率a的正负情况。

当a>0时,值域是从负无穷到正无穷;当a<0时,值域是从正无穷到负无穷。

4. 平行与垂直:一次函数的特点之一是平行和垂直关系。

如果两条直线都有相同的斜率a,它们是平行的;如果其中一条直线的斜率是另一条的倒数的相反数,它们是垂直的。

5. 奇偶性:一次函数是奇函数,因为它具有对称性,即f(-x) = -f(x)。

这意味着函数图像关于原点对称。

三、一次函数在实际生活中的应用一次函数的概念和性质在许多实际问题中都有广泛应用。

以下是其中一些例子:1. 速度和距离:物理中,速度和距离之间的关系可以通过一次函数来描述。

斜率表示速度,截距表示起始位置。

2. 成本和产量:经济学中,成本和产量之间的关系也可以用一次函数来表示。

斜率代表单位产量成本,截距代表固定成本。

3. 温度和时间:气象学中,温度随时间的变化可以用一次函数来描述。

一次函数的概念、图像与性质

一次函数的概念、图像与性质

学科教师辅导讲义课 题 一次函数概念、图像及性质 教学内容一、【知识梳理】一次函数知识详解知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y=b 仍是一次函数. (4)当b=0,k=0时,它不是一次函数.探究交流有人说:“正比例函数是一次函数,一次函数也是正比例函数,它们没什么区别.”点拨 这种说法不完全正确.正比例函数是一次函数,但一次函数不一定是正比例函数,只有当b=0时,一次函数才能成为正比例函数.知识点2 确定一次函数的关系式根据实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x 的代数式表示y .知识点3 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点4 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点5 一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点7 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(x0,y0)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点8 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点9 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点10 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).知识点11 一次函数与一次方程(组)、不等式的关系 解一次方程(组)与不等式问题 一 次 函 数 问 题从“数”的角度 从“形”的角度解一元一次方程 kx +b=0 当一次函数y=kx +b 的函数值(y值)等于0时求自变量x 的值当直线y=kx +b 上点的纵坐标为0时,求这个点的横坐标是什么?(即求直线与x 轴的交点坐标)解一元一次方程 kx +b=c 当一次函数y=kx +b 的函数值(y 值)等于c 时求自变量x 的值 当直线y=kx +b 上点的纵坐标为c 时,求这个点的横坐标是什么?解一元一次不等式kx +b ﹥0(或﹤0)当一次函数y=kx +b 的函数值(y 值)大于0(或小于0)时求自变量x 的值 当直线y=kx +b 上的点的纵坐标大于0(或小于0)时,求这些点的横坐标在什么范围?(即求直线与x 轴的交点坐标的上方(或下方)的部分直线的横坐标的范围)解一元一次不等式kx +b ﹥m (或﹤m )当一次函数y=kx +b 的函数值(y 值)大于m (或小于m )时求自变量x 的值 当直线y=kx +b 上的点的纵坐标大于m(或小于m )时,求这些点的横坐标在什么范围?解一元一次不等式 kx +b ﹥mx +n 当一次函数y=kx +b 的值大于mx+n 的值时,对应的自变量x 的范围是多少?在相同横坐标的情况下,当直线y=kx +b 上的点的纵坐标大于直线y=mx +n 上的点的纵坐标时,求这些点的横坐标在什么范围?解二元一次方程组⎩⎨⎧+=+=n mx y b kx y 当一次函数y=kx +b 与y=mx +n的值相等时,对应的自变量x 的值是多少?这个函数值是多少? 当直线y=kx +b 与直线y=mx +n 相交时求交点坐标思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b=0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当b >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合二、【典型例题】例1 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 . 【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例2 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21 D .m >21例3 已知直线y=2x+1.(1)求已知直线与y 轴交点M 的坐标;(2)若直线y=kx+b 与已知直线关于y 轴对称,求k ,b 的值.例4 已知y+2与x 成正比例,且x=-2时,y=0. (1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值; (5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.例5 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)? (3)k 为何值时,它的图象与y 轴的交点在x 轴的上方?(4)k 为何值时,它的图象平行于直线y=-x ?(5)k 为何值时,y 随x 的增大而减小?例6 已知直线y=kx+b 经过点(25,0),且与坐标轴围成的三角形的面积为425,求此直线的解析式.例7 (2004·沈阳)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县.已知C ,D 两县运化肥到A ,B 两县的运费(元/吨)如下表所示.(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数关系式,并写出自变量x 的取值范围; (2)求最低总运费,并说明总运费最低时的运送方案.例8 图11-30表示甲、乙两名选手在一次自行车越野赛中,路程y (千米)随时间x (分)变化的图象(全程),根据图象回答下列问题.(1)当比赛开始多少分时,两人第一次相遇? (2)这次比赛全程是多少千米?(3)当比赛开始多少分时,两人第二次相遇?例9 如图11-31所示,已知直线y=x+3的图象与x 轴、y 轴交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1的两部分,求直线l 的解析式.三、【巩固练习】1.下列一次函数中,y 随着x 增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y2.若把直线y=2x -3向上平移3个单位长度,得到直线( ) A .y=2x B.y=2x -6 C. y=5x -3 D.y=-x -33.直线y=2x+2与x 轴的交点坐标是( )A .(0,2)B .(2,0) C.(-1,0) D.(0,-1)4. 如图,直线与y 轴的交点是(0,-3),则当x<0时, A. y<0 B. y<-3 C. y>0 D. y>-35. 已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且此函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是( ) A. m >-2B. m <1C. m <-2D. m <1且m ≠-26. 在数学25+-=x y 中,K = ,b=7.已知正比例函数y =(m -1)25m x-的图象在第二、四象限,则m 的值为_________,8.已知函数32)2(3--+=mx m y 是一次函数,则m = ;此图象经过第 象限。

一次函数的概念与性质

一次函数的概念与性质

一次函数的概念与性质一次函数是数学中比较常见的一种函数类型,也称为线性函数。

它的表达式通常可以写作y = kx + b,其中k和b是常数,x和y分别表示自变量和因变量。

本文将深入探讨一次函数的概念和性质,解释其在数学和实际问题中的应用。

一、概念一次函数是指函数的自变量和因变量之间呈线性关系的函数。

其特点是自变量的一次幂和常数的乘积与自变量无关。

一次函数的一般形式为y = kx + b,其中k表示斜率,b表示截距。

斜率表示线性函数的倾斜程度,正值表示函数图像向上倾斜,负值表示向下倾斜;截距则表示函数图像与y轴相交的位置。

二、性质1. 斜率的意义:斜率k代表自变量x增加1个单位时,函数值y的增量。

例如,当k = 2时,表示x每增加1个单位,y将增加2个单位。

斜率的正负决定了函数图像的增减趋势。

2. 截距的意义:截距b表示函数与y轴的交点坐标,即当x = 0时,函数值y的取值。

截距决定了函数图像在y轴上的位置。

3. 函数图像:一次函数的图像通常为一条直线,其斜率和截距决定了直线在坐标平面上的位置和方向。

当斜率为零时,直线平行于x轴;当截距为零时,直线过原点。

4. 增减性:一次函数的增减性由其斜率决定。

当斜率大于零时,函数递增;当斜率小于零时,函数递减。

若斜率等于零,则函数为常值函数。

5. 特殊情况:a. 若斜率k = 0,函数图像为一条与x轴平行的直线,即y = b,其中b为常数,函数为常值函数。

b. 若截距b = 0,函数图像过原点,即y = kx。

c. 若斜率k = 1,截距b = 0,函数为y = x,表示一个斜率为1的直线。

三、应用一次函数在实际问题中有广泛的应用。

以下是一些常见的应用场景:1. 经济学:成本和收益、需求和供给之间的线性关系可以用一次函数描述。

2. 物理学:速度与时间、力与位移之间的关系常用一次函数表示。

3. 工程学:流量、功率和电阻之间的关系常用线性函数表示。

4. 金融学:收入与支出、利润与销量之间的关系可使用一次函数建模。

第11节 一次函数的图象和性质

第11节   一次函数的图象和性质
解:因为 a,b,c 均不为 0,直线方程可化为:y=﹣ x﹣ ,则直线的斜率为﹣
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:


由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;

一次函数的定义与性质

一次函数的定义与性质

一次函数的定义与性质一、定义一次函数也叫线性函数,是指函数的最高次幂只能为1的函数。

一次函数的标准形式为y = kx + b,其中k和b为实数,且k≠0。

其中,k 称为函数的斜率,代表函数图像的倾斜程度;b称为函数的截距,代表函数图像与y轴的交点。

二、性质1. 斜率一次函数的斜率k可以用来描述函数图像的增长趋势。

斜率k为正数时,表示函数图像从左向右上升;斜率k为负数时,表示函数图像从左向右下降;斜率k为0时,表示函数图像为水平线。

2. 截距一次函数的截距b表示函数图像与y轴的交点,即当x=0时,函数的值为b。

截距对于函数图像的位置和平移起到重要作用。

当b>0时,函数图像与y轴正向平移;当b<0时,函数图像与y轴负向平移。

3. 函数图像一次函数的图像为一条直线。

根据斜率k的大小,可以判断函数图像的倾斜程度。

当k>1时,函数图像向上倾斜的程度较大;当0<k<1时,函数图像向上倾斜的程度较小;当k<0时,函数图像向下倾斜。

4. 零点一次函数的零点指的是函数图像与x轴的交点,即函数取值为0的点。

根据一次函数的定义式y = kx + b,令y = 0,可以求解出一次函数的零点。

零点对于函数图像的交叉点和根的求解具有重要意义。

5. 定义域和值域一次函数的定义域为全体实数集R,即函数适用于所有实数。

而值域则依赖于斜率k的正负性质。

当k>0时,函数的值域为全体实数集R;当k<0时,函数的值域为负实数集R-。

三、应用1. 速度与时间一次函数的性质中斜率k可以表示速度的快慢,而截距b可以表示起点的位置。

因此,一次函数常用于描述速度与时间的关系。

例如,当一次函数的斜率为40,截距为10时,可以表示某物体的速度为40m/s,起始位置为10m。

2. 成本与产量一次函数也可以用来描述成本与产量之间的关系。

斜率k可以表示每产生一个单位产品所需要的成本,截距b可以表示固定成本。

通过一次函数的表达式,可以根据产量来计算总成本或者边际成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题一次函数的概念及其性质
一、本次课授课目的
及考点分析:
授课目的:
1、掌握一次函数的定义、图象和主要性质;
2、了解一次函数与正比例函数的关系;
3、会根据已知条件求出一次函数的解析式.结合例题培养学生观察、归纳的思
维和渗透数形结合思想.
教学重点:
会根据已知条件求出一次函数的解析式;
教学难点:
在y=kx+b中,k和b的数与形的联系;
二、本次课的容:一次函数的概念、一次函数的图像、一次函数的性质
教学过程
一、错题回顾:
二、教授新课:
(一)复习
1.写出正比例函数的解析式.
2.正比例函数的图象是什么形状?当k>0,k<0时,图形的位置怎样?
(二)新课
这些函数的共同的特点都是含自变量的一次式.
(1)一次函数的一般形式:一般地.如果y=kx+b①(k,b是常数,k≠0).那么y叫做x的一次函数.
(2)一次函数与正比例函数的关系.当b=0时,①式为y=kx是正比例函数.所以,正比例函数是一次函数的特殊情况.
(3)两个条件确定一次函数式.因为一次函数含有两个系数k,b.而要求两个系数k,b需要列出
两个独立且不矛盾的方程,也就是说要想求出一个一次函数式,需要两个条件.
例1已知x是自变量,a,b是常量,下面各式中,是x的一次函数的是 [ ].
(A)(1) (B)(1),(5) (C)(1),(2),(4) (D)(1),(2),(4),(6)
这六个式子是
(1)y=3x+5; (2)3x+5; (3)y=3x2+5;
分析:(3)是二次函数,(5)是分式函数,这两个都不是一次函数.容易被认为不是一次函数的是(4)3a+5x,因为其中没有y,即不是y=3a+5x形式.其实3a+5x本身就是x的函数,y=3a+5x只是用字母y来表示3a+5x而已,所以本题应选(D).
例2已知y是x的一次函数,当x=3时,y=5;当x=2时,y=2;则x=-2时,y=______.
解:设此一次函数式为y=kx+b.由已知,可列出方程组
所求的一次函数为y=3x-4,所以x=-2时,y=3(-2)-4=-10.
(4)一次函数图象与正比例函数的图象的关系.
我们从下面的列表,观察、归纳.
2个单位,点A
3在A
1
下方2个单位,所以l2的图象是把l1向上平移2个单位;
3
l的图象是把l1向下平
移2个单位,所以l2,l3.都是与l1平行的直线(图1).
这个一次函数的解析式是____.
(1)求这两条直线和y轴的两个交点间的距离;
(2)求这两条直线和x轴的两个交点间的距离;
(3)这两条直线与x轴,y轴围成的四边形是什么特殊四边形?
(4)求这个四边形的面积.
分析:这类问题应配合画出草图,发挥数形结合的优势.
(三)课堂练习
对于一次函数y=(m+4)x+2m-1,若y随x增大而增大,且它的图象与y轴的交点在x轴下方,则m 的取值围是______.
(四)小结
一次函数意义、性质、图象的总结
1.函数y=kx+b(k,b是常数,k≠0)叫做x的一次函数,自变量x可取任意实数.b=0时的一次函数,就是正比例函数y=kx.
2.y=kx+b(k,b是常数,k≠0)的图象是过点(0,b)且平行于y=kx的一条直线.当k>0时,y值随x 的增大而增大;当k<0时,y值随x的增大而减少;
三、课练习
1.填表:
2.如果kx+y-b=0的图象经过第一、二、四象限,则k与b的正负号为 [ ]
(A)k>0且b>0 (B)k<0且b<0 (C)k>0且b<0 (D)k<0且b>0
3.一次函数y=kx+b的图象经过点(m,l)和点(-1,m),其中m>1,则k,b满足的条件是 [ ] (A)k<0且b<0 (B)k<0且b>0 (C)k>0且b<0 (D)k>0且b>0
4.已知y=m+t,这里m是一个常数,t与x成正比例,并且x=1时,y=5;x=2时,y=7.写出y与x的函数关系式.
5.汽车离开A站4千米后,以40千米/时的平均速度前进了t时,求汽车离开A站的距离s(千米)与时间t(时)之间的函数关系式.
四、课后作业:
(附学案)
学生对本次课的小结及评价:
1、学生本次课对老师的评价:
○特别满意○满意○一般○差
2、本次课你学到了什么知识
学生签字:教师小结及评定:
1、学生上次作业完成情况:
2、学生本次上课表现情况:
3、老师对本次课的总结:
教师签字:
.longwenedu. 审阅签字: 时间:
主任签字: 时间:
龙文教育教务处。

相关文档
最新文档