高考志愿填报指导之——38线差法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考志愿填报指导之——3/8线差法
什么是3/8线差法
3/8线差法是以3/8线差为主要分析指标,结合一愿上线录取率等指标,对招生院校历年录取数据进行综合分析,并利用分析结果对其未来年度录取线差、考生报考热度进行估测的一种定量分析方法。
图 1
3/8线差法的基本原理
3/8线差(用△T表示)的基本计算公式如下:
△T=(最高录取分数-最低录取分数)×3/8+最低录取分数- 相应批次控制分数线
下面对这个公式的基本思路解释如下:
图1,假设某一本院校某年度在某省招生录取数据是:最低录取分数“T(min)”600分、最高录取分数“T(max)”680分、一本控制分数线“T(k)”520分。我们将该院校录取分数区间均分为8等分,把自下而上第三等分的点位(即图中的“T(3/8)”处)作为比较点位。根据这个约定,无论是哪所院校,无论最低录取分数(或平均录取分数)是多少,无论录取分数的区间是多大,我们都以该校录取分数区间的3/8处作为分析比较的基本点位。这就解决了在同一年度内各院校录取数据不可比的问题。因此,从现在开始,我们就有了统一的口径:比如说甲院校录取分数比乙院校高,是指甲院校录取区间3/8点位的分数比乙院校高,而不是指最低录取分数或平均录取分数等其它指标。
第三,最低录取分数也好,平均录取分数也好,都不能反映整个录取分数区间的大小特征,而3/8的点位分数却具有这方面的功能,或者说隐含着录取区间大小的特征。因此,单从填报志愿的角度出发,用它来表征院校录取分数的高低无疑是更科学、更客观的,对于录取区间较大的院校尤其如此。
例:甲、乙两校的平均录取分数都是540分,甲校最低录取分500分、最高录取分580分,乙校最低录取分530分、最高录取分550分。则计算得知,甲校3/8点位分为530分、乙校3/8点位分为537.5分。
大家可以从上例的计算结果中显见:对于甲校来说,把530分作为填报志愿的依据是不是更科学一些?若从填报志愿的基本目的出发予以考察,甲乙两校相比较,说乙校的录取分数比甲校高是不是也更符合实际情况?
3/8分的普遍意义
虽然3/8线差法是建立在录取人数在录取区间呈标准正态分布的假定上的,但无论实际分布如何,它都能为我们填报志愿提供有价值的参考依据,具有一定的普遍意义。
就考生在录取区间的分布而言,不外乎以下四种情形(如图4-3):标准正态分布、均匀分布、低偏态分布(录取区间低分区人数偏多)、高偏态分布(录取区间高分区人数偏多)。图中阴影部分的面积(S3/8)与整个分布曲线和横坐标轴所围成的面积(S)之比,就是3/8点位以下录取考生与录取总数之比。若实际分布不同,这个比值也会不同。从图中显见,当实际分布为正态分布时,S3/8/S=25%;为均匀分布时S3/8/S=3/8=37.5%>25%;为低偏态分布时S3/8/S>25%;为高偏态分布时
S3/8/S<25%。单从填报志愿的角度出发,我们关心的主要问题是能不能被录取,只要S3/8/S不是太小就可以。所以除了高偏态分布这种情况需要特别注意,并要视情在3/8线差的基础上修正一个合适的数值外(在图中实际上就是将点位向右移动一定的距离),其他情况都可以满足我们的要求。
图4-3