人大版统计学 习题加答案第七章 时间序列分析
人大版时间序列分析基于R(第2版)习题答案
第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
第7章时间序列分析习题解答
第七章时间序列分析思考与练习一、选择题1.已知2000-2006年某银行的年末存款余额,要计算各年平均存款余额,该平均数是:( b )a. 几何序时平均数;b.“首末折半法”序时平均数;c. 时期数列的平均数;d.时点数列的平均数。
2.某地区粮食增长量1990—1995年为12万吨,1996—2000年也为12万吨。
那么,1990—2000年期间,该地区粮食环比增长速度( d )a.逐年上升b.逐年下降c.保持不变d.不能做结论上表资料中,是总量时期数列的有( d )a. 1、2、3b. 1、3、4c. 2、4d. 1、34.利用上题资料计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为(a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续12个月逐期增长量之和等于年距增长量。
2.计算固定资产投资额的年平均发展速度应采用几何平均法。
3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。
4.计算平均发展速度的水平法只适合时点指标时间序列。
5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其125126环比增长速度为0.14%。
正确答案:(1)错;(2)错;(3)对;(4)错;(5)错。
三、计算题:1.某企业2000年8月几次员工数变动登记如下表:试计算该企业8月份平均员工数。
解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用y 来表示,则: 1122n 12y y ...y y=...nnf f f f f f ++++++121010124051300151270311260()⨯+⨯+⨯+=≈人 该企业8月份平均员工数为1260人。
2. 某地区“十五”期间年末居民存款余额如下表:试计算该地区“十五”期间居民年平均存款余额。
解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。
第七章时间序列分析答案
第七章时间数列分析一、填空题1、时间指标数值2、逐期增长量累计增长量3、增长水平(或增长量)发展速度4、本期水平去年同期水平5、年距发展速度 1(或100%)6、几何平均法方程法7、同季(月)平均法趋势与季节模型法8、平均季节比重法平均季节比率法9、报告期水平基期水平10、序时平均数(或动态平均数)平均数11、和差12、季节变动长期趋势13、逐期增长量环比增长速度14、长明显1-5 A C C A D 6-10 A B A D B三、多选题1、CDE2、ABDE3、ABCE4、ACDE5、BDE6、BD7、ABCD8、ACE9、AE 10、ACE四、简答题1、序时平均数与一般平均数的异同。
答:(1)相同之处。
二者都是将具体数值抽象化,用一个代表性的数指来代表总体的一般水平。
(2)不同之处。
①计算的依据不同。
一般平均数是根据变量数列计算的,而序时平均数则是根据时间数列计算的;②对比的指标不同。
一般平均数是总体标志总量与总体单位总量对比的结果,而序时平均数则是时间数列各期发展水平的总和与时期项数对比的结果;③说明的问题不同。
一般平均数说明现象在同一时间、不同空间上所达到的一般水平,而序时平均数则说明现象在同一空间、不同时间上所达到的一般水平。
2、时期数列与时点数列的区别。
答:①时期数列中的指标值为时期数,时点数列中的指标值为时点数;②时期数列中的指标值具有可加性,而时点数列中的指标值则不具有可加性;③时期数列中指标值的大小与时间间隔的长短有直接关系,而时点数列中指标值的大小与时间间隔的长短则没有直接关系;④时期数列中的指标值是通过连续调查取得的,而时点数列中的指标值则是通过一次性调查取得的。
3、时间数列的编制原则。
答:(1)基本原则:保持数列中的各项指标数值具有可比性。
(2)具体原则:①时间长短统一;②总体范围统一;③指标口径统一;④计算方法统一;⑤计量单位统一。
4、计算和应用平均速度应注意的问题。
统计学课后习题答案第七章相关分析与回归分析报告
统计学课后习题答案第七章相关分析与回归分析报告第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系?A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.∑(y-y c )=最小值B.∑(y-y c )=0C.∑(y-y c )2=最小值D.∑(y-y c )2=0E.∑(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值一致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
时间序列分析作业及答案
(3) 5500 4000 (1 x ) 5 5500 x 106.58% 甲厂平均发展速度需 106.58% 4000
a1 a2 a3 a4 a5 1 解 : x x 1 x 1 5 a0 a1 a2 a3 a 4
n
5 (1 5.2%) (1 4.8%) (1 3.8%) (1 3.5%) (1 2.4%) 1
平均每年的降低率: x 96.05% 1 3.95%
lg1.375 0.13830 n 14.32年 15年后可达到乙厂水平 lg1.0225 0.00966
《时间序列分析》作业
STAT
[习题集P53第8题]甲、乙两厂各年产量资料如下。要求:(1) 分别计算两厂的平均发展速度;(2)按现在甲厂平均发展速度, 要几年才能达到乙厂1999年的水平?(3)如要求甲厂从1999年 起,在五年内达到乙厂1999年的水平,则甲厂的平均发展速度 必须达到多少?
a1990 25(1 4%)5 30.42 a2000 30.42(1 4.5%)10 47.24
a2000 25(1 4%)5 (1 4.5%)10 47.24 (万吨)
(2)已知:a2000 3 25 75 75 25(1 4%)5 (1 x )10
5
《时间序列分析》作业
STAT
[习题集P54第10题]某地区1995~2001年财政收入资料如下(单位: 亿元)。根据该资料: (1)用最小平方法的简捷式配合直线趋势方程; (2)根据直线趋势方程预测2002年的财政收入。
人民大学《统计学》题库及答案
1中国人民大学接受同等学历人员申请硕士学位考试试题招生专业:统计学考试科目:统计思想综述课程代码:123201 考题卷号:1一、(20分)随机抽取20块手机电池,测得其使用寿命数据如下(单位:小时):10089939981007101110021013999100899598399510009771015101099810051011996列出描述上述数据所适用的统计图形,并说明这些图形的用途。
直方图:直观的展示一组数据(电池使用寿命)的分布情况。
箱线图:直观反映原始数据(电池寿命)的数据分布的特征,如偏态,是否有离群点。
二、(20分)方差分析中有哪些基本假定?这些假定中对哪个假定的要求比较严格?1、方差分析有3个基本假定:(1)正态性:每个总体都应服从正态分布,即对于因子的每一个水平,其观测值是来自正态分布总体的简单随机样本;(2)方差齐性:各个总体的方差必须相同;(3)独立性:每个样本数据是来自因子各水平的独立样本2、对独立性要求比较严格,独立性得不到满足会对方差分析结果有较大影响,对正态性和方差齐性的要求相对比较宽松。
三、(20分)某种食品每袋的标准重量是100克,从该批食品中抽取一个随机样本,检验假设100:0H ,1001H 。
(1)如果拒绝0H ,你的结论是什么?,如果不拒绝0H ,你的结论是什么?(2)能否得到一个样本能够证明该食品的平均重量是100克?请说明理由。
(3)如果由该样本得到的检验的03.0P ,你的结论是什么?0.03这个值是犯第Ⅰ类错误的概率,是实际算出来的显著性水平,你怎样解释这个P 值?(1)拒绝0H :该种食品每袋的平均重量不是100g不拒绝0H :提供的样本不能证明该种食品每袋的平均重量不是100g(2)不能,样本得出的结论只能是拒绝或不拒绝原假设,并不能直接确定原假设为真(3)结论:若给定显著性水平为0.05,则可以拒绝原假设,认为该食品每袋的平均重量不是100克;但若给定显著性水平为0.01,则不能拒绝原假设P 值:如果该种食品每袋的平均重量是100g ,样本结果会像实际观测那样极端或更极端的概率仅为0.03四、(20分)在建立多元线性回归模型时,通常需要对自变量进行筛选。
人大版时间序列分析基于R(第2版)习题答案
第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
时间序列习题答案
时间序列习题答案时间序列习题答案时间序列分析是一种用来研究随时间变化的数据模式和趋势的方法。
它在经济学、金融学、统计学等领域中被广泛应用。
下面我将给出一些时间序列分析的习题,并附上详细的答案解析。
习题一:某公司过去一年的销售额如下:100, 120, 130, 140, 150, 160, 170, 180, 190, 200。
请计算该公司的平均销售额和年度增长率。
答案解析:首先,计算平均销售额的方法是将所有销售额相加,然后除以销售额的个数。
在这个例子中,销售额的个数为10,总销售额为100+120+130+140+150+160+170+180+190+200=1540。
因此,平均销售额为1540/10=154。
接下来,计算年度增长率的方法是将最后一年的销售额减去第一年的销售额,然后除以第一年的销售额,并乘以100%。
在这个例子中,最后一年的销售额为200,第一年的销售额为100。
因此,年度增长率为(200-100)/100*100%=100%。
习题二:某股票的每日收盘价如下:10.2, 10.5, 10.7, 10.9, 11.1, 11.3, 11.5, 11.7, 11.9, 12.1。
请计算该股票的平均收盘价和收益率。
答案解析:计算平均收盘价的方法与计算平均销售额的方法相同。
将所有收盘价相加,然后除以收盘价的个数。
在这个例子中,收盘价的个数为10,总收盘价为10.2+10.5+10.7+10.9+11.1+11.3+11.5+11.7+11.9+12.1=113.9。
因此,平均收盘价为113.9/10=11.39。
计算收益率的方法是将每日的收盘价减去前一日的收盘价,然后除以前一日的收盘价,并乘以100%。
在这个例子中,第二天的收盘价为10.5,第一天的收盘价为10.2。
因此,第二天的收益率为(10.5-10.2)/10.2*100%=2.94%。
习题三:某城市过去十年的月度平均气温如下:15, 18, 20, 22, 25, 28, 30, 29, 26, 23。
时间序列分析参考答案
时间序列分析参考答案时间序列分析参考答案时间序列分析是一种研究随时间变化的数据模式和趋势的统计方法。
它可以帮助我们理解数据的变化规律,预测未来的趋势,以及制定相应的决策。
在本文中,我们将探讨时间序列分析的基本概念、方法和应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据观测值。
它可以是连续的,比如每天的股票价格,也可以是离散的,比如每月的销售额。
时间序列分析的目标是找出数据中的模式和趋势,以便进行预测和决策。
时间序列分析的基本概念包括趋势、季节性和周期性。
趋势是指数据在长期内的整体变化方向,可以是上升、下降或平稳。
季节性是指数据在一年中周期性重复出现的变化模式,比如节假日销售额的增长。
周期性是指数据在较长时间内出现的波动,通常周期长度大于一年。
二、时间序列分析的方法时间序列分析的方法包括描述性分析、平稳性检验、模型建立和预测等。
描述性分析是对时间序列数据进行可视化和统计分析,以了解数据的基本特征。
常用的描述性分析方法包括绘制折线图、直方图和自相关图等。
折线图可以显示数据的整体趋势和季节性变化,直方图可以展示数据的分布情况,自相关图可以帮助我们发现数据的相关性。
平稳性检验是判断时间序列数据是否具有平稳性的方法。
平稳性是指数据的均值和方差在时间上保持不变。
常用的平稳性检验方法包括单位根检验和ADF检验等。
模型建立是根据时间序列数据的特征,选择合适的模型来描述数据的变化规律。
常用的模型包括AR模型、MA模型和ARMA模型等。
AR模型是自回归模型,表示当前观测值与过去观测值之间的线性关系;MA模型是移动平均模型,表示当前观测值与过去观测值的误差之间的线性关系;ARMA模型是自回归移动平均模型,综合考虑了自回归和移动平均的效果。
预测是利用已知的时间序列数据,通过建立模型来预测未来的观测值。
常用的预测方法包括滚动预测、指数平滑法和ARIMA模型等。
滚动预测是指根据当前观测值和过去观测值的模型,逐步预测未来的观测值;指数平滑法是基于历史数据的加权平均值,对未来的观测值进行预测;ARIMA模型是自回归移动平均差分整合模型,可以处理非平稳的时间序列数据。
时间序列分析习题答案
时间序列分析习题答案时间序列分析习题答案时间序列分析是一种广泛应用于统计学和经济学领域的方法,用于研究随时间变化的数据。
通过对时间序列数据的建模和分析,我们可以揭示数据背后的规律和趋势,从而进行预测和决策。
下面我将给出一些时间序列分析习题的答案,希望能对大家的学习和理解有所帮助。
1. 什么是时间序列?时间序列是按照时间顺序排列的一系列数据观测值。
它可以是连续的,比如每天的股票价格,也可以是离散的,比如每个月的销售额。
时间序列分析的目标是通过对这些数据的分析和建模,揭示数据背后的规律和趋势。
2. 时间序列分析的步骤是什么?时间序列分析一般包括以下几个步骤:- 数据收集:收集并整理时间序列数据,确保数据的准确性和完整性。
- 数据可视化:通过绘制时间序列图,观察数据的趋势、季节性和周期性等特征。
- 数据平稳性检验:通过统计检验方法,判断时间序列数据是否平稳。
如果不平稳,需要进行差分处理。
- 模型选择:根据数据的特征和目标,选择适合的时间序列模型,比如ARIMA模型、季节性ARIMA模型等。
- 模型拟合:利用选定的模型,对时间序列数据进行拟合和参数估计。
- 模型诊断:对拟合的模型进行诊断,检验模型的残差序列是否符合模型假设。
- 模型预测:利用已拟合的模型,对未来的数据进行预测。
3. 如何判断时间序列数据的平稳性?平稳性是时间序列分析的基本假设之一,它要求时间序列的均值、方差和自相关函数在时间上都是常数。
常用的平稳性检验方法有:- 绘制时间序列图:观察数据是否具有明显的趋势、季节性和周期性。
- 平稳性统计检验:常用的统计检验方法有ADF检验、KPSS检验等。
这些检验方法的原理是基于单位根检验,判断序列是否存在单位根,从而判断序列的平稳性。
4. 如何选择适合的时间序列模型?选择适合的时间序列模型需要考虑数据的特征和目标。
常用的时间序列模型有:- AR模型:自回归模型,利用过去的观测值对当前值进行预测。
- MA模型:移动平均模型,利用过去的白噪声误差对当前值进行预测。
统计学课后习题答案(全章节)(精品).docx
第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。
3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。
(2)制作茎叶图,并与直方图进行比较。
1.已知下表资料:25 20 10 500 2.5 30 50 25 1500 7.5 35 80 40 2800 14 40 36 18 1440 7.2 4514 7 630 3. 15 合 计200100687034. 35_y xf 6870根据频数计算工人平均日产量:〒=金^ =北* = 34.35 (件)£f 200结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。
统计学期末复习重点 统计学第7章 时间序列分析
【例7-4】 福建省部分年份年末全社会从业人数资 料如下,计算福建省10年内的全社会平均从业人 数
年份 人数/万 人 1997 2000 2002 2005 2007
i 1
1612.41
1660.19
1711.32
1868.49
2015.33
2.由相对指标或平均指标时间序列计算序时平均数 相对数和平均数通常是由两个绝对数对比形成的, 计算序时平均数时,应先分别求出构成相对数或 平均数的分子和分母,然后再进行对比即得相对指标 或平均指标序列的序时平均数
逐期增长量
a1 a0 , a2 a1 ,, an an 1
累积增长量
a1 a0 , a2 a0 ,, an a0
二者的关系:
⒈ a1 a0 a2 a1 an an1 an a0 ⒉ ai a0 ai 1 a0 ai ai 1 i 1,2,, n
由于采用的基期不同,发展速度又可分为定 基发展速度和环比发展速度。 环比发展速度也称逐期发展速度,是报告期 水平与前一时期水平之比,说明报告期水 平相对于前一期的发展程度 定基发展速度则是报告期水平与某一固定时 期水平之比,说明报告期水平相对于固定 时期水平的发展程度,表明现象在较长时 期内总的发展速度,也称为总速度 年距发展速度说明报告期水平与上年同期水 平对比达到的相对程度
时间序列概述
时间序列的编制原则
(1) 指标数值涵盖的时间长短一致
(2) 指标内涵、外延要一致 (3) 计算方法和计算单位、价格一致
现行价格:指产品在各个时间,地点、环节实现的价格。
可比价格:是为专门消除货币量中价格变动因素而设计的价格。
第二节 时间序列水平指标
统计学时间序列_计算题及答案经典
统计学时间序列_计算题及答案经典介绍统计学时间序列是指在统计学研究中,对于某一现象或变量在时间上的观察和记录。
统计学时间序列分析常常涉及计算题,通过解答计算题可以更好地理解和掌握时间序列分析的方法和技巧。
本文将介绍一些经典的统计学时间序列计算题,并给出详细的解答,帮助读者理解和掌握相关内容。
1. 简单移动平均(Simple Moving Average)简单移动平均是一种常见的时间序列平滑方法,通过计算一组连续数据的算术平均值来减小数据的随机波动。
假设有一组时间序列数据如下:Time Value110215312418520计算前三期的简单移动平均。
解答首先,我们需要计算前三期的算术平均值。
(10 + 15 + 12) / 3 = 12.33因此,前三期的简单移动平均为12.33。
2. 加权移动平均(Weighted Moving Average)加权移动平均是一种通过对时间序列数据赋予不同的权重来进行平滑的方法。
假设有一组时间序列数据如下:Time Value110215312418520计算前三期的加权移动平均,其中权重分别为0.2、0.3和0.5。
解答首先,我们需要将权重乘以对应期数的数值,并求和。
(10 * 0.2) + (15 * 0.3) + (12 * 0.5) = 12.2因此,前三期的加权移动平均为12.2。
3. 自回归过程(Autoregressive Process)自回归过程是一种常见的时间序列模型,也被称为AR过程。
AR(p)模型表示当前时刻的值与前p个时刻的值有关,其中p是滞后阶数。
假设有一个AR(2)模型如下:X(t) = 0.8 * X(t-1) + 0.5 * X(t-2) + e(t)其中,e(t)是服从均值为0、方差为1的白噪声。
计算当t为5时的X值。
解答根据AR(2)模型,我们需要计算X(5)。
X(5) = 0.8 * X(4) + 0.5 * X(3) + e(5)假设X(4) = 10,X(3) = 15,e(5) = 1。
《统计学原理》教材课后习题参考答案
2.给定显著性水平。取显著性水平 ,由于是双侧检验,因此需要确定上下两个临界值 和 。查表得到 ,所以。拒绝区间为小于-1.96或者大于1.96。
3.检验统计量
4.检验判断。
由于z的实际值在-1.96和1.96之间,没有落入拒绝区间,所以接受原假设,认为净重是符合规定
(五)计算题
1.因为2000年计划完成相对数是110%,所以
实际产值=
2000年计划产值比1999年增长8%,
所以1999年的计划产值=
那么2000年实际产值比1999年计划产值增长=
2.(1)
从第四年第四季度到第五年第三季度这一年的时间,实际上这一年的产量达到
则
这一题规定年末产量应达到170,所以提前时间按照水平法来算。
3..根据题意,样本的平均数和标准差为
根据样本信息,计算统计量
4.检验判断。因为 ,所以在显著性水平0.01下,拒绝原假设,也就是说,含量是超过规定界限
第九章相关与回归
(一)判断题
1.×2.√3.√4.√5.×6.×7.×8.×
(二)单项选择题
1.① 2.① 3.③ 4.④ 5.④6.②7.②8.④
2.由题意
=8.89
3.由题意
令这个数为a。则
4.由题意
5.
销售额
售货员人数
组中值
20000-30000
30000-40000
40000-50000
50000-60000
60000-70000
70000-80000
80000以上
8
20
40
100
82
10
5
25000
35000
统计学:时间序列分析习题与答案
一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。
A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。
A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。
A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。
A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。
A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。
A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。
A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。
A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。
A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。
A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。
A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。
时间序列分析习题及答案
时间序列分析第一题:1、绘制时序图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc gplot data=ex1_1;plot x*time=1;symbol1 c=black v=star i=join;run;时序图:2、绘制自相关图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc arima data=ex1_1;identify var=x;run;样本自相关图:白噪声检验输出结果:因为P值小于α,所以该序列为非白噪声序列,根据时序图看出数据并不在一个常数值附近随机波动,后期有递减的趋势,所以不是平稳序列。
第二题:1、选择拟合模型方法一:首先绘制该序列的时序图,直观检验序列平稳性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章时间序列分析
一、填空
1、下表为两个地区的财政收入数据:
则A地区财政收入的增长速度是,B地区财政收入的增长速度是,A 地区财政收入的增长1%的绝对值为,B地区财政收入的增长1%的绝对值为。
2、已知环比增长速度为7.1%、3.4%、3.6%、5.3%,则定基增长速度是。
3、年劳动生产率r(千元和职工工资y (元之间的回归方程为110x
=,这意味着
120
y+
年劳动生产率每提高1千元时,职工工资平均。
4、拉氏价格或销售量指数的同度量因素都是选期,而派许指数的同度量因素则选期。
5、动态数列的变动一般可以分解为四部分,即趋势变动、变动、变动和不规则变动。
二、选择题
1.反映了经济现象在一个较长时间内的发展方向,它可以在一个相当长的时间内表现为一种近似直线的持续向上或持续向下或平稳的趋势。
A长期趋势因素B季节变动因素C周期变动因素D不规则变动因素
2.是经济现象受季节变动影响所形成的一种长度和幅度固定的周期波动。
A长期趋势因素B季节变动因素C周期变动因素D不规则变动因素
3、时间序列在一年内重复出现的周期性波动称为(
A、趋势
B、季节性
C、周期性
D、随机性
4、在使用指数平滑法进行预测时,如果时间序列比较平稳,则平滑系数α的取值(
A、应该小些
B、应该大些
C、等于0
D、等于1
5、某银行投资额2004年比2003年增长了10%,2005年比2003年增长了15%,2005年比2004年增长了(
A、15%÷10%
B、115%÷110%
C、(110%×115%+1
D、(115%÷110%-1
三、判断
1、若1998年的产值比1997年上涨10%,1999年比1998年下降10%,则1999年的产值比1997年的产值低。
(
2、若三期的环比增长速度分别为9%、8%、10%,则三期的平均增长速度为9% (。
3、去年物价下降10%,今年物价上涨10%,今年的1元钱比前年更值钱。
(。
4、若平均发展速度大于100%,则环比发展速度也大于100%。
(
5、定基发展速度和环比发展速度之间的关系是两个相邻时期的定基发展速度之积等于相应的环比发展速度。
(四、计算题
要求:用一次线性模型预测该学校2006年报考人数。
2、已知某化肥厂近年生产情况,请填入表中空缺的指标值并计算年平均增长量、年平均发展速度
某市汗衫、背心零售量资料如下(单位:箱:
要求:用移动平均法计算剔除趋势影响的季节比率。
五、Q&A
1、什么是时期数列和时点数列?二者相比较有什么特点?
2、什么是相对数时间序列,用来反映什么?什么是平均数时间序列,用来反映什么?
3、统计预测有哪些局限性?
一、填空
1、50%,57.14%,0.4,0.07
2、20.81%
3、增加110元
4、基报告
5、季节循环
二、选择题
1.A
2.B
3.B
4.A
5.D
三、判断
1.√
2.×
3.√
4.×
5.×四、计算题 1、解: (1画散点图。
可以看出,数据大致成线性模型。
(2对数据运用线性模型进行拟合:01t y b b t =+ 得到最终拟合方程为:ˆ1097.622t y
t =+ 其中,调整的20.9922R =,0.05823.8(1,13F F =>,则方程通过显著性检验,拟合效果很好。
标准误差为9.19。
(3将拟合模型进行预测分析。
当2006年时,16t =,代入方程:ˆ1097.622t y
t =+ 得16ˆ1449.6y
=,即2006年预测考生人数将达到1449.6人。
2
平均增长量=100/5=20吨平均发展速度=5√200
3.解:用移动平均法计算剔除趋势影响的季节比率。
70 400 340 50 90 460 380 70 100 490 440 90
860 880 940 980 1000 1010 1040 1100 1120
1740 1820 1920 1980 2010 2050 2150 2220
可得移动平均序列
217.5 227.5 240 247.5 251.25 256.25 268.75 277.5
0.747 3.625 3.075 0.493 7.940/4=1.985
去趋势项后的季节比率为 0.376 1.826 1.549 0.248 五、Q&A
1.时期数列是指由反映现象在一段时期内发展过程总量的时期指标构成的动态数列。
时点数列是指由反映现象在某一瞬间总量的时点指标构成的动态数列。
二者相比较有以下特点: (1时期数列的各指标值具有连续统计的特点,而时点数列的各指标值不具有连续统计的特点。
(2时期数列各指标值具有可加性的特点,而时点数列的各指标值不能相加。
(3时期数列的各指标值的大小与所包括的时期长短有直接的关系,而时点数列各指标值的大小与时间间隔长短无直接的关系。
2. 相对数时间序列是将一系列同类的统计相对数按照时间先后排列起来而形成的时间序列。
反映社会经济现象数量对比关系的变化情况。
平均数时间序列是将一系列同类的统计平均数按照时间先后排列起来而形成的时间序列。
反映社会经济现象一般水平的变化过程的发展趋势。
3. (1由于事物发展往往是许多因素的影响,因此,许多统计预测方法只能进行短期预测。
(2由于决定未来发展的因素有很多,有主观方面,也有客观方面,有时难以掌握完整的资料,或使用的方法不够恰当,会影响预测的准确性。
虽然预测误差不可避免,但可以通过努力减少误差。