多元函数极值的判定

合集下载

多元函数的极值及其求法

多元函数的极值及其求法
不是上面之一, 则称为不定矩阵.
定理 设A是一个n n对称矩阵,
A正定 所有顺序主子式大于0
a11 a12 L a1k
a21 a22 L a2k
MM
M
所有特征值大于0 .
ak1 ak 2 L akk
(即特征方程 | E - A | 0的根大于0)
以 2 2 矩阵为例: A a11 a12 a21 a22
证: 由二元函数的泰勒公式, 并注意
则有
若 H f (P0 )正定, 则由引理知存在m 0使得
(h, k)H f (P0)(h, k)' m2.
故对充分小的U(P0), 只要(x, y) x0 h, y0 k U(P0), 就有
f (x, y)
f ( x0 ,
y0
)
(
m 2
o(1))
设函数z f ( x, y)在点 P0 ( x0 , y0 )的某邻域U(P0 )内 有一阶及二阶连续偏导数,且 P0是 f 的驻点,
则当H f (P0 )是正定矩阵时, f 在 P0取得极小值;
当H f (P0 )是负定矩阵时, f 在 P0取得极大值; 当H f (P0 )是不定矩阵时, f 在 P0不取极值.
极大值和极小值
x
例1. 已知函数
A 则( )
的某个邻域内连续, 且
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点. 提示: 由题设
(2003 考研)
定理1 (必要条件) 函数
存在
偏导数, 且在该点取得极值 ,
则有
证:
取得极值 ,

取得极值 取得极值
据一元函数极值的必要条件可知定理结论成立.
(h2

多元函数极值的充分条件

多元函数极值的充分条件

多元函数极值的充分条件马丽君(集宁师范学院 数学系)我们知道,一元函数()y f x =在点0x x =取得极值的充分条件是:函数()f x 在点0x 处具有一阶二阶连续导数,0x 是()f x 驻点,即0()0f x '=。

若0()0(0)f x ''><,则0x 为()f x 的极小值点(或极大值点)对于多元函数()Y f X =,其中12(,,,)n X x x x =,有与上面一元函数取得极值的充分条件相对应的结论。

定义 1.设n 元函数()Y f X =,其中12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则称12,,,Tn f ff x x x ⎛⎫∂∂∂⎪∂∂∂⎝⎭为()f X 的梯度,记作gradf 。

引理 设n 元函数()f X ,其中12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则()f X 在点000012(,,,)n X x x x =取得极值的必要条件是:0112(),,,0Tn n X X f ff gradf X x x x ⨯=⎛⎫∂∂∂== ⎪∂∂∂⎝⎭证明:引理成立是显然的,即极值点函数可导,则该点的偏导数等于零。

定义 2.设n 元函数()f X ,对各自变量具有二阶连续偏导数,000012(,,,)n X x x x =是()f X 的驻点,现定义()f X 在点0X 处的矩阵为:222000211212222000202122222000212()()()()()()()()()()f N n n n f X f X f X X X X X X f X f X f X H X X X X X X f X f X f X X X X X X ⎧⎫∂∂∂⎪⎪∂∂∂∂∂⎪⎪⎪⎪∂∂∂⎪⎪=∂∂∂∂∂⎨⎬⎪⎪⎪⎪⎪⎪∂∂∂⎪⎪∂∂∂∂∂⎩⎭由于各二阶偏导数连续,即22(,1,2,,)i j j if fi j n x x x x ∂∂==∂∂∂∂,所以0()f H X 为实对称矩阵。

多元函数的极值问题

多元函数的极值问题

多元函数的极值问题多元函数极值问题是数学中常见的一类问题,一般来说,我们希望在给定的变量限制条件下找到使得多元函数取得最大值或者最小值的变量值,这样的问题被称为多元函数的极值问题。

由于多元函数在不同的情况下可能存在很多局部最大值和局部最小值,因此我们需要在一定条件下,确保找到的最优解是全局最优解。

一阶必要条件根据微积分的一阶必要条件,我们可以求解多元函数的偏导数,寻找使偏导数等于零的点。

对于一个二元函数$f(x,y)$,偏导数为:$$\frac{\partial f}{\partial x}=0,\frac{\partial f}{\partial y}=0$$这些方程的解,就是函数的极值点。

而对于一个多元函数$f(x_1,x_2,...,x_n)$,我们需要找到使得所有偏导数为零的点,即:$$\frac{\partial f}{\partial x_1}=0,\frac{\partial f}{\partialx_2}=0,...,\frac{\partial f}{\partial x_n}=0$$这些方程的解,就是函数的极值点。

需要注意的是,这些点仅仅是可能的极值点,并不能确定是否为极大值或极小值点。

二阶必要条件在一阶必要条件得到的极值点处,我们希望进一步判断是极大值还是极小值。

此时,就需要使用微积分的二阶必要条件来判定。

对于二元函数$f(x,y)$,我们可以得到一个Hessian矩阵:$$H=\begin{bmatrix} \frac{\partial^2f}{\partial x^2} &\frac{\partial^2f}{\partial x\partial y}\\ \frac{\partial^2f}{\partialy\partial x} & \frac{\partial^2f}{\partial y^2}\\ \end{bmatrix}$$对于任意一个方向$\vec{v}=[x_1,y_1]$,我们可以得到一个二次型:$$Q(x_1,y_1)=\begin{bmatrix} x_1&y_1\\ \end{bmatrix} H\begin{bmatrix} x_1\\y_1\\ \end{bmatrix}$$二阶必要条件就是,如果Hessian矩阵在极值点处是正定的,则这个点是极小值点;如果是负定的,则是极大值点;如果是奇异的,则是鞍点;如果是不定的,则无法确定。

多元函数极值点的判别

多元函数极值点的判别

多元函数极值点的判别
多元函数极值点是指多元函数在一定范围内的局部极大值或极小值的点,其判别方法根据
函数是凸函数还是凹函数确定。

1. 如果函数是凸函数,则函数极值点为函数的局部极小值点,此时在该函数的极值点处
函数的一阶导数存在,并且永远大于或等于0;
2. 如果函数是凹函数,则函数极值点为函数的局部极大值点,此时在该函数的极值点处
函数的一阶导数存在,并且永远小于或等于0。

在判别多元函数极值点之前,需要求解该函数的一阶偏导数,并将一阶偏导数的值代入函数,如果函数的一阶偏导数的值为0,则代入函数得到的值即为多元函数极值点。

若不满足上述函数一阶偏导数等于零条件,则在该多元函数极值点处函数一阶导数不存在,此时只能采用函数的导数性质进行判别:
当多元函数的局部极大值点处,其一阶偏导数小于0;
当多元函数的局部极小值点处,其一阶偏导数大于0。

以上就是多元函数极值点的判断方法,要确定一个函数的极值点,需要先求出一阶偏导数,如果函数的一阶偏导数值等于0,则即为极值点。

若一阶偏导数值不等于0,则需要根据
其正负性判断多元函数极值点,大于零则为极小值,小于零则为极大值。

多元函数条件极值

多元函数条件极值

多元函数条件极值
一、多元函数条件极值
多元函数条件极值是研究多元函数的极大值或极小值在满足条
件时取得的结果。

1. 条件极值的定义
多元函数条件极值指的是满足给定条件的多元函数的极大值或
极小值,由此可知,条件极值并不一定存在,也可能不存在。

2. 条件极值的求法
条件极值的求法首先需要满足一定的条件,并且需要根据条件求出条件极值的方程,确定未知量,然后用极值律求解条件极值的结果。

在多元函数条件极值的求法中,需要利用多元函数分析法和极值律,多元函数分析法可以帮助确定条件极值的方程,而极值律则是用来决定条件极值的最终结果。

三、总结
多元函数条件极值是研究多元函数的极大值或极小值在满足条
件时取得的结果,它的求法需要满足一定的条件,并且需要根据条件求出条件极值的方程,确定未知量,然后用极值律求解条件极值的结果。

- 1 -。

多元函数极值的判定

多元函数极值的判定

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1定理中用到的定义 (2)2函数极值的判定定理.............................................................. .. (5)3多元函数极值判定定理的应用 (7)参考文献 (8)多元函数极值的判定摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.关键词:极值;条件极值;偏导数;判定The judgement of the extremum of the function of manyvariablesAbstract :This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many variables .Keywords : extremum; conditional ;partial derivative引言在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.1 定理中用到的定义定义 1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点0(,)()P x y U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.定义1.2[]1设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在0x 的某一领域有定义,则当极限0000000(,)(,)(,)limx xf x y f x x y f x y x x→+-=V V V V V 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作00(,)x y fx∂∂.定义1.3[]3 设n D R ⊂为开集,12(,,,)n P x x x D ∈L ,0000122(,,,)P x x x D ∈L :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有000()()()limP P f P f P A P P P P →----,则称n 元函数12(,,,)n f x x x L 在点0P 可导.称A 为在点0P 处的导数,记为0()f P '.注1:01122(,,,)T n n P P x x x x x x '''-=---L 为n 维列向量. 注2:0P P -=注3:在导数存在的条件下,可求得:012()(,,,)nf f f f P A x x x ∂∂∂'==∂∂∂L ,它是一个n 维向量函数.定义 1.4[]3(二阶导数)若n 元函数f 的一阶导数f '在D (或D 某一点)上可微,则称f 在D (或D 某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得2222121122222122222212()n n nnn ff f x x x x x f f f f P x x x x x f f f x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂⎪''=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭L L L L L L L此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:00000001()()()()()()()()2T n f P f P f P P P P P f P P P O P P '=+-+--+-.2 函数极值的判定定理对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.定理2.1[]1 (必要条件)若函数(,)z f x y =在点00(,)x y 的某领域偏导数存在,切点00(,)x y 是是其极值点,则0000(,)(,)0f x y f x y x y∂∂==∂∂. 定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点00(,)x y 的某领域有二阶连续偏导数存在.记222200000022(,)(,)(,),,,,f x y f x y f x y A B C AC B x x y y∂∂∂====-∂∂∂∂V 则1)当0<V 时,点00(,)x y 不是函数的极值点;2)当0>V 是,若0A >,则点00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当0=V 时,该方法不能判断其是不是极值点.注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0=V 的情形).利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.定理2.3 (必要条件)设n D R ⊂为开集,n 元实值函数12(,,,)n y f x x x =L 在点0P D ⊂可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量(0,0,,0)L ).证明 由费马定理知当f 在0P 点取得极值时,012()(,,,)0nf f ff P x x x ∂∂∂'==∂∂∂L . 定理2.4(充分条件)设n D R ⊂为开集,n 元实函数12(,,,)n y f x x x =L 在0()U P D ⊂上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.证明 0P ,P 点坐标分别满足00012(,,,)n x x x L 与12(,,,)n x x x L ,且0()P U P ⊂,0i i i x x x =-V ,当0()0f P '=时,由Taylor 公式,有000000212012121211()()()()()()21(,,,)()(,,,)(())2(,,,)()T n nT nn n i i i nn i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑V V V L V V V L V V V L V V 当0()U P 充分小时,只要0()P U P ⊂,则该式子的符号由12(,,,)n g x x x V V L V 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x >V V L V ,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥V V L V .故当0()n f P 为正定或半正定时,0()()0f f P f P =-≥V ,所以0()()f P f P ≥,故0P 点是f 的极小值点.同理可证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ϕ==<L L 的限制下,求函数12(,,,)n y f x x x =L 的极值问题,其中f 与(1,2,,)k k m ϕ=L 在区域D 有连续的一阶偏导数.若D 的点000012(,,,)n P x x x L 是上述问题的极值点,且雅可比矩阵01111n m m n P x x x x ϕϕϕϕ∂∂⎛⎫ ⎪∂∂ ⎪⎪ ⎪∂∂ ⎪ ⎪∂∂⎝⎭K M O M L的秩为m ,则存在m 个常数(0)(0)(0)12,,,mλλλL ,使得000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为拉格朗日函数121212121(,,,,,,)(,,,)(,,,)mn m n k k n k L x x x f x x x x x x λλλλϕ==+∑L L L L的稳定点,即000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为下述n m +个方程: 111111112120(,,,)0(,,,)0n mmx k k mx k k n nn m n f L x x f L x xL x x x L x x x λλϕλϕλϕϕ==∂∂⎧=+=⎪∂∂⎪⎪⎪∂∂⎪=+=⎨∂∂⎪⎪==⎪⎪⎪==⎩∑∑L L L L L L L L L L L L L L L L L L L L 的解.此定理的证明可参阅文献[1]第二十三章的定理23.19的证明. 由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.定理 2.6[]2 设n D R ⊂为开集,n 元实值函数12(,,,)n y L x x x =L 在0()U P D ⊂存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,12(,,,)n y L x x x =L 在0P 点取得极小值;20()0d L P <时,12(,,,)n y L x x x =L 在0P 点取得极大值.证明 11n nL LdL dx dx x x ∂∂=++∂∂L , 2121222212121211()()n nn n L L Ld L d dL ddx d dx d dx x x x L L Ldx dx dx dx x x x x x ∂∂∂==+++∂∂∂∂∂∂=+++∂∂∂∂∂L L22212221222222122212()()n n n n n nL L L dx dx dx dx x x x x x L L L dx dx dx dx x x x x x ∂∂∂++++++∂∂∂∂∂∂∂∂+++∂∂∂∂∂L L L22211112221(,,)n n n nn L L x x x dx dx dx dx L L x x x ⎛⎫∂∂ ⎪∂∂∂⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪∂∂ ⎪⎝⎭ ⎪∂∂∂⎝⎭K L MO M L L11(,,)()n n dx dx dx f P dx ⎛⎫⎪''= ⎪ ⎪⎝⎭L L .又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .3 多元函数极值判定定理的应用由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0L L L L x y z λ∂∂∂∂====∂∂∂∂有:当32λ=-时,122(,,)(,,)333x y z =-,当32λ=时,122(,,)(,,)333x y z =--,现判断是极大值还是极小值 .方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即(,)z z x y =,它由2221x y z ++=决定。

多元函数极值、最值、条件极值

多元函数极值、最值、条件极值

三、条件极值
极值问题
无条件极值: 对自变量只有定义域限制
条 件 极 值 : 对自变量除定义域限制外, 还有其它条件限制 条件极值的求法: 方法1 代入法. 例如 ,
在条件 ( x, y ) 0 下, 求函数 z f ( x, y) 的极值
转 化
从条件 ( x, y ) 0中解出 y ( x)
求一元函数 z f ( x, ( x)) 的无条件极值问题
方法2 拉格朗日乘数法.
例如,
在条件 ( x, y ) 0 下, 求函数 z f ( x, y) 的极值 .
如方法 1 所述 , 设 ( x, y ) 0 可确定隐函数 y ( x) , 则问题等价于一元函数 z f ( x, ( x)) 的极值问题, 故 极值点必满足 dz dy fx f y 0 dx dx x dy x 因 , 故有 f x f y 0 dx y y 记
在(0,0)点取得极小值.
3、多元函数的最值
与一元函数相类似,我们可以利用函数的极值 来求函数的最大值和最小值.
Байду номын сангаас
求最值的一般方法:
将函数在 D 内的所有驻点处的函数值及在 D 的边界上的最大值和最小值相互比较,其中 最大者即为最大值,最小者即为最小值.
二、最值应用问题
依据
函数 f 在闭域上连续 函数 f 在闭域上可达到最值
一、多元函数的极值和最值 二、条件极值 拉格朗日乘数法
三、小结
一、多元函数的极值和最值
1、二元函数极值的定义
设函数 z f ( x , y ) 在点( x0 , y0 ) 的某邻域内有定义, 若对于该邻域内异于 ( x0 , y0 ) 的所有点 ( x , y ) ,都有 不等式

多元函数的极值

多元函数的极值
y ( P0 ) = 0 , 则称 P0 为 f 的驻点。 驻点未必是极值点。
定理 2. 若函数z = f (x, y)在某 U ( P0 ) 内存在连续的二阶 偏导数, 且 f x ( P0 ) = f y ( P0 ) = 0, 记 A = f xx ( P0 ), B = f xy ( P0 ), C = f yy ( P0 ), 则当 AC B 2 0 时, 若 A 0 , P0 为极小值点; 若 A 0 , P0 为极大值点。 AC B 2 0 时, P0 非为极值点。
AC B 2 = 0 时, P0 是否极值点需进一步讨论。
f ( x , y ) = (1 e y ) cos x y e y 的极值。 例 1. 求
f x = (1 e y ) sin x = 0 解: 由 解得驻点 (2n , 0) , y f y = e (cos x 1 y ) = 0 (( 2n 1) , 2) , 其中 n Z . 那么 A = f xx = (1 e y ) cos x ,
2 2 2
在点 P1 (1, 1, 2) 的某邻域内方程可确定一个隐函数,此时, 1 1 A = z xx | P1 = = 0 . B = z xy | P1 = 0, 2 z z = 2 4 1 1 1 2 0. C = z yy | P1 = = . AC B = 16 2 z z = 2 4 因此 (1, 1) 为隐函数的极小值点, 极小值为 z = 2 . 在点 P2 (1, 1, 6) 的某邻域内方程也可确定一个隐函数。 对应地, A = z xx | P2 = 1 4 0, B = z xy | P2 = 0, C = z yy | P2 = 1 4 . AC B 2 = 1 16 0 . 因此 (1, 1) 为隐函数的极大值点, 极大值为 z = 6 .

多元函数的极值概念及其应用

多元函数的极值概念及其应用

多元函数的极值概念及其应用在微积分领域中,极值是函数理论中一个重要的概念。

当我们研究多元函数时,我们也需要理解多元函数的极值概念以及应用。

本文将介绍多元函数的极值概念,并探讨其在实际问题中的应用。

一个多元函数可以定义为一个以多个变量为自变量的函数,通常表示为f(x₁, x₂, ..., xn)。

多元函数的极值概念是指函数取得的最大值或最小值。

对于单变量函数,我们可以使用导数来判断其极值点;而对于多元函数,我们可以利用偏导数和二阶偏导数来判断其极值。

在多元函数的极值问题中,我们首先要找到函数的临界点。

临界点是函数的偏导数等于零或者不存在的点。

对于一个具有n个自变量的多元函数,我们需要计算出这n个自变量的偏导数,然后令其等于零来求解各个自变量的值。

只有在这些值处取得的函数值才有可能是极值。

接下来,我们需要对求解得到的临界点进行判断,以确定是否为极值点。

我们可以使用二阶偏导数来判断这些点的性质。

如果所有二阶偏导数都存在且满足一定条件,我们可以通过计算二阶偏导数的行列式(即海森矩阵)来判断这些点是极小值、极大值还是鞍点。

除了求解多元函数的极值点,我们还可以利用极值概念来解决一些实际问题。

例如,在经济学中,我们可以利用多元函数的极值概念来最大化或最小化一个经济指标。

假设我们有一个多元函数表示一个企业的成本,我们可以通过求解该函数的最小值来确定最佳生产策略。

类似地,我们也可以利用多元函数的极值概念来解决最优控制问题、最优化问题等多个领域的实际问题。

此外,在物理学和工程学中,多元函数的极值概念也具有广泛的应用。

例如,在物理学中,我们可以通过求解多元函数的最小值来确定物体在重力作用下的平衡位置;在工程学中,我们可以利用多元函数的极大值来确定最优设计方案。

总之,多元函数的极值概念在数学和其他学科中都具有广泛的应用。

通过理解多元函数的极值概念,我们可以更好地解决实际问题,并优化我们的决策和设计。

因此,对于任何研究多元函数的学生或研究人员来说,深入理解和应用多元函数的极值概念是非常重要的。

多元函数的极值与最值

多元函数的极值与最值
极小值 非极值
=0
不能确定的
5. 极值的充分条件
并设:A = fx′′x (P0 ), B = fx′′y (P0 ),C = f y′′y (P0 ),则:
B2 − AC A <0
<0 >0
>0
f (P0 )是 极大值
极小值 非极值
=0
不能确定的
例1 求 f ( x, y ) = x 2 + y 2的极值。
A B2 − AC
Pi是 f (Pi )是
P1 −12
72 驻点 非极值
P2 −12 − 72 极大值点 极大值
P3 12 − 72 极小值点 极小值
P4 12 72 驻点 非极值
6. 极值的充要条件举例
例3 设 z = f ( x, y ) = x 2 + xy + 2 y 2的极值。


解:z′x = 3x + y = 0且z′y = x + 4 y = 0


解:f x′ = 3x2 + 6x − 9 = 0且f y′ = −3 y 2 + 6 y = 0
⇒ P1(−3,0), P2 (−3,2), P3 (1,0), P4 (1,2)为驻点 A = f x′x′ = 6x + 6, B = f x′y′ = 0, C = f y′′y = −6 y + 6
7. 多元函数的极值(广义的定义)
f 在顶点A、B、C、D处有极大值
z
B
A
C
D
z=f(x,y)
0
y
x
7. 多元函数的极值(广义的定义)
D是尖点,f 在点D处有极大值

多元函数的极值及其求法

多元函数的极值及其求法

多元函数的极值及其求法
一、多元函数的极值
定理1(必要条件) 设函数()y x f z ,=在点()00,y x 具有偏导数且在点()00,y x 处有极值,则有
()()0,,0,0000==y x f y x f y x
定理2(充分条件) 设函数()y x f z ,=在点()00,y x 的某邻域内连续且有一阶及二阶连续偏导,又 ()()0,,0,0000==y x f y x f y x ,令
()()()C y x f B y x f A y x f yy xy xx ===000000,,,,,,
则()y x f ,在()00,y x 处是否取得极值的条件如下:
(1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;
(2)02<-B AC 时没有极值(在()00,y x 处不取极值);
(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论。

二、条件极值 拉格朗日乘数法
拉格朗日乘数法 要找函数()y x f z ,=在条件()0,=y x ϕ下的可能极值点,可先作拉格朗日函数
()()()y x y x f y x L ,,,λϕ+=,
其中λ为参数。

()()()()()0,0,,0
,,==+=+y x y x y x f y x y x f y y x x ϕλϕλϕ
解出y x ,及λ,这样得到的()y x ,就是函数()y x f z ,=在附加条件()0,=y x ϕ下的可能极值点。

多元函数的极值解读

多元函数的极值解读
r
3

定义域为 r 0, h 0. 解方程组
S 2 rH 2 r r 2 h2 2V 4 rh 2 r r 2 h2 r 3
S 2V 4 4 r 2 2 h 2 2 h 0 2 2 r 3 r r h S 4 r 2 rh 0 3 r 2 h2 h
所以 B AC 4 0, 而A 0, 故函数在点(0,1) 取得极小值,为0。
2
例2 求函数z x 4 y 4 x 2 2 xy y 2 的极值。 解:此函数的定义域为 {( x, y) | x R, y R}
解方程组
z 3 4 x 2x 2 y 0 x z 4 y3 2 x 2 y 0 y
z 62 (8)2 12 6 16 (8) 100
在D的边界上,将 x 5 cos , y 5 sin , 0 2 代入函数中得
由于 0 2 , 所以在边界上函数的最大值为 125,最小值为-75。故该函数在此有界闭区域上 的最大值为125,最小值为-100。 例5 要制作一个中间是圆柱,两端为相等的 圆锥形中空浮标,如图。 在体积V是一定量的情况 下,如何选择圆柱和圆锥 的尺寸,才能使制作的材 料最省?
( 1)
k
( 1)
k
2 1 e 1 )(1) k 2
k为 奇 数 k为 偶 数 k为 奇 数 k为 偶 数
2 e 1 [(1) k (1) k 1 2] 1
2 2 2 B AC 0 ( 1 e ) ( e ) 0, z无极值。 k 故当 为奇数时,
二 多元函数的最值

多元函数的极值及其判定

多元函数的极值及其判定

多元函数的极值及其判定多元函数是指含有多个自变量的函数。

求多元函数的极值,是数学中重要的研究内容,因为极值是判断函数的最大值和最小值的基础。

在本文中,我们将探讨多元函数的极值及其判定方法。

一、多元函数的极值多元函数的极值有两种:最大值和最小值。

如果函数在某一点上的取值比在该点周围的任何一点上的取值都大(或小),那么这个点就是函数的极大值点(或极小值点)。

若存在一个函数的局部最值,那么它必定是极值点,而其中相邻的局部极值点的函数值之间的最大值或最小值则是函数的全局最值。

因此判定函数的极值时,要先找出它的局部极值点,再进一步确定其全局最值。

二、多元函数的极值判定方法1. 梯度法梯度法是求函数极值常用的方法之一。

在二元函数中,函数的梯度为:$\operatorname{grad}f=\left(\frac {\partial f}{\partial x},\frac{\partial f}{\partial y}\right)$如果在某一点处,函数梯度的模长为零,即$\left|\operatorname{grad}f\right|=0$,那么该点便是函数的极值点。

这是因为在该点处,函数的导数为零,故函数在该点处有可能取得极值。

在高维空间中,函数的梯度可以写为:$\operatorname{grad}f=\left(\frac {\partial f}{\partial x_1},\frac {\partial f}{\partial x_2},\cdots,\frac {\partial f}{\partial x_n}\right)$如果在某一点处,函数梯度的所有分量都为零,即 $\frac{\partial f}{\partial x_1}=\frac {\partial f}{\partial x_2}=\cdots=\frac {\partial f}{\partial x_n}=0$,那么该点便是函数的极值点。

多元函数的极值与条件极值

多元函数的极值与条件极值

例5 求二元函数 z = f ( x , y ) = x 2 y(4 - x - y ) 在直线 x + y = 6, x 轴和 y 轴所围成的闭区域 D 上的最大值与最小值.

如图,
先求函数在D 内的驻点,
y
x+ y=6
D
x
D
o
பைடு நூலகம்
解方程组
2 f ( x , y ) = 2 xy ( 4 x y ) x y=0 x 2 2 f y ( x, y ) = x ( 4 - x - y ) - x y = 0
不是极值; 在点 ( -3,0) 处,AC - B 2 = -12 6 < 0, 所以 f ( -3,0) 不是极值;
AC - B2 = (-12) (-6) > 0, 又 在点 ( -3,2) 处,
A < 0, 所以函数在 ( -3,2) 处有极大值
f ( -3,2) = 31.
求极值的步骤总结
yz + 2l ( y + z ) = 0
xz + 2l ( x + z ) = 0
xy + 2l ( y + x ) = 0
2xy + 2 yz + 2xz - a = 0
2
得到
6 x= y=z= a, 6
6 的正方体的体积为最大,最大体积 a 6
这是唯一可能的极值点。因此表面积为a 2 的长方体中, 以棱长为
3 3 2 2
的极值 解
先解方程组
2 f ( x , y ) = 3 x + 6 x - 9 = 0, x 2 f ( x , y ) = 3 y + 6 y = 0, y

多元函数的极值与最大值最小值

多元函数的极值与最大值最小值

多元函数的极值与最大值最小值多元函数的极值与最大值最小值是数学分析领域中重要的概念。

在实际问题中,我们经常需要确定一个函数在给定条件下的最大值或最小值,这对于优化问题求解、经济学建模、物理学模型等都具有重要的应用价值。

本文将介绍多元函数的极值和最大最小值的概念、求解方法以及一些实际应用。

一、多元函数的极值多元函数是指含有两个或多个自变量的函数,通常表示为f(x1,x2,...,xn),其中x1,x2,...,xn为自变量。

对于多元函数来说,极值的概念与一元函数类似,都是函数在某一区间内取得的最大值或最小值。

1.1 局部极值多元函数的局部极值是指函数在某一点附近取得的最大值或最小值。

对于局部极值点(x1,x2,...,xn),满足以下条件:1) 在(x1,x2,...,xn)点的某个邻域内,函数值在该点处达到极值;2) 对于(x1,x2,...,xn)点的某个邻域内的任一点(x1+Δx1,x2+Δx2,...,xn+Δxn),函数值均小于(或大于)在(x1,x2,...,xn)点处的函数值。

寻找多元函数的局部极值需要使用偏导数的概念。

偏导数是指将多元函数对某一个变量求导时,将其他变量视为常数进行求导。

具体计算方法为在函数中对每个自变量分别求偏导数,然后令偏导数等于零,解方程组找到所有偏导数为零的点,即为可能的极值点。

再通过二阶偏导数的符号确定每个极值点的极值类型。

1.2 全局极值多元函数的全局极值是指函数在定义域内取得的最大值或最小值。

与一元函数的全局极值类似,全局极值点是指函数在整个定义域中取得最大值或最小值的点。

寻找多元函数的全局极值需要通过计算函数的驻点和边界上的函数值,并比较它们的大小。

驻点是指函数的偏导数为零的点,边界上的函数值可以通过限制条件将多元函数转化为一元函数,然后使用求一元函数的最大值或最小值的方法进行求解。

根据驻点和边界上的函数值,比较它们的大小即可确定全局极值。

二、多元函数的最大值与最小值在实际问题中,我们经常需要求解多元函数在给定约束条件下的最大值或最小值,这可以通过求解最优化问题来实现。

多元函数求极值的步骤

多元函数求极值的步骤

多元函数求极值的步骤
求多元函数的极值,通常需要以下步骤:
1. 找出多元函数的定义域,确定自变量的取值范围。

2. 求出多元函数的偏导数,并令其等于0,得到方程组。

3. 解方程组,求出所有的临界点(即偏导数为0的点)和自变量无定义的点。

4. 在临界点和自变量无定义的点中,通过二阶偏导数的判别来确定极值。

- 如果二阶偏导数全为正,那么该点为极小值点。

- 如果二阶偏导数全为负,那么该点为极大值点。

- 如果二阶偏导数有正有负,那么该点为鞍点。

5. 对于定义域的边界,使用拉格朗日乘数法确定极值。

6. 将临界点、鞍点和边界点的函数值进行比较,得到最大值和最小值。

高中数学备课教案多元函数的条件极值与拉格朗日乘数法

高中数学备课教案多元函数的条件极值与拉格朗日乘数法

高中数学备课教案多元函数的条件极值与拉格朗日乘数法高中数学备课教案-多元函数的条件极值与拉格朗日乘数法一、引言多元函数的条件极值与拉格朗日乘数法是高中数学课程中的重要内容之一。

本文将介绍多元函数的条件极值的概念及其判定条件,并详细讲解拉格朗日乘数法的原理和应用。

通过本课教案的学习,学生将能够准确理解和运用多元函数的条件极值及拉格朗日乘数法,并能够解决相关的实际问题。

二、多元函数的条件极值1. 概念及定义多元函数的条件极值是指在一定的限制条件下,函数取得的极大值或极小值。

与单元函数的极值相似,多元函数的条件极值也是在局部范围内进行判定的。

2. 判定条件多元函数的条件极值有以下两种判定条件:(1)一阶导数法:通过对多元函数的偏导数进行求解,判断偏导数为0的点是否为极值点。

(2)二阶导数法:通过求解多元函数的二阶偏导数,判断二阶偏导数的正负性来判断点的类型:极大值、极小值或鞍点。

三、拉格朗日乘数法1. 概念及原理拉格朗日乘数法是一种求解带条件的多元函数极值的方法。

通过构建拉格朗日函数,将约束条件融入目标函数中,并通过解方程组求解出极值点坐标。

2. 应用步骤(1)确定目标函数和约束条件,列出拉格朗日函数:L(x, y, λ) = f(x, y) - λg(x, y)其中,f(x, y)为目标函数,g(x, y)为约束条件,λ为拉格朗日乘数。

(2)求解方程组:∇L(x, y, λ) = 0解方程组得到(x0, y0, λ0)为可能的极值点。

(3)构建极值点的类型判定表通过计算二阶偏导数或其他方法,得出(x0, y0, λ0)的极值类型:极大值、极小值或鞍点。

(4)判断边界点如果有边界点的话,将边界点的值代入目标函数,比较与已求得的极值的大小,得出最终的极值。

四、教学设计1. 知识讲解通过板书、课件等形式,详细讲解多元函数的条件极值的概念、判定条件,以及拉格朗日乘数法的原理和应用步骤。

2. 实例演示给出多元函数的具体实例,引导学生运用条件极值的判定方法和拉格朗日乘数法,一步步求解极值。

多元函数极小值

多元函数极小值

多元函数极小值在数学中,多元函数是指含有多个自变量的函数。

而多元函数的极值问题则是研究如何找到函数在给定区域内的最小或最大值的问题。

本文将围绕多元函数极小值展开讨论。

一、多元函数极值的定义对于一个二元函数f(x, y),如果存在一个点P(x0, y0),使得在P 点的某个邻域内,f(x, y)的值都不小于f(x0, y0),则称P(x0, y0)为函数f(x, y)的极小值点。

类似地,对于一个三元函数f(x, y, z),如果存在一个点P(x0, y0, z0),使得在P点的某个邻域内,f(x, y, z)的值都不小于f(x0, y0, z0),则称P(x0, y0, z0)为函数f(x, y, z)的极小值点。

二、求解多元函数极小值的方法求解多元函数的极小值可以使用多元微积分中的偏导数和二阶导数的方法。

具体步骤如下:1. 对于二元函数f(x, y),先求出f对x的偏导数∂f/∂x和f对y 的偏导数∂f/∂y;2. 将∂f/∂x和∂f/∂y分别令为0,解方程组得到所有的驻点;3. 对于驻点,计算二阶偏导数f对x的二阶偏导数∂²f/∂x²、f对y 的二阶偏导数∂²f/∂y²和f对x和y的混合偏导数∂²f/∂x∂y;4. 利用二阶导数的性质,判断驻点的类型,并找出其中的极小值点。

对于三元函数f(x, y, z)的求解方法与二元函数类似,只是需要对每个自变量求偏导数,并进行类似的计算。

三、多元函数极小值的应用多元函数极小值的求解在实际问题中有广泛的应用。

例如,在经济学中,可以使用多元函数极小值来优化生产成本或最大化利润。

在物理学中,可以使用多元函数极小值来求解最稳定的物理系统。

在工程学中,可以使用多元函数极小值来设计最优的工艺流程或最节能的结构。

四、多元函数极小值的局限性求解多元函数的极小值是一个复杂的问题,通常需要使用计算机辅助进行计算。

而且,多元函数的极小值并不一定是全局最小值,可能只是局部最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. .. .目录摘要 (1)关键词 (1)Abstract............................................................................................................. .. (1)Keywords.......................................................................................................... .. (1)引言 (1)1定理中用到的定义 (2)2函数极值的判定定理.............................................................. .. (5)3多元函数极值判定定理的应用 (7)参考文献 (8)多元函数极值的判定摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.关键词:极值;条件极值;偏导数;判定The judgement of the extremum of the function ofmany variablesAbstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of thefunction of many variables and the conditional extremum of the function of many variables .Keywords : extremum; conditional ;partial derivative引言在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.1 定理中用到的定义定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点0(,)()P x y U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在0x 的某一领域有定义,则当极限0000000(,)(,)(,)limx xf x y f x x y f x y x x→+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作00(,)x y f x∂∂.定义1.3[]3设n D R ⊂为开集,12(,,,)n P x x x D ∈,0000122(,,,)P x x x D ∈:f D R →,若在某个矩阵A ,使当0()P U P ∈时,有000()()()limP P f P f P A P P P P →----,则称n 元函数12(,,,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为0()f P '.注1:01122(,,,)T n n P P x x x x x x '''-=---为n 维列向量.注2:0P P -=注3:在导数存在的条件下,可求得:012()(,,,)nf f f f P A x x x ∂∂∂'==∂∂∂,它是一个n 维向量函数.定义1.4[]3 (二阶导数)若n 元函数f 的一阶导数f '在D (或D 某一点)上可微,则称f 在D (或D 某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得2222121122222122222212()n n nnn f f f x x x x x f f f f P x x x x x f f f x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂⎪''=∂∂∂∂∂ ⎪ ⎪ ⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:00000001()()()()()()()()2T n f P f P f P P P P P f P P P O P P '=+-+--+-.2 函数极值的判定定理对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.定理2.1[]1(必要条件)若函数(,)z f x y =在点00(,)x y 的某领域偏导数存在,切点00(,)x y 是是其极值点,则0000(,)(,)0f x y f x y x y∂∂==∂∂.定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点00(,)x y 的某领域有二阶连续偏导数存在.记222200000022(,)(,)(,),,,,f x y f x y f x y A B C AC B x x y y∂∂∂====-∂∂∂∂ 则1)当0<时,点00(,)x y 不是函数的极值点;2)当0>是,若0A >,则点00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当0=时,该方法不能判断其是不是极值点.注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0=的情形).利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.定理2.3 (必要条件)设n D R ⊂为开集,n 元实值函数12(,,,)n y f x x x =在点0P D ⊂可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量(0,0,,0)).证明 由费马定理知当f 在0P 点取得极值时,012()(,,,)0nf fff P x x x ∂∂∂'==∂∂∂. 定理2.4(充分条件)设n D R ⊂为开集,n 元实函数12(,,,)n y f x x x =在0()U P D ⊂上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.证明 0P ,P 点坐标分别满足0012(,,,)n x x x 与12(,,,)n x x x ,且0()P U P ⊂,0i i i x x x =-,当0()0f P '=时,由Taylor 公式,有000000212012121211()()()()()()21(,,,)()(,,,)(())2(,,,)()T n nT nn n i i i nn i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑ 当0()U P 充分小时,只要0()P U P ⊂,则该式子的符号由12(,,,)n g x x x 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x >,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥.故当0()n f P 为正定或半正定时,0()()0f f P f P =-≥,所以0()()f P f P ≥,故0P 点是f 的极小值点.同理可证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ϕ==<的限制下,求函数12(,,,)n y f x x x =的极值问题,其中f 与(1,2,,)k k m ϕ=在区域D 有连续的一阶偏导数.若D 的点00012(,,,)n P x x x 是上述问题的极值点,且雅可比矩阵1111n m m n P x x x x ϕϕϕϕ∂∂⎛⎫⎪∂∂ ⎪⎪ ⎪∂∂ ⎪ ⎪∂∂⎝⎭的秩为m ,则存在m 个常数(0)(0)(0)12,,,m λλλ,使得000(0)(0)(0)1212(,,,,,,,)n m x x x λλλ为拉格朗日函数121212121(,,,,,,)(,,,)(,,,)mn m n k k n k L x x x f x x x x x x λλλλϕ==+∑的稳定点,即00(0)(0)(0)1212(,,,,,,,)n m x x x λλλ为下述n m +个方程:111111112120(,,,)0(,,,)0n mmx k k mx k k n nn m n f L x x f L x xL x x x L x x x λλϕλϕλϕϕ==∂∂⎧=+=⎪∂∂⎪⎪⎪∂∂⎪=+=⎨∂∂⎪⎪==⎪⎪⎪==⎩∑∑ 的解.此定理的证明可参阅文献[1]第二十三章的定理23.19的证明.由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.定理 2.6[]2 设n D R ⊂为开集,n 元实值函数12(,,,)n y L x x x =在0()U P D ⊂存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,12(,,,)n y L x x x =在0P 点取得极小值;20()0d L P <时,12(,,,)n y L x x x =在0P 点取得极大值.证明 11n nLLdL dx dx x x ∂∂=++∂∂, 2121222212121211()()n nn n L L Ld L d dL ddx d dx ddx x x x L LLdx dx dx dx x x x x x ∂∂∂==+++∂∂∂∂∂∂=+++∂∂∂∂∂22212221222222122212()()n n n n nnL L Ldx dx dx dx x x x x x L L Ldx dx dx dx x x x x x ∂∂∂++++++∂∂∂∂∂∂∂∂+++∂∂∂∂∂22211112221(,,)n n n n nL L x x x dx dx dx dx L L x x x ⎛⎫∂∂ ⎪∂∂∂⎛⎫⎪ ⎪⎪= ⎪ ⎪ ⎪∂∂ ⎪⎝⎭ ⎪∂∂∂⎝⎭11(,,)()n n dx dx dx f P dx ⎛⎫ ⎪''= ⎪ ⎪⎝⎭.又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .3 多元函数极值判定定理的应用由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0L L L L x y z λ∂∂∂∂====∂∂∂∂有:当32λ=-时,122(,,)(,,)333x y z =-,当32λ=时,122(,,)(,,)333x y z =--,现判断是极大值还是极小值 .方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即(,)z z x y =,它由2221x y z ++=决定。

相关文档
最新文档