无限长单位脉冲响应(IIR)滤波器设计 (1)

合集下载

实验四IIR数字滤波器的设计(1)(2)课案

实验四IIR数字滤波器的设计(1)(2)课案

实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。

2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。

3.学习编写数字滤波器的设计程序的方法。

二、实验内容数字滤波器:是数字信号处理技术的重要内容。

它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。

1.数字滤波器的分类滤波器的种类很多,分类方法也不同。

(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。

(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。

它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。

如果加上A/D 、D/A 转换,则可以用于处理模拟信号。

设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。

与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。

(2) 系统传递函数H(z)在有限z 平面上有极点存在。

(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。

3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。

但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。

FIR和IIR滤波器设计

FIR和IIR滤波器设计

FIR和IIR滤波器设计滤波器是信号处理中常用的工具,用于去除信号中的噪声、增强或抑制特定频率成分等。

FIR(有限脉冲响应)和IIR(无限脉冲响应)是两种常见的滤波器设计方法。

FIR滤波器是一种线性相位的滤波器,其脉冲响应是有限长度的,因此被称为有限脉冲响应。

它的频率响应是通过一个线性组合的单位样本响应来实现的。

在设计FIR滤波器时,可以通过窗函数法或频率采样法来选择滤波器的系数。

窗函数法适用于要求较为简单的滤波器,而频率采样法适用于要求较高的滤波器。

窗函数法是一种基于原始滤波器响应的方法。

它通过将滤波器响应乘以一个窗函数,从而使得脉冲响应在时间上截断。

常用的窗函数有矩形窗、汉明窗、布莱克曼窗等。

通过选择不同窗函数可以得到不同的滤波器特性,如频带宽度、峰值纹波等。

频率采样法是一种通过等间隔采样得到频率响应的方法。

首先确定滤波器的截止频率和带宽,然后选择一组频率点进行采样。

根据采样得到的频率响应,可以通过逆傅里叶变换得到滤波器的脉冲响应,进而得到滤波器的系数。

频率采样法可以灵活地选择频率点,从而得到更精确的滤波器特性。

与FIR滤波器不同,IIR滤波器的脉冲响应是无限长度的,因此被称为无限脉冲响应。

IIR滤波器的频率响应是通过递归方式的单位样本响应来实现的。

在设计IIR滤波器时,可以通过模拟滤波器的方法来选择滤波器的结构和参数。

常用的模拟滤波器有巴特沃斯滤波器、切比雪夫滤波器等。

巴特沃斯滤波器是一种最优近似设计的滤波器,其特点是在通带和阻带中都具有等级衰减。

切比雪夫滤波器是一种在通带和阻带中都具有等级衰减,同时具有较窄过渡带的滤波器。

这两种滤波器的设计方法都是基于频率变换的思想,首先将模拟滤波器的频率响应映射到数字滤波器上,然后利用一定的优化算法来得到滤波器的参数。

FIR和IIR滤波器在滤波器设计中有不同的特点和适用范围。

FIR滤波器具有线性相位特性,因此适用于对信号的相位要求较高的应用,如音频处理、图像处理等。

无限长单位脉冲响应滤波器设计剖析

无限长单位脉冲响应滤波器设计剖析

实验四无限长单位脉冲响应滤波器设计一、实验目的1.掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的计算机编程。

2.观察双线性变换及脉冲响应不变法设计的滤波器的频率特性,了解双线性变换法及脉冲响应不变法的特点。

3.熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理(1)实验中有关变量的定义:fc通带边界频率,fr阻带边界频率,tao通带波动,at 最小阻带衰减,fs采样频率,t采样周期。

(2)设计一个数字滤波器一般包括以下两步:a.按照任务要求,确定滤波器性能指标b.用一个因果稳定的离散时不变系统的系统函数去逼近这一性能要求(3)数字滤波器的实现:对于IIR滤波器,其逼近问题就是寻找滤波器的各项系数,使其系统函数逼近一个所要求的特性。

先设计一个合适的模拟滤波器,然后变换成满足约定指标的数字滤波器。

用双线形变换法设计IIR数字滤波器的过程:a.将设计性能指标中的关键频率点进行“预畸”b.利用“预畸”得到的频率点设计一个模拟滤波器。

c.双线形变换,确定系统函数三、实验内容1、设计一切比雪夫高通滤波器,性能指标如下:通带边界频率f c=0.4kHz,通带波动δ=0.5dB,阻带边界频率f r=0.3kHz,阻带最小衰减At=20dB,采样频率f s=1000Hz,观察其通带波动和阻带衰减是否满足要求。

(绘制对数幅度谱)2、设计一巴特沃思低通滤波器,性能指标如下:通带边界频率f c=0.4kHz,通带波动δ=1dB,阻带边界频率f r=0.6kHz,阻带最小衰减At=40dB,采样频率f s=2000Hz,分别用脉冲响应不变法和双线性变换法进行设计,比较两种方法的优缺点。

(绘制线性幅度谱)3、用双线性变换法设计巴特沃思、切比雪夫和椭圆低通滤波器,其性能指标如下:通带边界频率f c=1.8kHz,通带波动δ≤1dB,阻带边界频率f r=2.6kHz,阻带最小衰减A t≥50dB,采样频率f s=8kHz。

第三章 无限长单位脉冲响应1

第三章  无限长单位脉冲响应1

N
根据理想采样序列拉氏变换与模拟信号拉氏变换的关系
1 2 ˆ ( s) Ha Ha s j T m T m ˆ ① 理想采样 ha(t )的拉氏变换 H a (s) 与模拟信号 ha (t )
的拉氏变换
H a (s)
之间的关系。

ˆ ② 理想采样 ha(t )的拉氏变换 H a (s) 与采样序列 h (n)的 Z 变换 H (z ) 之间存在的 S 平面与 Z 平面的映射关系。
i 1
N
A
(1 ci z 1 ) (1 d i z 1 )
i 1 i 1 N
M
一般M N
2)最优化设计方法
分两步:
a) 确定一种最优准则,如最小均方误差准则 | H (e j ) | ,即使设计出的实际频率响应的幅度特性 j (与所要求的理想频率响应 | H d (e ) | 的均方 2 误差最小, M
1 i 1 N
u (t )
单位阶跃
对ha(t)采样得到数字滤波器的单位脉冲响应序列
h(n) ha(nT ) Ai e
i 1
N
si nT
u(n) Ai (e ) u (n)
siT n i 1
N
再对h(n)取Z变换,得到数字滤波器的传递函数:
H ( z ) Ai e
H z z e ST
1 ˆ ( s) H s j 2 m Ha a T m T
He

j
1 2m H a j j T m T
正如第一章的采样定律中所讨论的, 如果模拟滤波器的频响带限于折叠频率 ΩS/2 以内, 即
数字滤波器的设计步骤:

无限长单位脉冲响应IIR滤波器的设计

无限长单位脉冲响应IIR滤波器的设计

无限长单位脉冲响应IIR 滤波器的设计一.设计目的1.掌握数字滤波器的设计过程;2.了解IIR 的原理和特性;3.熟悉设计IIR 数字滤波器的原理和方法;4.学习IIR 滤波器的DSP 实现原理;5.学习使用CCS 的波形观察窗口观察输入/输出信号波形和频谱变化情况。

二.设计内容1.通过MATLAB 来设计一个低通滤波器,对它进行模拟仿真确定IIR 滤波器系数。

2.用DSP 汇编语言及C 语言进行编程,实现IIR 运算,对产生的合成信号,滤除信号中高频成分,观察滤波前后的波形变化。

三.设计原理IIR 滤波器与FIR 滤波器相比具有相位特性差的特点,但它的结构简单,运算量小,具有经济高效的特点,并且可以用较少的阶数获得很高的选择性,因此也得到了广泛的应用。

IIR 数字滤波器系统的传递函数为:H(z)= NN N N z a z a z b z b b z X z Y ----+⋯⋯+++⋯⋯++=111101)()( 它具有N 个极点和N 个零点,如果任何一个极点在单位圆外,则系统不稳定。

如果系数a j (j=1,… ,N )全部为0,则滤波器变成非递归的FIR滤波器,系统总是稳定的。

对于IIR滤波器,有系数量化敏感的缺点。

由于系统对序列施加的算法是由加法、乘法和延时的基本运算的组合,所以可以用不同结构的数字滤波器来实现而不影响系统总的传输函数。

四.MATLAB设计IIR滤波器的方法我们所用滤波器设计方法为巴特沃夫Butterworth滤波器设计和切比雪夫Chebyshev滤波器设计。

MATLAB的butter函数可以设计低通、带通、高通和带阻数字滤波器,其特征可以使通带内的幅度响应最大限度的平坦,但会损失截止频率处的下降斜度,使幅度响应衰减较慢,因此butter函数主要用于设计通带平坦的数字滤波器。

如果期望幅度响应下降斜度大,衰减快,可以使用Elliptic(椭圆)或Chebyshev(切比雪夫)滤波器。

基于MATLAB的IIR数字滤波器设计与仿真

基于MATLAB的IIR数字滤波器设计与仿真

基于MATLAB的IIR数字滤波器设计与仿真一、概述在现代数字信号处理领域中,数字滤波器扮演着至关重要的角色。

其通过对输入信号的特定频率成分进行增强或抑制,实现对信号的有效处理。

无限脉冲响应(IIR)数字滤波器因其设计灵活、实现简单且性能优良等特点,得到了广泛的应用。

本文旨在基于MATLAB平台,对IIR数字滤波器的设计与仿真进行深入研究,以期为相关领域的研究与应用提供有益的参考。

IIR数字滤波器具有无限长的单位脉冲响应,这使得其在处理信号时能够展现出优秀的性能。

与有限脉冲响应(FIR)滤波器相比,IIR滤波器在实现相同性能时所需的阶数更低,从而减少了计算复杂度和存储空间。

在需要对信号进行高效处理的场合,IIR滤波器具有显著的优势。

MATLAB作为一款功能强大的数学软件,提供了丰富的函数和工具箱,使得数字滤波器的设计与仿真变得简单而高效。

通过MATLAB,我们可以方便地实现IIR滤波器的设计、分析和优化,从而满足不同应用场景的需求。

本文将首先介绍IIR数字滤波器的基本原理和特性,然后详细阐述基于MATLAB的IIR数字滤波器的设计方法和步骤。

接着,我们将通过仿真实验验证所设计滤波器的性能,并对其结果进行分析和讨论。

本文将总结IIR数字滤波器设计与仿真的关键技术和注意事项,为相关领域的研究人员和工程师提供有益的参考和启示。

1. IIR数字滤波器概述IIR(Infinite Impulse Response)数字滤波器是数字信号处理中常用的一类滤波器,它基于差分方程实现信号的滤波处理。

与FIR (Finite Impulse Response)滤波器不同,IIR滤波器具有无限长的单位脉冲响应,这意味着其输出不仅与当前和过去的输入信号有关,还与过去的输出信号有关。

这种特性使得IIR滤波器在实现相同的滤波效果时,通常具有更低的计算复杂度,从而提高了处理效率。

IIR滤波器的设计灵活多样,可以根据不同的需求实现低通、高通、带通和带阻等多种滤波功能。

第3章 无限长单位脉冲响应(IIR)滤波器的设计方法

第3章 无限长单位脉冲响应(IIR)滤波器的设计方法


ˆ H a ( s)



[ha (t ) (t nT )]e
n

st
dt
n
h
ha (t ) (t nT )e st dt
nsT
n
a
(nT )e

n


h(n )e nsT
H ( z)
ut e e u nT e u n e u n
nT 3nT
T n 3T n
1 1 H ( z) 1 T 1 z e 1 z 1e 3T
z (e e ) 1 z 1 (e T e 3T ) e 4T z 2
数字滤波器的设计步骤: 1)按照实际需要确定滤波器的性能要求。 2)用一个因果稳定系统的 H(z) 或 h(n) 去逼近这个 性能要求,即求 h(n) 的表达式。 确定系数 a i 、 bi 或零极点 c i 、 d,以使滤波器 i 满足给定的性能要求——第三章、四章讨论 3)用一个有限精度的运算去实现这个系统函数。包 括 选择运算结构:如级联型、并联型、卷积型、频 率采样型以及快速卷积(FFT)型等; 选择合适的字长和有效数字的处理方法等(第五 章)。
这时数字滤波器的频响才能不失真地重现模拟滤 波器的频响(存在于折叠频率ΩS/2以内)
H (e
j
1 ) Ha ( j ) T T

但任何一个实际的模拟滤波器,其频响都不可能 是真正带限的,因此不可避免地存在频谱的交叠, 即混淆,如图,这时,数字滤波器的频响将不同于 原模拟滤波器的频响而带有一定的失真。模拟滤波 器频响在折叠频率以上衰减越大,失真则越小,这 时,采用脉冲响应不变法设计的数字滤波器才能得 到良好的效果。

无限长单位脉冲响应滤波器的设计方法

无限长单位脉冲响应滤波器的设计方法
4)如果不是低通,则必须先将其转换成低通 的技术指标。(本章主要讨论)
2. 最优化设计法
第一步要选择一种最优准则,然后在此准则下 , 确定系 统函数的系数。
例如,选择最小均方误差准则,最大误差最小准则等。它
是指在一组离散的频率{ωi}(i=1, 2, …, M)上,所设计 出的实际频率响应幅度|H(ejω)|与所要求的理想频率响
的特点 掌握从模拟滤波器低通原型到各种数字滤波器
的频率变换。 掌握从数字滤波器到各种数字滤波器的频率变

引言
1、数字滤波器的定义 用有限精度算法实现的时域离散的线性时不
变系统,用于完成对信号的滤波处理 。
低频系 列滤波

说明:
1)许多信息处理过程,如信号的过滤,检测、 预测等都要用到滤波器,数字滤波器是数字信 号处理中使用得最广泛的一种线性系统,是数 字信号处理的重要基础。
1. 借助模拟filter的设计方法
1)首先,设计一个合适的模拟滤波器;然后,变换成满足 预定指标的数字滤波器。这种方法很方便,因为模拟滤波 器已经具有很多简单而又现成的设计公式,并且设计参数 已经表格化了,设计起来既方便又准确。
2)将DF的技术指标转换成AF的技术指标;
3)按转换后技术指标、设计模拟低通filter的 系统函数 Ha (s) ; 将 Ha (s) H (z)
滤波器。
模拟滤波器的理想幅频特性
LPAF
H ( j)
c HPAF
c
BPAF
c

H ( j)
H ( j) c
BSAF
c
c
H ( j)

c2 c1 c1 c2
数字滤波器的理想幅频特性

无限冲激响应(IIR)数字滤波器设计

无限冲激响应(IIR)数字滤波器设计

实验四 无限冲激响应(IIR )数字滤波器设计一、实验目的1.熟悉用双线性变换法设计IIR 数字滤波器的原理和方法;2.了解用脉冲响应不变法设计IIR 数字滤波器的原理和方法;3.掌握双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点;4.掌握数字滤波器的计算机仿真方法;二、实验原理介绍IIR 数字滤波器的系统函数为1z -的有理分式: 1011()1N kk Nk k b z H z a z -=-==+∑∑ 设计IIR 滤波器的系统函数,就是要确定()H z 的阶数N 及分子分母多项式的系数k a 和k b ,使其()()j j z e H e H z ωω==满足指定的频率特性。

由于模拟滤波器的设计有许多简单而严谨的设计公式和大量的图表可以利用,因此IIR 滤波器设计的方法之一是:先设计一个合适的模拟滤波器,然后将模拟滤波器通过适当的变换转换成满足给定指标的数字滤波器。

1、Butterworth 模拟低通滤波器221()1a N c H j Ω=⎛⎫Ω+ ⎪Ω⎝⎭幅度平方函数:其中,N 为滤波器的阶数,c Ω为通带截止频率。

2.Chebyshev 模拟低通滤波器 2221()1()a N c H j C εΩ=Ω+Ω幅度平方函数:3、脉冲响应不变法原理 用数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应()a h t ,让h(n)正好等于()a h t 的采样值,即:()()a h n h nT =其中,T 为采样间隔。

如果以()a H s 和H(z)分别表示()a h t 的拉氏变换及h(n)的Z 变换,则:12ˆ()()sT a a z e k H z H s H s j k T T π∞==-∞⎛⎫==- ⎪⎝⎭∑4、双线性变换法原理双线性变换法是通过两次映射采用非线性频率压缩的方法,将整个频率轴上的频率范围压缩到±π/T 之间,再用sTz e =转换到z 平面上,从而使数字滤波器的频率响应与模拟滤波器的频率响应相似。

信号处理课件第6章无限冲激响应(IIR)滤波器设计

信号处理课件第6章无限冲激响应(IIR)滤波器设计

3. 滤波器的技术要求
低通:
:通带允许的最大衰减; :阻带内应达到的最小衰减
单位 (dB)
若幅度下降到 0.707, 则幅平方下降 0.5 (半 功率点):
若幅度下降到 0.01:
高通:
:通带允许的最大衰减; :阻带内应达到的最小衰减
带通:
:通带允许的最大衰减; : 阻带内应达到的最小衰减
带阻:
最直接到方法,将:
p ,s , p ,s
利用:
利用上一节的方法,可设计出模拟滤波器
G( p), G(s)
H(z)
H (z) G(s) s 1 ln z Ts
但这样做,H (z) 将不再是 z 的有理多项式,给
极-零分析带来困难。
数字滤波器的 单位抽样响应
模拟滤波器 的冲激响应
令:
冲激响应 不变法
(2)
b, a 是AF LP 的分子、分母的系数向量,B, A是转换后 的的分子、分母的系数向量;在(1)中,Wo是低通或 高通滤波器的截止频率;在(2)中,Wo是带通或带阻 滤波器的中心频率,Bw是其带宽。
4.bilinear.m :双线性变换,由模拟滤波器 得到数字滤波器。
[Bz, Az]=bilinear(B, A, Fs) 式中B, A分别是G(s)的分子、分母多项式 的系数向量,Bz, Az分别是H(z)的分子、分 母多项式的系数向量,Fs是抽样频率。
2. 切比雪夫I型(Chebyshev-I)滤波器
3. 切比雪夫II型滤波器
4. 椭圆滤波器
Un2() :Jacobian 函数 本课程只讨论 Butterworth 和 Chebyshev-I
滤波器的设计
二、Butterworth滤波器的设计

脉冲响应不变法设计iir数字滤波器

脉冲响应不变法设计iir数字滤波器

脉冲响应不变法设计iir数字滤波器以脉冲响应不变法设计IIR数字滤波器引言:数字滤波器是数字信号处理中的重要组成部分,用于处理和改变数字信号的频率特性。

脉冲响应不变法(Impulse Invariance Method)是一种常用的IIR数字滤波器设计方法,其基本原理是通过将连续时间域中的模拟滤波器的脉冲响应与采样脉冲响应进行匹配,从而实现滤波器的设计。

一、脉冲响应不变法基本原理脉冲响应不变法的基本原理是将连续时间域中的模拟滤波器的脉冲响应与离散时间域中的数字滤波器的脉冲响应进行匹配。

在这种方法中,首先需要确定模拟滤波器的脉冲响应,然后通过采样得到数字滤波器的脉冲响应,最后将其离散化得到数字滤波器的差分方程。

二、脉冲响应不变法的设计步骤1. 确定模拟滤波器的脉冲响应:选择适当的模拟滤波器类型,并设计其频率响应。

根据滤波器的阶数和截止频率,确定模拟滤波器的差分方程。

2. 采样得到数字滤波器的脉冲响应:通过将连续时间域中的模拟滤波器的脉冲响应与采样脉冲进行卷积,得到数字滤波器的脉冲响应。

3. 离散化得到数字滤波器的差分方程:将数字滤波器的脉冲响应离散化,得到数字滤波器的差分方程。

根据差分方程,可以计算数字滤波器的各个系数。

三、脉冲响应不变法的优缺点脉冲响应不变法具有以下优点:1. 设计方法简单:通过匹配模拟滤波器和数字滤波器的脉冲响应,可以直接得到数字滤波器的差分方程,设计方法相对简单。

2. 精度较高:脉冲响应不变法可以保持模拟滤波器的频率响应特性,因此可以实现较高的滤波器精度。

3. 适用范围广:脉冲响应不变法适用于各种模拟滤波器类型和滤波器规格的设计。

然而,脉冲响应不变法也存在一些缺点:1. 频率响应失真:由于采样过程中的截断和抽样误差,脉冲响应不变法可能导致数字滤波器的频率响应失真。

2. 高阶滤波器设计困难:对于高阶滤波器的设计,脉冲响应不变法可能会导致数字滤波器的稳定性问题和数值计算问题。

四、脉冲响应不变法的应用领域脉冲响应不变法广泛应用于数字信号处理领域,特别是在音频信号处理、图像处理和通信系统中的滤波器设计中。

第五章 无限长单位脉冲响应数字滤波器设计

第五章 无限长单位脉冲响应数字滤波器设计

第五章 数字滤波器5-3 无限长单位脉冲响应数字滤波器设计一、概述数字滤波器从实现的网络结构或者从单位脉冲响应分类,可以分成无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器。

它们的系统函数分别为:理想低通、高通、带通、带阻滤波器幅度特性2 数字滤波器的技术要求我们通常用的数字滤波器一般属于选频滤波器。

假设数字滤波器的传输函数H(e j ω)用下式表示:通带内和阻带内允许的衰减一般用dB 数表示,通带内允许的最大衰减用αp 表示,阻带内允许的最小衰减用αs 表示,αp 和αs 分别定义为:011()1()()Mrr r Nk kk N nn b z H z a z H z h n z -=-=--==+=∑∑∑)(e j ωH )(e j ωH )(e j ωH )(e j ωH 0低通0高通0带通0带阻ωωωωπ-π2-π2-π2-π-π-π-π-ππππ2π2π2π2()()()j j j H e H e e ωωωΩ=00()20lg ()()20lg()psj p j j s j H e dBH e H e dBH e ωωαα==如将|H(ej0)|归一化为1,则表示成:3. 数字滤波器设计方法概述IIR 滤波器和FIR 滤波器的设计方法是很不相同的。

IIR 滤波器设计方法有两类,经常用的一类设计方法是借助于模拟滤波器的设计方法进行的。

其设计步骤是:先设计模拟滤波器得到传输函数Ha(s),然后将Ha(s)按某种方法转换成数字滤波器的系统函数H(z)。

二、模拟滤波器的设计模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,如巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆(Cauer)滤波器、贝塞尔(Bessel)滤波器等,这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。

图5-21理想滤波器的幅频特性1.模拟低通滤波器的设计指标及逼近方法模拟低通滤波器的设计指标有αp, Ωp,αs 和Ωs 。

第六章 无限长单位冲激响应(IIR)数字滤波器的设计方法

第六章 无限长单位冲激响应(IIR)数字滤波器的设计方法

6.1 引 言
数字滤波器的性能要求
通带截止频率 误差容限 阻带截止频率
具有误差容限的的滤波器具有三个特征范围: 通带 过渡带
阻带
1 1 H (e j ) 1,
c
c st
H (e j ) 2 , st
第六章 IIR数字滤波器的设计方法
z e j
H ( z)H ( z 1) 的零极点特征:
1 若 z re ji 是H(z)的极点,则 z e ji 是H(z-1)的极点。 r 即 H ( z)H ( z 1) 的极点是以单位圆镜像对称的,同时也是共轭的。
jIm[z]
满足上述条件的极点可能有几种情况。 对于可实现的系统,系统函数的极点都在单位圆内。 对于零点的分析类似极点,只是系统函数的零点没
0 1
Re[z]
4
有只在单位圆内的限制。
第六章 IIR数字滤波器的设计方法
6.1 引 言
M
设计IIR数字滤波器的方法 数字滤波器可用系统函数表示
H ( z)
1 ak z k
k 0
k 0 N
bk z k
对IIR系统,N>0,且一般有MN。
设计的目的就是要求出ak和bk,使对应的传输函数逼近所要求的特性。
对于因果稳定的LSI系统,其单位冲击响应 h(n)为实函数,因而满足共轭 对称条件,即 H (e j ) H (e j )
第六章 IIR数字滤波器的设计方法
6.1 引 言
幅度平方响应:
H (e
j 2
) H (e j ) H (e j ) H (e j ) H (e j ) H ( z ) H ( z 1 )

CH3无限长单位脉冲响应滤波器IIR的设计方法

CH3无限长单位脉冲响应滤波器IIR的设计方法
• 带通和低通滤波器,需充分地带限
阻带衰减越大,则混叠效应越小
Slide 24
例1 将已知传递函数的模拟滤波器数字化
Slide 25
图3.3 脉冲响应不变法的幅频特性
3.1.2 双线性变换法 P105
频谱交叠产生的混淆: 从S平面到Z平面的 变换z=esT的多值对应关系
建立S平面与Z平面一一对应的单值关系 设想变换分为两步
• 但是各个分段边缘的临界频率点产 生了频率畸变
• 可以通过频率的预畸变加以校正
Slide 35
3.2 常用模拟低通滤波器特性
目的:方便学习数字滤波器 任务:讨论常用的模拟LPF设计方法
高通、带通、带阻等模拟滤波器可利 用变量变换方法,由LPF变换得到。
模拟LPF的种类
°Butterworth 滤波器 °Chebyshev 滤波器 °椭圆(Elliptic、Cauer型)滤波器
• 在要求设计的Ha(s)具有最小相位性 质时
°选 用 A(Ω2) 在 s 左 半 平 面 的 零 点 作 为 Ha(s)的零点。
Slide 39
例2 设已知A(Ω2),求对应的Ha(s)。
A(2 ) 2 2 1 4
A(S 2 ) (2 - s2 )
2 s 2 s
1 1
e e
j j
2 T
jtg
2

j
(3.20)
• s平面上的正虚轴和负虚轴分别被映射到z 平面上单位圆的上半部和下半部。
Slide 30
图3.5 双线性变换的频率特性
2. s平面的左半部映射到单位圆的内部 s平面的右半部映射到单位圆的外部。
证明
Slide 31
3. 稳定性

【2019年整理】CH3无限长单位脉冲响应滤波器IIR的设计方法

【2019年整理】CH3无限长单位脉冲响应滤波器IIR的设计方法

Slide 3
设计数字滤波器的步骤:
• 一般包括以下三步: • (1)按照任务的要求,确定滤波器的性能 指标任务包括:
°需要滤除哪些频率分量 °保留哪些频率分量 °保留的部分允许有多大的幅度或相位失真
• •
Slide 4
(2)用一个因果稳定的离散线性时不变系 统的系统函数去逼近这一性能要求 系统函数可以分为IIR和FIR两类系统
• 该方法只适用于带限的AF。
• 高通和带阻滤波器不宜采用脉冲响 应不变法

否则要加保护滤波器,滤掉高于折叠 频率以上的分量。
阻带衰减越大,则混叠效应越小
• 带通和低通滤波器,需充分地带限

Slide 24
例1 将已知传递函数的模拟滤波器数字化
图3.3 脉冲响应不变法的幅频特性
Slide 25
3.1.2 双线性变换法 P105
M
一般M N
Slide 7
系统的组成
•一般,M≤N,这类系统称为N阶系统
•当 M > N 时, H(z) 可看成是一个 N 阶 IIR 子系统与一个 (M-N) 阶的 FIR 子系 统的级联。
X(n)
IIR
(N阶)
FIR
(M-N阶)
y(n)
Slide 8
数字低通滤波器频率响应幅度特性的容限图
H (e j )
1+ 1 1 1- 1 通带 过渡带 阻带
2
o
1 1 | H (e j ) | 1 1
| H (e j ) | 2
Slide 9
|ω|≤ωc ωr≤|ω|≤π
IIR滤波器的逼近问题
• 寻找滤波器的各系数 ai 和 bi,使其逼 近一个所要求的特性。 • 通常有以下两种方法:

无限长单位冲激响应IIR数字滤波器的设计方法

无限长单位冲激响应IIR数字滤波器的设计方法

这时相位变化最大,称最大相位超前系统,是逆 因果稳定系统。
b 当全部零点在单位圆外时即 mi 0(mo M )有
H (e j )
arg
K
2
2 ( p0
mo )
这时相位超前最小,称最小相位超前系统,是逆
因果移动系统。
表6.1 四种系统及其因果性、稳定性、零 点、极点旳关系。
最小相位系统主要性质
(2)对逆因果移动系统,此时
p0 N , pi 0
当 从0变到 2 时, 2 ,则辐角变化量
为称为相arg位 H超(Ke前j 系) 统。2 2 mi 2 (N M )
a 当全部零点在单位圆内时,即 mi M (mo 0)有
H (e j )
arg
K
2
2 N
2
p0
N k 1
s
Ak sk
N
ha (t)
H N
a
(
s)
(6.32)
其h(相n) 应ha旳(nT冲) 激响A应k esknT u(n)是 Ak (旳eskT拉)n u普(n拉) 斯变换即
k 1
k 1
(6.33)
N
N
H (对z) h (n)h求(n)zz变n 换,得Ak 数(esk字T z 1滤)n 波 器A系k 统(es函kT z数1)n
k 1
cm ) | dk ) |
各零矢量模的连乘积
各极矢量模的连乘(积6.14)
arg
H (e j K
)
M
arg
m1
e j
cm
M
arg
m1
e
j
dk
(N M )
(6.15)
若mi , mo , pi , po分别表达单位圆内外旳零极点数则

无限长单位脉冲响应IIR

无限长单位脉冲响应IIR

第5章 无限长单位脉冲响应(IIR ) 数字滤波器的设计方法5.1 基本概念5.1.1 选频滤波器的分类可分为低通、高通、带通、带阻和全通满足奈奎斯特采样定理时,信号的频率特性只能限带于|ω|<π的范围。

5.1.2 滤波器的技术指标在通带内,幅度响应以最大误差±δ1逼近于1,即1111 δδωω+<≤-≤)(jw P e H在阻带内,幅度响应以误差小于δ2而逼近于零,即2 ,δπωω≤≤≤)(jw S e H1)()ωj e H (π1 δ阻带过渡带ωπ2 δ通带11δ+11δ-sw p wN 为奇数时实轴上有极点,N 为偶数时实轴上没有极点。

要称为稳定的滤波器)s (H a 表示为:∏=-Ω=Nk k N Ca )s s ()s (H 1方法2:,s s p A A P 、、由模拟ΩΩc ,Ω→N c ,Ω→N⎥⎥⎦⎤⎢⎢⎣⎡ΩΩ+=Ω-Ω=ΩNa P j H A 2c p 2p )(11lg 10)(lg 10 -=在 ⎥⎦⎤⎢⎣⎡ΩΩ+=Ω-Ω=ΩN a P j H A 2c S 2S )(11lg 10)(lg 10 -=在 ⎥⎥⎦⎤⎢⎢⎣⎡ΩΩ--=)(lg 2])110()110(lg[s p 1010sp A A N NA sc s 210110-Ω=Ω(通带指标改善)或 NA Pc P 210110-Ω=Ω(阻带指标改善)方法3: )()(s H s H a aN →NN N aN ss a s a s a s H ++++=--1122111)( caN a s s s H s H Ω'=→)()( 例 1 导出三阶巴特沃思模拟低通滤波器的系统函数, 设Ωc =2 rad/s 。

解 幅度平方函数是62)2/(11|)(|Ω+=Ωj H 令Ω2=-s 2即s =j Ω,则有)2/(11)()(66s s H s H a a -=-π⎥⎦⎤⎢⎣⎡-+=612212k j k es k =1, 2, …, 6会产生频率混叠,适合低通、带通滤波器的设计,不适合高通、带阻滤波器的设计。

第6章 无限长单位脉冲响应(IIR)滤波器的设计方法

第6章 无限长单位脉冲响应(IIR)滤波器的设计方法

计算机辅助设计法。
第6章 无限长单位冲激响应(IIR)数字滤波器的设计方法
本章着重讨论第一种方法。利用模拟滤波器来设计数字滤 波器,就是从已知的模拟滤波器传递函数Ha(s)设计数字滤波器 的系统函数H(z)。因此,它归根结底是一个由S平面映射到Z平面 的变换,这个变换通常是复变函数的映射变换,这个映射变换 必须满足以下两条基本要求: (1)H(z)的频率响应要能模仿Ha(z)的频率响应,也即S平面 虚轴jΩ必须映射到Z平面的单位圆ejω上。
ji ji i 1
M
2
此外还可以有其他许多种误差最小的准则,如最大误差最小准则等。
第6章 无限长单位冲激响应(IIR)数字滤波器的设计方法
第二步,求在此最佳准则下滤波器系统函数的系数ak, bk。 一般是通过不断改变滤波器系数ak、bk,分别计算ε; 最后,找到 使ε为最小时的一组系数ak, bk,从而完成设计。这种设计需要进 行大量的迭代运算,故离不开计算机。所以最优化方法又称为
第6章 无限长单位冲激响应(IIR)数字滤波器的设计方法
6.2 IIR滤波器设计的特点
IIR滤波器的系统函数用极、零点表示如下:
M M
H ( z)
b z
k k 0 N k 1
k
1 ak z k
A
(1 c z
k k 1 N k 1
1
)
(1 d k z 1 )
(6-2b)
式 中 , 假 定 |H(ej0)|=1( 已 被 归 一 化 ) 。 例 如 |H(ejω)| 在 ωc 处 满 足
|H(ejωc)|=0.707,则δ1=3 dB;在ωst处满足|H(ejωst)|=0.001,则δ2 =60 dB(参考图6-2)。(注:lg是log10的规范符号表示。)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H (e
M i 1
j i
) H d ( e j i )

2
min
此外还有其他多种误差最小准则,
b) 在此最佳准则下,求滤波的系数 a i 和 bi
通过不断地迭代运算,改变 a i 、 i b 满足要求为止。 ,直到

以上两种设计方法中,着重讲第一种,因为数字滤波 器在很多场合所要完成的任务与模拟滤波器相同,如作低 通、高通、带通及带阻网络等,这时数字滤波也可看作是 “模仿”模拟滤波器。在IIR滤波器设计中,采用这种设计 方法目前最普遍。由于计算机技术的发展,最优化设计方 法的使用也逐渐增多。
计算 H(Z) : 脉冲响应不变法特别适用于用部分分式表达传递函数,模拟 滤波器的传递函数若只有单阶极点,且分母的阶数高于分子阶 数 N>M,则可表达为部分分式形式;
Ha ( s )
i 1
N
Ai s si
其拉氏反变换为:
ha (t ) Ai e si t u (t ),
i 1
s ,此时可增加一保护滤波器,滤掉高于 2
的频带,再用脉
冲响应不变法转换为数字滤波器,这会增加设计的复杂性和滤 波器阶数,只有在一定要满足频率线性关系或保持网络瞬态响 应时才采用。
j
3 T
j Im( z )

0
T

0
T
Re(z )


3
T
S 平面
: ~
Z 平面
应指出,Z=esT的映射关系反映的是Ha(s)的周期延拓与 H(Z) 的关系,而不是Ha(s)本身与H(Z)的关系,因此,使用脉冲响 应不变法时,从Ha(s)到H(z)并没有一个由S平面到Z平面的一一 对应的简单代数映射关系,即没有一个S=f(z)代数关系式。

2 s T
正如第一章的采样定律中所讨论的,如果模拟滤波器的 频响带限于折叠频率ΩS/2 以内, 即
H a ( j) 0
s 2
这时数字滤波器的频响才能不失真地重现模拟滤波器的频 响(存在于折叠频率ΩS/2以内)
H (e
j
1 ) Ha ( j ) T T

但任何一个实际的模拟滤波器,其频响都不可能是真正带 限的,因此不可避免地存在频谱的交叠,即混淆,如图,这 时,数字滤波器的频响将不同于原模拟滤波器的频响而带有 一定的失真。模拟滤波器频响在折叠频率以上衰减越大,失 真则越小,这时,采用脉冲响应不变法设计的数字滤波器才 能得到良好的效果。
Ha ( j ) T

0

H ( e j )


0


脉冲响应不变法中的频响ห้องสมุดไป่ตู้淆
虽然脉冲响应不变法能保证S平面与Z平面的极点位置有 一一对应的代数关系,但这并不是说整个S平面与Z平面就存 在这种一一对应的关系,特别是数字滤波器的零点位置与S 平面上的零点没有一一对应关系,而是随着Ha(s)的极点 Si 与系数 Ai 的不同而不同。
zeST
的映射关系映射
映射关系
zeST :
z re


j
,
s j
T
因为e以2拍为周期
r eT ,
T S平面上每一条宽为 叠地映射到Z平面的整个平面上:
2
的横带部分,都将重
每一横带的左半部分映射到Z平面单位圆以内, 每一横带的右半部分映射到Z平面单位圆以外, j 轴映射到单位圆上, j 轴上每一段2 T 都对应于绕单位圆一周。
H (e j ) 与采样间隔T有关,如P77图b, 显然 T越小,衰减越大,混叠越小,当 fs=24Hz ,混叠可忽略不计,为什 么混迭呢?
小结
1)脉冲响应不变法的一个重要特点是频率坐标的变换是线性 的,ω =Ω Τ ,ω 与Ω 是线性关系。
因此如果模拟滤波器的频响带限于折叠频率以内的话,通过变 换后数字滤波器的频响可不失真地反映原响应与频率的关系。
第三章
无限长单位脉冲响应(IIR)
滤波器设计
概述:
许多信息处理过程,如信号的过滤,检测、预测等都 要用到滤波器,数字滤波器是数字信号处理中使用得最广 泛的一种线性系统,是数字信号处理的重要基础。 数字滤波器的功能(本质)是将一组输入的数字序列 通过一定的运算后转变为另一组输出的数字序列。实现方 法主要有两种:数字信号处理硬件和计算机软件。 数字滤波器——线性时不变系统。
下面讨论两种常用的映射变换方法:
一、脉冲响应不变法 利用模拟滤波器理论设计数字滤波器,也就是使数字滤波 器能模仿模拟滤波的特性,这种模仿可从不同的角度出发。 脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波 器的单位脉冲响应序列h(n)正好等于模拟滤波器的冲激响应 ha(t)的采样值,即 h(n)=ha(nT), T为采样周期。 ① 如以 Ha(s) 及 H(z)分别表示 ha(t) 的拉氏变换及 h(n) 的 Z 变换,即 Ha(s)=L[ha(t)] , H(z)=Z[h(n)]

n


h(n )e nsT
H ( z)
n


h(n ) z n
s平面与z平面的映射关系
ze
sT
以上表明,采用脉冲响应不变法将模拟滤波器变换为 数字滤波器时,它所完成的 S 平面到 Z 平面的变换,正是 以前所讨论的拉氏变换到Z变换的标准变换关系,即首先对 Ha(s)作周期延拓,然后再经过 到 Z 平面上。
例 将一个具有如下传递出数
2 1 1 ( s 1)( s 3) s 1 s 3 的模拟滤波器数字化。 H ( s)
解:
1 1 H ( z) 1 T 1 z e 1 z 1e 3T
z (e e ) 1 z 1 (e T e 3T ) e 4T z 2
1 1-δ
1
δ2 0
ω
ωc 通带 过渡带
ωr 阻带
π
§3.1
根据模拟滤波器设计IIR滤波器
利用模拟滤波器设计数字滤波器,就是从已知的模拟滤波 器传递函数Ha(s)设计数字渡波器传递函数H(z),这归根到 底是一个由S平面到Z平面的变换,这种映射变换应遵循两个 基本原则: 1)H(z)的频响要能模仿Ha(s)的频响,即S平面的虚轴应 映射到Z平面的单位圆上。 2)Ha(s) 的因果稳定性映射成 H(z)后保持不变,即S平 j 面的左半平面 Re{S}<0 e 应映射到Z平面的单位圆以内 |Z|<1。
1
T
3T
模拟滤波器的频率响应为:
2 2 Ha ( j) H ( s ) s j ( j 1)( j 3) (3 2 ) j 4
示于P77图a
数字滤波器的频率响应为:
H ( e j ) H ( z )
z e j
(e T e 3T )e j T 3T j 4T j 2 1 (e e )e e e
i 1 i 1 N
M
一般M N
分类:
递归系统
非递归系统
IIR
FIR
高通 低通
带通
带阻
i
数字滤波器的设计步骤: 1)按照实际需要确定滤波器的性能要求。 2)用一个因果稳定系统的 H(z) 或 h(n) 去逼近这个性 能要求,即求 h(n) 的表达式 di b 确定系数 ai 、i 或零极点ci 、 , 以使滤波器满足给定的性能要求——第三章、四章讨论 3)用一个有限精度的运算去实现这个系统函数。 包括 选择运算结构:如级联型、并联型、卷积型、频率 采样型以及快速卷积(FFT)型等; 选择合适的字长和有效数字的处理方法等(第五章)。
H (e ) H a ( j)
j
/T
例如线性相位的贝塞尔低通滤波器,通过脉冲响应不变法 得到的仍是线性相位的低通数字滤波器。
2)在某些场合,要求数字滤波器在时域上能模仿模拟滤波器 的功能时,如要实现时域冲激响应的模仿,一般使用脉冲响应 不变法。
3)如果Ha(s)是稳定的,即其极点在S左半平面,映射后得到 的H(Z)也是稳定的。 4)脉冲响应不变法的最大缺点:有频谱周期延拓效应,因 此只能用于带限的频响特性,如衰减特性很好的低通或带通, 而高频衰减越大,频响的混淆效应越小,至于高通和带阻滤波 器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中
的 Z 变换 射关系.
H (z )
之间存在的 S 平面与Z平面的映
ˆ H a ( s)



[ha (t ) (t nT )]e st dt
n

n

ha (t ) (t nT )e st dt
nsT
n
ha (nT )e
数字滤波器的数学描述: 1)差分方程
y (n) ai x(n i ) bi y (n i )
i 0 i 1
N
N
2)系统函数
H (Z )
ai z
i 0 N i 1
M
i
1 bi z i
A
(1 ci z 1 ) (1 d i z 1 )
N
u (t )
N
单位阶跃
对ha(t)采样得到数字滤波器的单位脉冲响应序列
h(n) ha(nT ) Ai e si nT u (n) Ai (e siT ) n u (n)
i 1 i 1
N
再对h(n)取Z变换,得到数字滤波器的传递函数:
H ( z ) Ai e si nT z n Ai (e siT z 1 ) n
n 0 i 1 i 1 n 0

N
N

第二个求和为等比级数之和,要收敛的话,
相关文档
最新文档