数列+三角函数综合应用

合集下载

数列的综合应用教学设计

数列的综合应用教学设计

数列的综合应用教学设计数列的综合应用一、教学内容分析本节内容安排在《普通高中课程标准实验教科书数学必修5》(人教A版),第二章内容结束之后的综合练习。

在课本中没有专设章节。

内容从教材习题2.5中A组的第4题中体现。

本章五节内容分别讲授了等差数列、等比数列以及这两种数列的性质、通项公式、前N项和等基础内容。

让学生在此基础之上,了解高考中出现频率较多的一些特殊数列。

在实际教学中,本节内容应该分为五个阶段:第一阶段学生要充分掌握基本数列的知识点,可用提问的方式进行复习回顾。

第二阶段,对于特殊数列有关例题首先要引导学生观察,找到与基本数列的相似处,从而决定构造为基本数列中的等差数列或等比数列,大胆提出猜想。

第三阶段从猜想入手,开始构造。

运用基本数列的形式和性质得到新的数列。

构造出的新数列必须满足基本数列成立的条件。

验证猜想的正确性。

第四阶段根据题目要求从构造出的新数列找出所求项。

第五阶段,老师和学生一起归纳题型。

学生在老师的引导下结题,提高主动性,学习的灵活性。

从而提高对本节知识的兴趣。

二、学情分析对于高一年级的学生来说。

之前的学习中已经接触到了函数内容。

以及在本节内容的学习之前,已经有了数列的基础。

学生已经具备了一定的分析能力,函数构造基础等。

对于本节授课内容来说,学生在一般很难自己分析出来,有一定的难度。

所以需要老师的正确引导,但是在复习的基础上不宜直接灌输解题方法。

应该带领学生一起观察、分析、猜想、证明。

从而加深学生对本节内容的理解,也可让学生自己尝试找到新的解法,建立自己的思维模式。

三、设计思想在授课中,必须要求学生掌握基本数列(等差数列和等比数列)的内容。

以此引导学生,分析特殊数列。

并且根据之前学习三角函数时用到的“构造”理念。

将特殊数列构造为基本数列,再运用基本数列的知识点来解题。

课堂中,以例题分析为主,让学生学会观察特殊数列的结构,分析如何构造出适合的基本数列的形式。

讲课过程中,以启发性为主,让学生主动分析。

高考数学六个大题题型

高考数学六个大题题型

高考数学六大主干知识
高考数学六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。

一、三角函数:三角函数的化简与求值、图像与性质、解三角形、三角恒等变换、解方程、周期性与最值。

二、数列:数列的概念与通项、等差数列与等比数列、数列求和、数列的综合应用。

三、统计与概率:概率论、统计初步。

四、立体几何:空间几何体的认识、三视图、空间坐标系、空间点、直线、平面的位置关系、几何体的表面积和体积。

五、函数与导数:函数的概念及性质、幂函数、指数函数、对数函数、函数的图像、微积分基本定理、及其基本运算。

六、解析几何:直线和圆锥曲线的定义、方程、直线和圆锥曲线的交点、圆锥曲线的性质。

主干知识是每年高考数学的重点内容,也是数学试卷的主要构成部分。

在掌握这些主干知识时,需要多练习、多复习,加深对知识的理解,同时适当扩大自己的数学知识面,养成良好的数学思维习惯。

数列和三角函数综合题

数列和三角函数综合题

以下是一个综合题,涉及到数列和三角函数的应用:
题目:已知数列 {an} 的通项公式为 an = 2n + 1,其中 n 为正整数。

求证:当 n 为正整数时,三角函数 sin⁡(π/2 - an) = cos⁡(πn/2)。

解答:
根据已知数列 {an} 的通项公式 an = 2n + 1,我们可以将三角函数中的角度表示进行替换,即将 an 替换为 2n + 1。

首先,我们将左边的三角函数进行展开:
sin⁡(π/2 - an) = sin⁡(π/2 - (2n + 1))
根据三角函数的差化积公式,我们可以将 sin⁡(π/2 - (2n + 1)) 转化为 cos⁡((2n + 1) - π/2):
sin⁡(π/2 - (2n + 1)) = cos⁡((2n + 1) - π/2)
进一步化简右边的式子:
cos⁡((2n + 1) - π/2) = cos⁡(2n + 1 - π/2)
我们知道,cos⁡(π/2 - θ) = sin⁡θ,将上式进行变换得到:
cos⁡(2n + 1 - π/2) = sin⁡(π/2 - (2n + 1))
最后,我们得到:
sin⁡(π/2 - (2n + 1)) = cos⁡(2n + 1 - π/2) = sin ⁡(π/2 - (2n + 1))
由此可证,当 n 为正整数时,三角函数 sin⁡(π/2 - an) = cos⁡(πn/2) 成立。

这道题结合了数列的通项公式和三角函数的差化积公式,考查了学生对数列和三角函数概念的理解,并要求学生进行符号替换和化简推导。

三角函数的综合应用+课件-2025届高三数学一轮复习

三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用一、考纲要求1.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式; 2.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明; 3.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角;4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.二、基础过关 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( ).A .21 B .2- C .34 D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形; (2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形. 以上正确命题的个数是( ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .8.下列命题正确的有 . (1)若-2π<α<β<2π,则βα-范围为(-π,π);(2)若α在第一象限,则2α在第一、三象限; (3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);(4)2sin θ=53,2cos θ=54-,则θ在第三、四象限.三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2.(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.四、 热身演练 1.已知,那么下列命题成立的是( ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( ).3.函数的反函数是( ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) . ①函数y=-sin(kπ+x)(k∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点(π/12,0)对称;③函数y =sin(2x+π/3)+sin(2x -π/3)的最小正周期是π;④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .9.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.三角函数的综合应用一、考纲要求:1. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式 2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. 3. 会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角.4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题. 二、基础过关: 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( A ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( B ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( D ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( B ).A .21B .2-C .34D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( B ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( C ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .28.下列命题正确的有 .(2)(1)若-2π<α<β<2π,则βα-范围为(-π,π); (2)若α在第一象限,则2α在第一、三象限;(3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);βφαDCBA1.2 m2 m 1 m (4)2sinθ=53,2cosθ=54-,则θ在第三、四象限. 三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.解:由题意可得 ⎪⎩⎪⎨⎧≤-+-+≥-4sin cos 4721sin 2x m xm x m , 即 ⎪⎩⎪⎨⎧+≤-+-≥+-xm x x m m sin 443sin sin 212恒成立对R x ∈,又 21)21(sin 43sin 2sin 2---=-+-x x x ,∴3sin 4≥+x ,∴⎪⎩⎪⎨⎧≤-≥+-32121m m m , ∴⎪⎩⎪⎨⎧≤+≥+32121m m m , ∴21-=m ,或323≤<m例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)解:如图,8.02.12=-=CD ,设x AD =,则x x AD BD 8.18.01tan =+==α, xAD CD 8.1tan ==β, βαβαβαφtan tan 1tan tan )tan(tan +-=-= ,∴4.2144.12144.118.08.118.08.1tan =⋅≤+=⋅+-=xx x x x x x x φ当xx 44.1=,即2.1=x 时, φtan 达到最大值4.21,φ是锐角,φtan 最大时,φ也最大,所以值班人员看表盘最清楚的位置为2.1=AD 米.例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2,(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.解:(1)设b →=(x,y ),则2x+2y=-2,且a →·b →=|b →||c →|cos 43π=22y x +×22×(-22)=-2,解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==1y x , ∴b →=(-1,0) 或b →=(0,-1).(2)∵三角形的三内角A 、B 、C 依次成等差数列,∴b=3π,∵b →⊥t →,∴b →=(0,-1),∴b →+c →=( cosA,22cos 2C -1)=(cosA,cosC),∴|b →+c →|2=C A 22cos cos +=1+21(cos2A+cos2C)=1+cos(A+C)cos(A -C)=1-21cos(A -C),∴-32π<A -C<32π ,∴-21<cos(A -C)≤1,22≤|b →+c →|<25.例4 已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos2CA -, f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°)cos()cos(2cos2cos2cos cos cos cos 21)(C A C A CA C A C A C A x f -++-+=⋅+⋅= 342122122-=-+-=x xx x , ∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1].又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1). (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2.故f (x )的值域为(-∞,-21)∪[2,+∞). 四、热身演练: 1.已知,那么下列命题成立的是( B ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( D ).AB C D3.函数的反函数是( A ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( C ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( D ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( A ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) .①②③④ ①函数y=-sin(k π+x)(k ∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点 (π/12,0)对称;③函数y=sin(2x+π/3)+sin(2x-π/3)的最小正周期是π; ④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .4389.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , RR h R k I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值. 解:(1)∵sinx+3cosx=2(21sinx+23cosx)=2 sin(x+3π),∴方程化为sin(x+3π)=-2a .∵方程sinx+3cosx+a=0在(0, 2π)内有相异二解,∴sin(x+3π)≠sin 3π=23. 又sin(x+3π)≠±1 (∵当等于23和±1时仅有一解),∴|-2a |<1,且-2a≠23, 即|a|<2,且a ≠-3.,∴a 的取值范围是(-2, -3)∪(-3, 2).(2) ∵α、 β是方程的相异解,∴sin α+3cos α+a=0 ① sin β+3cos β+a=0 ②①-②得(sin α- sin β)+3( cos α- cos β)=0, ∴ 2sin 2βα-cos2βα+-23sin 2βα+,sin2βα-=0,又sin2βα+≠0,∴tan2βα+=33, ∴tan(α+β)=2tan 22tan22βαβα+-+=3.11.求20sin 6420cos 120sin 3222+-的值.解:原式=20cos 20sin 20sin 20cos 32222-+64sin 220°=40sin 41)20sin 20cos 3)(20sin 20cos 3(2+-+64sin 220°=40sin 41)2030cos()2030cos(42-++64sin 220°=40sin 80sin 40sin 162+64sin 220°=32cos40°+64(240cos 1-)=32.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.解:要证α、β、γ成等差数列,∵α、β、γ是锐角,只要证:tan β=tan 2γα+.∵tan 2γα+=2tan2tan12tan2tanγαγα-+=2tan2tan12tan 2tan 33γγγγ-+=)2tan 1)(2tan 1()2tan 1(2tan222γγγγ+-+=212tan 12tan22γγ-=21tan γ= tan β.∴α、β、γ成等差数列.。

高中数学课堂情景引入经典案例情景设置数列解三角形不等式

高中数学课堂情景引入经典案例情景设置数列解三角形不等式

太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。

三角函数与数列的综合应用

三角函数与数列的综合应用

三角函数与数列的综合应用数学中,三角函数和数列是两个重要的概念。

三角函数是研究角和三角形的函数,而数列则是由一系列有规律的数字组成的数集。

在实际应用中,三角函数和数列常常相互结合,用于解决各种问题。

本文将探讨三角函数与数列的综合应用,并介绍其中一些典型的应用场景。

一、三角函数与数列在物理中的应用1. 周期性运动中的三角函数在物理学中,许多周期性运动可以用三角函数来描述。

例如,弹簧振子、摆钟的摆动等运动都具有周期性。

对于这些运动,可以通过正弦函数或余弦函数来建立模型,来描述运动的变化规律。

通过观察和分析周期性运动中的三角函数,可以预测物体的位置、速度和加速度等重要参数。

2. 波的传播与干涉在光学和声学中,波的传播和干涉是重要的现象。

波的传播可用三角函数的正弦图像来模拟,通过计算角度和距离等参数,可以预测波的强度和传播方向。

而波的干涉可通过数列的概念来描述,当两个或多个波在特定位置上相遇时,它们会干涉产生叠加效应,形成干涉图样。

通过分析数列的规律,可以推断出干涉图样的特点和分布规律。

二、三角函数与数列在工程中的应用1. 信号处理与滤波器设计在电子工程和通信工程中,信号处理和滤波器设计是关键技术。

三角函数可以用来对信号进行频谱分析,通过傅里叶变换等方法,将信号分解为各个频率分量。

数列则用于设计滤波器,通过选择合适的数列模型和参数,可以实现对信号的滤波和去噪。

三角函数与数列的综合应用可以在工程中实现高质量的信号处理和滤波效果。

2. 结构分析与强度计算在土木工程和建筑工程中,结构的分析和强度计算是重要的任务。

通过三角函数和数列的应用,可以建立结构的数学模型,并求解结构的应力、位移和频率等参数。

三角函数用于描述结构的刚度和振动特性,数列则用于建立结构的有限元模型,通过计算数列的极限和收敛性,可以评估结构的强度和安全性。

三、三角函数与数列在经济中的应用1. 周期性市场分析在金融和股票市场中,价格和交易量往往具有一定的周期性。

2021年名校课堂内外九年级数学上册沪科版安徽专版

2021年名校课堂内外九年级数学上册沪科版安徽专版

2021年名校课堂内外九年级数学上册沪科版安徽专版
第一部分:
一、整体解决:
1. 综合应用题:以实际问题和数学分析理解问题,合理设计数学模型,利用
变量表示,运用恰当的解题方法,建立代数表达式或统计模型,利用渐进解决或最优解书写问题。

2. 数列推理应用:病通过数学分析理解数列的规律,运用所学的相关概念和
知识,如枚逆数、比、倍数、公比、平方根等,来解决相关的问题。

3. 不等式与函数应用:以实际问题和数学分析理解问题,合理设计数学模型,利用不等式和函数来解决实际问题,把给定的实际问题转化为已知的不等式和函数来解决,即转换未知答案的实际问题为已知答案的“函数问题”来解决。

4. 三角函数应用:综合运用实际问题及数学分析理解问题,以解决实际问题
的旋转及其变换,运用余弦定理与正弦定理来解出一元三角函数恒等变换,以及求解实际问题中的定角型等数学模型。

5. 排列组合应用:结合实际问题和数学分析理解问题,根据所给情况,运用
组合原理和计数原理求出可能有多少种可能, matlab等计算机技术软件的应用,有效的求解一定范围内的计算问题。

二、实验室题:
1. 数学模拟实验:根据数学理论利用实验环境,进行实验测量数据,对所给
问题进行实验测量,分析实验数据,发现实验问题的规律,归纳总结出实验问题的解决方案。

2. 数学应用实验:以实验室环境,以及MATLAB等计算机技术软件,利用
建模方法如神经网络、梯度下降算法、支持向量机等机器学习建模方法,对实验数据进行分析,模拟现实或者理论建模问题,获得用于实际应用的结果。

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用
(1)在△ABC中,一定有a+b+c=sin A+sin B+sin C.( × )
(2)在△ABC中,若sin 2A=sin 2B,则必有A=B.( × )
(3)在△ABC中,若a2+b2<c2,则△ABC是钝角三角形.(

)
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,面积为
3.(2023 全国乙,文 4)记△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 acos Bbcos A=c,且
π
C= ,则
5
B=(
π
A.
10
π
B.
5

C.
10

D.
5
答案 C
)
解析由acos B-bcos A=c及正弦定理,得sin Acos B-sin Bcos A=sin C,
(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;
(2)若式子中含有a,b,c的齐次式,优先考虑正弦定理“边化角”;
(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;
(4)含有面积公式的问题,要考虑结合余弦定理求解;
(5)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.
又因为sin A=sin(B+C)=sin Bcos C+cos Bsin C,
sin B=sin(A+C)=sin Acos C+cos Asin C,
所以sin Bcos C+cos Bsin C-sin Acos C-cos Asin C=sin Ccos B-sin Ccos A,整
理得sin Bcos C-sin Acos C=0,因此(sin B-sin A)cos C=0,所以sin B=sin A或

高考冲刺 三角函数公式及应用(提高)

高考冲刺 三角函数公式及应用(提高)

高考冲刺 三角函数公式及应用编稿:孙永钊 审稿:张林娟【高考展望】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在(1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;(2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围(3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+, 221cos 1cos cos ,sin 2222αααα+-==等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。

3.三角函数恒等变形的基本策。

三角换元求数列通项公式

三角换元求数列通项公式

三角换元求数列通项公式全文共四篇示例,供读者参考第一篇示例:三角换元法是一种常见的数列求通项公式的方法之一,它通常用于解决一些特殊的数列问题。

在数学中,数列是一组按照一定规律排列的数的序列,其中每一个数称为数列的项。

查找数列的通项公式是数学分析中的一个重要问题,因为通过通项公式可以简洁明了地描述数列中各项的关系,从而可以更轻松地计算数列中的任意一项。

三角换元法的核心思想就是将数列中的项用三角函数表示,然后通过一些数学技巧将其还原为原数列的形式,从而找到数列的通项公式。

接下来,我们将详细介绍三角换元法的使用方法,并通过一个具体的例子来演示如何应用这种方法求解数列的通项公式。

我们来看一个简单的数列问题:已知数列a_n的前四项分别为1、2、4、7,求a_n的通项公式。

接下来,我们通过三角换元法来解决这个问题:步骤一:令b_n=a_{n+1}-a_n,即将原数列变换为差数列。

则差数列b_n的前三项为1、2、3。

步骤三:考虑如何通过三角函数表示新数列c_n。

因为新数列c_n的各项相同,并且差为1,我们可以把c_n看作是一个常数数列,即c_n=1。

步骤四:通过逆三角函数还原原数列。

我们知道,逆三角函数的导数为常数。

我们可以尝试用逆三角函数来表示原数列。

令a_n=f(n),其中f(n)为逆三角函数。

因为逆三角函数的导函数为常数,我们可以猜测f(n)为线性函数。

假设f(n)=an+b,代入已知条件可以得到a=1/2,b=1/2。

数列a_n的通项公式为a_n=\frac{1}{2}n+\frac{1}{2}。

通过这个简单的例子,我们可以看到三角换元法在求解数列通项公式时的灵活性和实用性。

这种方法可以将原本复杂的数列问题转化为简单的三角函数问题,从而更容易地解决问题。

在实际应用中,三角换元法不仅适用于求解简单的数列问题,还可用于解决一些复杂的数列问题,例如斐波那契数列、等差数列、等比数列等。

通过灵活运用三角换元法,我们可以更快速地求解数列的通项公式,提高数学问题解决的效率和准确性。

高考数学知识点归纳

高考数学知识点归纳

高考数学知识点归纳高考数学知识点归纳整理高考数学多个常考知识点,包括函数、数列、不等式、三角函数、立体几何等重点内容,以下是小编整理的高考数学知识点归纳,希望可以提供给大家进行参考和借鉴。

高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学冲刺注意事项重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。

例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。

从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

突出新课程理念,关注应用,倡导“学以致用”。

新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。

加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。

有意训练每年高考试题中都出现的高频考点。

高考数学必背公式一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cos A)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

三角函数与数列函数的综合应用

三角函数与数列函数的综合应用

三角函数与数列函数的综合应用在数学中,三角函数与数列函数是常见且重要的数学概念。

它们之间存在密切的联系与应用。

本文将探讨三角函数与数列函数在实际问题中的综合应用。

一、三角函数与数列函数的基本概念三角函数是以角度为自变量的函数,常见的三角函数包括正弦函数、余弦函数和正切函数。

数列函数则是以自然数为自变量的函数,数列函数的公式可以表示为通项公式,用来描述数列的变化规律。

二、三角函数与数列函数之间的关系三角函数与数列函数之间存在着紧密的联系。

以正弦函数为例,我们可以将自变量取自然数序列,从而得到一个数列。

同样地,我们也可以将数列的值作为角度的度数,通过三角函数的计算得到相应的函数值。

这种联系使得三角函数与数列函数的应用在实际问题中产生了重要的意义。

三、三角函数与数列函数在几何问题中的应用三角函数与数列函数在几何问题中有着广泛的应用。

以三角形为例,通过三角函数可以计算出三角形的边长、角度、面积等相关信息。

数列函数可以用来描述三角形中各个顶点坐标的变化规律,从而更深入地研究三角形的几何特性。

四、三角函数与数列函数在物理问题中的应用三角函数与数列函数在物理问题中也有着重要的应用。

以振动问题为例,振动的周期可以用正弦函数来表示,而振幅的变化可以通过数列函数来描述。

通过三角函数与数列函数的综合应用,我们可以更好地理解和解决物理中与振动相关的问题。

五、三角函数与数列函数在工程问题中的应用在工程领域,三角函数与数列函数的综合应用也扮演着重要的角色。

以电路问题为例,交流电的波形可以通过正弦函数来描述,而电流和电压的变化规律可以通过数列函数来表示。

通过三角函数与数列函数的应用,工程师们能够更好地分析电路中的问题,并作出正确的设计和改进。

六、三角函数与数列函数在经济问题中的应用在经济学中,三角函数与数列函数也有广泛的应用。

以经济增长模型为例,经济增长率可以用数列函数来表示,而经济波动可以通过正弦函数来描述。

通过三角函数与数列函数的综合应用,我们可以更好地预测经济的变化趋势,并制定相应的经济政策。

数列综合题型

数列综合题型

(一)数列和函数综合1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n 项和S n.2.已知:f n(x)=a1x+a2x2+…+a n x n,且数列{a n}成等差数列.(1)当n为正偶数时,f n(﹣1)=n,且a1=1,求数列{a n}的通项;(2)试比较与3的大小.3.已知f(x)在(﹣1,1)上有定义,,且满足x,y∈(﹣1,1)有.对数列{x n}有(1)证明:f(x)在(﹣1,1)上为奇函数.(2)求f(x n)的表达式.(3)是否存在自然数m,使得对于任意n∈N*且<成立?若存在,求出m的最小值.(二)数列与不等式综合4.(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.5.如图:假设三角形数表中的第n行的第二个数为a n(n≥2,n∈N*)(1)归纳出a n+1与a n的关系式并求出a n的通项公式;(2)设a n b n=1求证:b2+b3+…+b n<2.6.已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m、a k、a h都是数列{a n}中满足a h﹣a k=a k﹣a m的任意项.(Ⅰ)证明:m+h=2k;(Ⅱ)证明:S m•S h≤S k2;(III)若也成等差数列,且a 1=2,求数列的前n项和.(三)数列和向量综合7.已知点集,其中=(2x﹣b,1),=(1,b+1),点列P n(a n,b n)在L中,P1为L与y轴的交点,等差数列{a n}的公差为1,n∈N*.(I)求数列{b n}的通项公式;(Ⅱ)若,令S n=f(1)+f(2)+f(3)+…+f(n);试写出S n关于n的函数解析式;8.已知一列非零向量,n∈N*,满足:=(10,﹣5),,(n32 ).,其中k是非零常数.(1)求数列{||}是的通项公式;(2)求向量与的夹角;(n≥2);(3)当k=时,把,,…,,…中所有与共线的向量按原来的顺序排成一列,记为,,…,,…,令,O为坐标原点,求点列{B n}的极限点B的坐标.(注:若点坐标为(t n,s n),且,,则称点B(t,s)为点列的极限点.)9.我们把一系列向量(i=1,2,…,n)按次序排成一列,称之为向量列,记作{}.已知向量列{}满足:,=(n≥2).(1)证明数列{||}是等比数列;(2)设θn表示向量,间的夹角,若b n=2nθn﹣1,S n=b1+b2+…+b n,求S n;(3)设||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.10.从原点出发的某质点M,按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,设可达到点(0,n)的概率为P n,求:(1)求P1和P2的值.(2)求证:P n+2=P n+P n+1.(3)求P n的表达式.(四)数列和三角函数综合11.已知点列B1(1,y1)、B2(2,y2)、…、B n(n,y n)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、A n(x n,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点A n、B n、A n+1构成一个顶角的顶点为B n的等腰三角形.(1)求数列{y n}2的通项公式,并证明{y n}3是等差数列;(2)证明x n+2﹣x n5为常数,并求出数列{x n}6的通项公式;(3)问上述等腰三角形A n8B n9A n+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.12.设数列{a n}是首项为0的递增数列,(n∈N),,x∈[a n,a n+1]满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根.(1)试写出y=f1(x),并求出a2;(2)求a n+1﹣a n,并求出{a n}的通项公式;(3)设S n=a1﹣a2+a3﹣a4+…+(﹣1)n﹣1a n,求S n.13.(理)已知复数,其中A,B,C是△ABC的内角,若.(1)求证:;(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求的最大值.(五)数列和解析几何综合14.在xoy平面上有一系列点P1(x1,y1),P2(x2,y2)…,P n(x n,y n),…,(n∈N*),点P n在函数y=x2(x≥0)的图象上,以点P n为圆心的圆P n与x轴都相切,且圆P n与圆P n+1又彼此外切.若x1=1,且x n+1<x n x1=1.(I)求数列{x n}的通项公式;(II)设圆P n的面积为S n,,求证:.15.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式,并求的最小值(其中O为坐标原点,n∈N*).16.如图,在直角坐标系xOy中,有一组底边长为a n的等腰直角三角形A n B n C n(n=1,2,3,…),底边B n C n依次放置在y轴上(相邻顶点重合),点B1的坐标为(0,b),b>0.(1)若A1,A2,A2,…,A n在同一条直线上,求证:数列{a n}是等比数列;(2)若a1是正整数,A1,A2,A2,…,A n依次在函数y=x2的图象上,且前三个等腰直角三角形面积之和不大于,求数列{a n}的通项公式.17.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式(n∈N*).答案与评分标准1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n项和S n.考点:数列与函数的综合;等比数列的通项公式;数列的求和;数列递推式。

三角函数的综合应用

三角函数的综合应用

城东蜊市阳光实验学校三角函数的综合应用一、明确复习目的1.掌握三角函数的图象、性质和恒等变形,会用反三角函数表示角; 2.掌握正、余弦定理解斜三角形的方法;3.能解决三角函数与几何、向量综合的题目,能用三角知识解决简单的实际问题。

二.建构知识网络1. 三角函数的性质和图象变换;2. 三角函数的化简,求值,证明——恒等变形的策略与技巧.3. 正、余弦定理,斜三角形的可解类型;在应用题中要能抽象或者者构造出三角形;4.在应用与综合性题目中,当角不是特殊角,要“用反三角函数表示角〞: (1)arcsin [,],;22a a a ππ-∈表示上正弦值等于的角,[-1,1] (2)arccosa 表示[0,π]上余弦值等于a 的角,a∈[-1,1]; (3)arctan (,),;22aa a R ππ-∈表示上正切值等于的角,(4)对于不是上述范围内的角,可借助诱导公式和三角函数线,找出与上述反三角的关系进而求出.例如:sinα=0.3,α是钝角,那么α=π-arcsin0.3.三、双基题目练练手 1.tan 3x =-,那么x 等于〔〕2.假设A 、B 是锐角△ABC 的两个内角,那么点P 〔cosB -sinA ,sinB -cosA 〕在()A.第一象限B.第二象限C.第三象限D.第四象限3.111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,那么(〕 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为A.75°B.60°C.50°D.45°5.〔2021〕假设x=3π是方程2cos 〔x+α〕=1的解,其中α∈〔0,2π〕,那么α=_________. 6.〔2021西城二模〕函数y=sinx(sinx+3cosx 〕〔x∈R〕的最大值是_______. ◆答案:1-4.CBDC;2.A+B >2π.∴A>2π-B ,B >2π-A. ∴sinA>cosB ,sinB >cosA.,P 在第二象限.3.sinA2=cosA1,……A1、B1、C1是锐角。

第五章 三角函数单元总结(思维导图+知识记诵+能力培养)(含解析)

第五章 三角函数单元总结(思维导图+知识记诵+能力培养)(含解析)

第五章三角函数要点一:终边相同的角 1.终边相同的角凡是与α终边相同的角,都可以表示成360k α⋅︒+的形式. 要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 特例:终边在x 轴上的角集合{}|180k k Z αα=⋅︒∈,, 终边在y 轴上的角集合{}|18090k k Z αα=⋅︒+︒∈,, 终边在坐标轴上的角的集合{}|90k k Z αα=⋅︒∈,.在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小. 2.弧度和角度的换算(1)角度制与弧度制的互化:π弧度 180=,1801π=弧度,1弧度'180()5718π=≈(2)弧长公式:r l ||α=(α是圆心角的弧度数),扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 要点二:任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式:1.三角函数定义:角α终边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==ααxy =αtan 要点诠释:三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y =+那么22sin x y α=+,22cos x y α=+,tan yxα=. 2.三角函数符号规律:一全正,二正弦,三正切,四余弦(为正);要点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.α0 6π 4π 3π 2π π32π 2π sin α 0 21 22 23 1 0 -1 0 cos α 1 23 22 21 0 -1 0 1 tan α33 13不存在不存在22sin sin cos 1;tan cos ααααα+== 要点诠释:(1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立;(2)2sin α是2(sin )α的简写;(3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取. 5.诱导公式(奇变偶不变,符号看象限):sin(πα-)=sin α,cos(πα-)=-cos α,tan(πα-)=-tan α sin(πα+)=-sin α,cos(πα+)=-cos α,tan(πα+)=tan α sin(α-)=-sin α,cos(α-)=cos α,tan(α-)=-tan αsin(2πα-)=-sin α,cos(2πα-)=cos α,tan(2πα-)=-tan αsin(2k πα+)=sin α,cos(2k πα+)=cos α,tan(2k πα+)=tan α,()k Z ∈ sin(2πα-)=cos α,cos(2πα-)=sin α sin(2πα+)=cos α,cos(2πα+)=-sin α要点诠释:(1)要化的角的形式为α±⋅ 90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”; (4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭. 要点三:正弦函数、余弦函数和正切函数的图象与性质1.三角函数sin cos y x y x ==,的图象与性质: y=sinx y=cosx 定义域 (-∞,+∞) (-∞,+∞) 值域 [-1,1] [-1,1] 奇偶性奇函数偶函数单调性增区间[2,2],22k k k Z ππππ-+∈ 减区间3[2,2],22k k k Zππππ++∈ 增区间[]22k k k Zπππ-∈,减区间[]22k k k Zπππ+∈,周期性 最小正周期2T π=最小正周期2T π=最值 当2()2x k k Z ππ=-∈时,min 1y =-当2()2x k k Z ππ=+∈时,max 1y =当2()x k k Z ππ=+∈时,min 1y =- 当2()x k k Z π=∈时,max 1y = 对称性对称轴()2x k k Z ππ=+∈对称中心()0()k k Z π∈,对称轴()x k k Z π=∈ 对称中心(,0)()2k k Z ππ+∈y=cosx 的图象是由y=sinx 的图象左移2得到的. 2.三角函数tan y x =的图象与性质:y=tanx定义域 ,2x k k Z ππ≠+∈值域 R 奇偶性奇函数单调性 增区间(,),22k k k Z ππππ-+∈周期性 T π=最值 无最大值和最小值 对称性对称中心(,0)()2k k Z π∈ 要点四:函数sin()y A x ωϕ=+的图象与性质 用“五点法”作sin()y A x ωϕ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取30,,,,222ππππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 要点诠释:用“五点法”作图的关键是点的选取,其中横坐标成等差数列,公差为4T. sin()y A x ωϕ=+2.sin()y A x ωϕ=+的性质 (1)三角函数的值域问题三角函数的值域问题,实质上大多是含有三角函数的复合函数的值域问题,常用方法有:化为代数函数的值域或化为关于sin (cos )x x 的二次函数式,再利用换元、配方等方法转化为二次函数在限定区间上的值域.(2)三角函数的单调性函数)0,0)(sin(>>+=ωϕωA x A y 的单调区间的确定,基本思想是把ϕω+x 看作一个整体,比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间; 要点诠释:(1)注意复合函数的解题思想;(2)比较三角函数值的大小,往往是利用奇偶性或周期性在转化为属于同一单调区间上的两个同名函数值,再利用单调性比较.3.确定sin()y A x ωϕ=+的解析式的步骤①首先确定振幅和周期,从而得到A ω,;②确定ϕ值时,往往以寻找“五点法”中第一个零点(,0)ϕω-作为突破口,要注意从图象的升降情况找准第一个零点的位置,同时要利用好最值点.要点五:正弦型函数sin()y A x ωϕ=+的图象变换方法 先平移后伸缩sin y x =的图象 sin()y x ϕ=+的图象sin()y x ωϕ=+的图象 sin()y A x ωϕ=+的图象的图象. 先伸缩后平移sin y x =的图象 sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位sin()y A x ωϕ=+的图象的图象.要点六:两角和、差的正、余弦、正切公式()sin sin cos cos sin αβαβαβ±=±; ()cos cos cos sin sin αβαβαβ±=;ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度sin()y A x k ϕ=++(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度sin()y A x k ωϕ=++()tan tan tan 1tan tan αβαβαβ±±=.要点诠释:1.公式的适用条件(定义域) :公式①、②对任意实数α,β都成立,这表明①、②是R 上的恒等式;公式③中,∈,且R αβk (k Z)2±≠+∈、、παβαβπ2.正向用公式①、②,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数.公式③正向用是用单角的正切值表示和差角()±αβ的正切值化简.要点七:二倍角公式1. 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:sin 22sin cos ααα=;2222cos 2cos sin 2cos 112sin ααααα=-=-=-;22tan tan 21tan ααα=-. 要点诠释:1.在公式22,S C αα中,角α没有限制,但公式2T αα中,只有当)(224Z k k k ∈+≠+≠ππαππα和时才成立;2. 余弦的二倍角公式有三种:ααα22sin cos 2cos -==1cos 22-α=α2sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用.3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.要点八:二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=;22cos 1cos 2αα+=.要点九:三角恒等变换的基本题型三角式的化简、求值、证明是三角恒等变换的基本题型: 1.三角函数式的化简(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等.(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数.2.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角.3.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明.类型一:三角函数的概念例1. 已知角α的终边过点(,2)(0)a a a ≠,求α的三个三角函数值. 【思路点拨】分0,0a a ><两种情况求α的三个三角函数值. 【解析】因为过点(,2)(0)a a a ≠,所以5|r a =,,2x a y a ==.当250sin 55||5y a r a aα>====时,; 5cos 55x r aα===,2tan =α. 当250sin 5||5y a r a a α<====-时,5cos 55x r aα===--;2tan =α. 【总结升华】(1)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际及解题的需要对参数进行分类讨论;(2)若角α已经给定,不论点选在α的终边上的什么位置,角α的三角函数值都是确定的;另一方面,如果角α终边上点坐标已经确定,那么根据三角函数定义,角α的三角函数值也是确定的.类型二:扇形的弧长与面积的计算例2.已知一半径为r 的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?【答案】2π- 65.44︒ 21(2)2r π-【解析】设扇形的圆心角是rad θ,因为扇形的弧长是θr ,所以扇形的周长是2.r r θ+ 依题意,得2,rr r θπ+=()2rad θπ∴=-180(2)ππ⎛⎫-⨯ ⎪⎝⎭≈1.14257.30⨯︒≈65.44,︒ 2211(2).22S r r θπ∴==-【总结升华】弧长和扇形面积的核心公式是圆周长公式2C r π=⋅和圆面积公式2122S r π=⋅⋅,当用圆心角的弧度数α代替2π时,即得到一般的弧长公式和扇形面积公式:211,.22l r S lr r αα=⋅==⋅类型三:同角三角函数的基本关系式 例3.已知1sin cos ,(0,),5A A A π+=∈,求tan A 的值. 【思路点拨】由题意知,12sin cos ,(0,),25A A A π=-∈所以A 为钝角,然后求出3cos 5α=-即可求得. 【解析】方法一:由51cos sin =+A A ,得(),251cos sin 2=+A A),,0(,2512cos sin π∈-=∴A A A .0cos sin ,0cos ,0sin ,2>-<>∴<<∴A A A A A ππ又().57cos sin ,2549cos sin 21cos sin 2=-∴=-=-A A A A A A 由,57cos sin 51cos sin ⎪⎪⎩⎪⎪⎨⎧=-=+A A A A 得,.53cos 54sin ⎪⎪⎩⎪⎪⎨⎧-==A A .34tan -=∴A方法二:由51cos sin =+A A 可得,sin 51cos 22⎪⎭⎫ ⎝⎛-=A A即,sin 51sin 122⎪⎭⎫⎝⎛-=-A A 整理得,012sin 5sin 252=--A A即,0)3sin 5)(4sin 5(=+-A A54sin =∴A 或53sin -=A ,由已知π<<A 0知53sin -=A 不合题意,舍去.1sin cos 5A A +=,两边平方得:12sin cos ,(0,),25A A A π=-∈(,)2A ππ∴∈,所以3cos 5A =- .34tan -=∴A【总结升华】同角三角函数基本关系是反映了各种三角函数之间的内在联系,为三角函数式的恒等变形提供了工具与方法.类型四:三角函数的诱导公式例4.已知sin(3π+θ)=13,求()()()cos cos(2)33cos cos 1sin cos sin 22πθθπππθπθθθπθ+-+--⎡⎤⎛⎫⎛⎫⎣⎦---+ ⎪ ⎪⎝⎭⎝⎭的值.【思路点拨】利用诱导公式,求出sin θ=-13.然后化简要求的式子,即可求得结果. 【答案】18【解析】 ∵sin(3π+θ)=-sin θ=13,∴sin θ=-13, ∴原式=()cos cos(2)3cos cos 1sin cos()cos 2θπθπθθθπθθ--+--⎛⎫---+ ⎪⎝⎭=21cos 1cos cos cos θθθθ++-+ =11cos θ++11cos θ-=221cos θ- =22sin θ=221()3-=18. 【总结升华】 诱导公式用角度和弧度制表示都成立,记忆方法可以概括为“奇变偶不变,符号看象限”,“变”与“不变”是相对于对偶关系的函数而言的,sin α与cos α对偶,“奇”、“偶”是对诱导公式中2k πα⋅+的整数k 来讲的,象限指2k πα⋅+中,将α看作锐角时,2k πα⋅+所在象限,如将3cos 2πα⎛⎫+⎪⎝⎭写成cos 32πα⎛⎫⋅+ ⎪⎝⎭,因为3是奇数,则“cos ”变为对偶函数符号“sin ”,又32πα+看作第四象限角,3cos 2πα⎛⎫+ ⎪⎝⎭为“+”,所以有3cos sin 2παα⎛⎫+= ⎪⎝⎭. 类型五:三角函数的图象和性质 例5. 函数ln cos 22y x x ππ⎛⎫=-<< ⎪⎝⎭的图象是( )【答案】A【解析】ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cosx 的值域可以确定.因此本题应选A.例6.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )【思路点拨】首先根据函数图象变换的公式,可得最终得到的图象对应的解析式为:y=cos (x+1),然后将曲线y=cos (x+1)的图象和余弦曲线y=cosx 进行对照,可得正确答案. 【解析】将函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为:y=cosx+1,再将y=cosx+1图象向左平移1个单位长度,再向下平移 1个单位长度,得到的图象对应的解析式为:y=cos (x+1),∵曲线y=cos (x+1)由余弦曲线y=cosx 左移一个单位而得,∴曲线y=cos (x+1)经过点1,02π⎛⎫- ⎪⎝⎭和31,02π⎛⎫- ⎪⎝⎭,且在区间31,122ππ⎛⎫-- ⎪⎝⎭上函数值小于0,由此可得,选项A 正确,故选A .例7.已知函数()sin(),f x x ωϕ=+其中0ω>,||2ϕ<(I )若coscos sinsin 0,44ππϕϕ3-=求ϕ的值; (Ⅱ)在(I )的条件下,若函数()f x 的图像的相邻两条对称轴之间的距离等于3π,求函数()f x 的解析式;并求最小正实数m ,使得函数()f x 的图像象左平移m 个单位所对应的函数是偶函数.【思路点拨】(1)把所给的式子化简,然后结合平方关系式得出tan ϕ,由0ω>,||2πϕ<,求出ϕ的值.(Ⅱ)由题意求得,23T π=,故3ω=,进一步求出()f x 的解析式. 【答案】(I )4π(Ⅱ)()sin(3)4f x x π=+ 12π【解析】 (I )由3coscos sin sin 044ππϕϕ-=,得22sin 022ϕϕ-=,得tan 1ϕ= 又||,24ππϕϕ<∴=.(Ⅱ)由(I )得,()sin()4f x x πω=+依题意,23T π= 又2,T πω=故3,()sin(3)4f x x πω=∴=+ 函数()f x 的图像向左平移m 个单位后所对应的函数为()sin 3()4g x x m π⎡⎤=++⎢⎥⎣⎦()g x 是偶函数当且仅当3()42m k k Z πππ+=+∈即()312k m k Z ππ=+∈ 从而,最小正实数12m π=【总结升华】本题考查了同角三角函数的基本关系式及函数sin()y A x ωϕ=+的性质,属中等难度题.类型六:正用公式例8.已知:41cos ,32sin -=β=α,求cos()αβ-的值. 【思路点拨】因为不知道角,αβ所在的象限,所以要对,αβ分别讨论求cos()αβ-的值.【解析】由已知可求得22515cos 1sin sin 1cos 34ααββ=-=±=-=±. 当α在第一象限而β在第二象限时,os()os cos sin sin c c αβαβαβ-=+51215)43=-+125152-=. 当α在第一象限而β在第三象限时,512152155cos())(43αβ+-=-+⋅=当α在第二象限而β在第二象限时, 512152155cos()()343412αβ+-=--+⋅=. 当α在第二象限而β在第三象限时,512152155cos()()(343412αβ-=--+⋅-=-. 【总结升华】分类的原则是:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论要逐级进行.掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.例9.已知παπ434<<,40πβ<<,53)4cos(=-απ,135)43sin(=+βπ,求sin()αβ+的值.【思路点拨】注意到)(2)4()43(βαπαπβπ++=--+,应把)43(),4(βπαπ+-看成整体,可以更好地使用已知条件.欲求sin()αβ+,只需求出)2cos(βαπ++-.【答案】5665【解析】∵ 042<-<-αππ, ∴54)4sin(-=-απ,∵ πβππ<+<4343, ∴1312)43cos(-=+βπ.∴)](2cos[)sin(βαπβα++-=+6556)54(135531312)]4sin()43sin()4cos()43[cos()]4()43cos[(=-⨯-⨯=-++-+-=--+-=απβπαπβπαπβπ【总结升华】(1)解题中应用了)(2)4()43(βαπαπβπ++=--+式子的变换,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有(),2()()βαβαααβαβ=+-=++-,2()()βαβαβ=+--, 2()αβαβα+=++等.(2)已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用.类型七:逆用公式 例10.求值:(1)001tan151tan15+-; (2)44(sin 23cos8sin 67cos98)(sin 730cos 730)''+-o o o o o o. 【思路点拨】 题目中涉及到的角并非特殊角,而从式子的结构出发应逆用和角公式等先化简再计算. (1)利用tan 451︒=将1tan15+︒视为tan 45tan15︒+︒,将1tan15-︒视为1tan 45tan15-︒︒,则式子恰为两角和的正切.【答案】(132)14- 【解析】(1)原式360tan )1545tan(15tan 45tan 115tan 45tan 0000000==+=-+=; (2)原式=44[sin 23cos8sin(9023)cos(908)](sin 730cos 730)''+-+-o o o o o o o o2222(sin 23cos8cos 23sin8)(sin 730cos 730)(sin 730cos 730)o o o o o o o o ''''=-+-22sin(238)(cos 730sin 730)o o o o ''=---11sin15cos15sin 3024=-︒︒=-︒=-.【总结升华】(1)把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”.(2)辅助角公式:22sin cos )a b a b αααϕ+++,其中角ϕ在公式变形过程中自然确定.例11. 求值:(1)cos36cos72︒︒;(2)πππ73cos 72cos 7cos【思路点拨】问题的特征是角存在倍角关系,且都是余弦的乘积.方法是分子分母(分母视为1)同乘以最小角的正弦.【答案】(1)1/4 (2)1/8 【解析】(1)原式=000000000sin 36cos36cos 721sin 72cos 721sin1441sin 362sin 364sin 364=⨯=⨯=; (2)原式=πππππππ74cos 72cos 7cos )74cos(72cos 7cos -=-24sin cos cos cos 7777sin7224sin cos cos 7772sin78sin 7...8sin718πππππππππππ=-=-==-=【总结升华】此种类型题比较特殊,特殊在:①余弦相乘;②后一个角是前一个角的2倍;③最大角的2倍与最小角的和与差是π.三个条件缺一不可.另外需要注意2的个数.应看到掌握了这些方法后可解决一类问题,若通过恰当的转化,转化成具有这种特征的结构,则可考虑采用这个方法.类型八:变用公式例12.在ABC ∆中,求值:tan tan tan tan tan tan 222222A B B C C A ++ 【答案】1【解析】∵A B C π++=,∴222+=-A B C π,∴tan tan()cot 2222A B C Cπ+=-= ∴原式=tan tan tan (tan tan )22222A B C A B++tan tan tan tan (1tan tan )222222tan tan tan cot (1tan tan )222222tan tan 1tan tan22221A B C A B A B A B C C A B A B A B +=+-=+⨯-=+-= 例13. 化简:(1)sin 50(13)︒︒;(2)222cos 12tan()sin ()44αππαα--+【思路点拨】(1)题中首先“化切为弦”,同时用好“50︒”和“40︒”的互余关系,注意逆用和角公式化简; (2)题初看有“化切为弦”,“降幂”等诸多想法,但首先应注意到2)4()4(παπαπ=++-这个关系.【答案】(1)1(2)1【解析】(1)原式003sin10sin50(1)cos10=+00cos103sin10sin 50+==000000sin 30cos10cos30sin102sin50cos10+⋅000000000sin 402cos40sin 402sin50cos10cos10sin80cos101cos10cos10=⋅==== (2)原式=2cos 22tan()sin [()]424απππαα---2cos 22sin()4cos ()4cos()4cos 22sin()cos()44cos 2cos 2cos 2sin(2)21απαπαπααππααααπαα=-⋅--=--==-=【总结升华】(1)三角变换所涉及的公式实际上正是研究了各种组合的角(如和差角,倍半角等)的三角函数与每一单角的三角函数关系.因而具体运用时,注意对问题所涉及的角度及角度关系进行观察.(2)三角变换中一般采用“降次”、“化弦”、“通分”的方法;在三角变换中经常用到降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=. 例14.已知32)sin(=+βα,51)sin(=-βα,求的值. 【思路点拨】 先分析所求式 sin tan sin cos cos sin tan cos sin cos αααβαββαββ==,分子、分母均为已知条件中和差角的展开式的项.【答案】137【解析】∵32sin cos cos sin )sin(=+=+βαβαβα, 51sin cos cos sin )sin(=-=-βαβαβα, 2tan()tan tan tan tan()αβαββαβ+--⋅+解得3013cos sin =βα, 307sin cos =βα, ∴tan sin cos 13tan cos sin 7ααββαβ==. 类型九:三角函数知识的综合应用 例15.函数2()6cos 33(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若083()f x =,且0102(,)33x ∈-,求0(1)f x +的值. 【答案】(Ⅰ)4π[3,3]-(Ⅱ)65【解析】(Ⅰ)由已知可得:2()6cos 33(0)2x f x x ωωω=-> =3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即由x 0)2,2()34x (323100ππππ-∈+-∈),得,(所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=【总结升华】本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.。

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇引言本文将介绍十篇高中数学优秀教学案例,这些案例不仅能够激发学生对数学的兴趣,还能够提高他们的数学理解和解决问题的能力。

案例1:数列与函数的关系这个案例通过数列与函数的关系展示了数学的实际应用。

学生通过分析数列与函数之间的规律,掌握了数学模型的建立和使用方法。

案例2:应用题解决这个案例通过一系列应用题,让学生综合运用所学的知识来解决实际问题。

学生通过解决这些应用题,培养了数学思维和问题解决能力。

案例3:图形的变换这个案例通过图形变换来帮助学生理解几何知识。

学生通过观察图形的变换规律,加深了对几何知识的理解。

案例4:概率统计这个案例将概率与统计应用于实际生活中的问题中。

学生通过统计数据和计算概率,培养了数据分析和推理能力。

案例5:三角函数的应用这个案例通过三角函数的应用,让学生更好地理解三角函数的概念和用途。

学生通过解决实际问题,进一步巩固了三角函数的知识。

案例6:平面向量的运算这个案例通过平面向量的运算,让学生掌握向量的性质和运算规律。

学生通过解决向量运算的问题,提高了数学建模和计算能力。

案例7:解析几何的应用这个案例通过解析几何的应用,让学生熟练运用解析几何的方法解决几何问题。

学生通过解决实际问题,进一步加深了对解析几何的理解。

案例8:数学建模这个案例通过数学建模,让学生在实际问题中运用数学知识进行建模分析。

学生通过解决实际问题,培养了数学建模和分析能力。

案例9:数学思维训练这个案例通过数学思维训练,提供了一系列拓展性的数学问题和思考方法。

学生通过解决这些问题,培养了创新思维和数学思维能力。

案例10:数学竞赛解题这个案例通过数学竞赛解题,让学生在竞争中锻炼和提高自己的数学能力。

学生通过参与数学竞赛,培养了良好的数学竞赛素养。

总结这些高中数学优秀教学案例涵盖了数学的各个知识点和应用领域,能够帮助学生提高数学能力和解决问题的能力。

教师可以根据实际情况选择合适的案例来进行教学,激发学生对数学的兴趣和热爱。

数列知识在物理中的应用

数列知识在物理中的应用

数列知识在物理中的应用数学是解决物理问题的重要工具,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能到达打通关卡、长驱直入地解决问题的目的.中学物理《考试大纲》中对学生应用数学方法解决物理问题的能力作出了明确的要求,要求考生有“应用数学处理物理问题”的能力。

所谓数学方法,就是要把客观事物的状态、关系和过程用数学语言表达出来,并进行推导、演算和分析,以形成对问题的判断、解释和预测.可以说,任何物理问题的分析、处理过程,都是数学方法的运用过程.本专题中所指的数学方法,都是一些特殊、典型的方法,常用的有极值法、几何法、图象法、数学归纳推理法、微元法、等差(比)数列求和法等。

数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等.1.利用三角函数求极值y=acos θ+bsin θ ab=a+b(θsin θ) a+ba+bab令sin φ,cos φ= a+ba+b那么有:y=a+b(sin φcos θ+cos φsin θ)=a+bsin (φ+θ)π所以当φ+θ=y有最大值,且ymax=a+b. 22.利用二次函数求极值 2bb2b2b24ac-b22二次函数:y=ax+bx+c=a(x+x+)+c-=a(x+)+(其中a、b、ca4a4a2a4a 4ac-b2b为实常数),当x=-时,有极值ym=(假设二次项系数a>0,y有极小值;假设a<0,2a4ay有极大值).3.均值不等式对于两个大于零的变量a、b,假设其和a+b为一定值p,那么当a=b时,其积ab取得极p2大值 a、b、c,假设其和a+b+c为一定值q,那么当a=b=c 时,4q3其积abc取得极大值. 27利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学局部和电学局部的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径确实定上,确定方法有以下几种.1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.2 由EB=CE·ED=CE·(2R-CE)EB2CE得:R=+ 2CE2也可由勾股定理得:R2=(R-CE)2+EB2EB2CE解得:R+. 2CE2以上两种求半径的方法常用于求解“带电粒子在匀强磁场中的运动”这类习题中.中学物理中一些比拟抽象的习题常较难求解,假设能与数学图形相结合,再恰当地引入物理图象,那么可变抽象为形象,突破难点、疑点,使解题过程大大简化.图象法是历年高考的热点,因而在复习中要密切关注图象,掌握图象的识别、绘制等方法.1.物理图象的分类整个高中教材中有很多不同类型的图象,按图形形状的不同可分为以下几类.(1)直线型:如匀速直线运动的s-t图象、匀变速直线运动的v-t 图象、定值电阻的U-I图象等.(2)正弦曲线型:如简谐振动的x-t图象、简谐波的y-x 图象、正弦式交变电流的e-t图象、正弦式振荡电流的i-t 图象及电荷量的q-t 图象等.(3)型:如共振曲线的A-f图象、分子力与分子间距离的f-r 图象等.下面我们对高中物理中接触到的典型物理图象作一综合回忆,以期对物理图象有个较为(1)利用图象解题可使解题过程更简化,思路更清晰.利用图象法解题不仅思路清晰,而且在很多情况下可使解题过程得到简化,起到比解析法更巧妙、更灵活的独特效果.甚至在有些情况下运用解析法可能无能为力,但是运用图象法那么会使你豁然开朗,如求解变力分析中的极值类问题等.(2)利用图象描述物理过程更直观.从物理图象上可以比拟直观地观察出物理过程的动态特征.(3)利用物理图象分析物理实验.运用图象处理实验数据是物理实验中常用的一种方法,这是因为它除了具有简明、直观、便于比拟和减少偶然误差的特点外,还可以由图象求解第三个相关物理量,尤其是无法从实验中直接得到的结论.3.对图象意义的理解(1)首先应明确所给的图象是图象,即认清图象中比纵横轴所代表的物理量及它们的“函数关系”,特别是对那些图形相似、容易混淆的图象,更要注意区分.例如振动图象与波动图象、运动学中的 s-t 图象和v-t图象、电磁振荡中的i-t图象和q-t图象等.(2)要注意理解图象中的“点”、“线”、“斜率”、“截距”、“面积”的物理意义.①点:图线上的每一个点对应研究对象的一个状态.要特别注意“起点”、“终点”、“拐点”、“交点”,它们往往对应着一个特殊状态.如有的速度图象中,拐点可能表示速度由增大(减小)变为减小(增大),即加速度的方向发生变化的时刻,而速度图线与时间轴的交点那么代表速度的方向发生变化的时刻.②线:注意观察图线是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系.③斜率:表示纵横坐标上两物理量的比值.常有一个重要的物理量与之对应,用于求解定量计算中所对应的物理量的大小以及定性分析变化的快慢.如 v-t 图象的斜率表示加速度.④截距:表示纵横坐标两物理量在“边界”条件下物理量的大小.由此往往可得到一个很有意义的物理量.⑤面积:有些物理图象的图线与横轴所围的面积往往代表一个物理量的大小.如v-t图象中面积表示位移.4.运用图象解答物理问题的步骤(1)看清纵横坐标分别表示的物理量.(2)看图象本身,识别两物理量的变化趋势,从而分析具体的物理过程.(3)看两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.在解决某些物理过程中比拟复杂的具体问题时,常从特殊情况出发,类推出一般情况下的猜测,然后用数学归纳法加以证明,从而确定我们的猜测是正确的.利用数学归纳法解题要注意书写上的标准,以便找出其中的规律.利用微分思想的分析方法称为微元法.它是将研究对象(物体或物理过程)进行无限细分,再从中抽取某一微小单元进行讨论,从而找出被研究对象的变化规律的一种思想方法.微元法解题的思维过程如下.(1)隔离选择恰当的微元作为研究对象.微元可以是一小段线段、圆弧或一小块面积,也可以是一个小体积、小质量或一小段时间等,但必须具有整体对象的根本特征.(2)将微元模型化(如视为点电荷、质点、匀速直线运动、匀速转动等),并运用相关的物理规律求解这个微元与所求物体之间的关联.(3)将一个微元的解答结果推广到其他微元,并充分利用各微元间的对称关系、矢量方向关系、近似极限关系等,对各微元的求解结果进行叠加,以求得整体量的合理解答.三角函数反映了三角形的边、角之间的关系,在物理解题中有较广泛的应用.例如:讨论三个共点的平衡力组成的力的三角形时,常用正弦定理求力的大小;用函数的单调变化的临界状态来求取某个物理量的极值;用三角函数的“和积公式”将结论进行化简等.凡涉及数列求解的物理问题都具有过程多、重复性强的特点,但每一个重复过程均不是原来的完全重复,而是一种变化了的重复.随着物理过程的重复,某些物理量逐步发生着前后有联系的变化.该类问题求解的根本思路为:(1)逐个分析开始的几个物理过程;(2)利用归纳法从中找出物理量变化的通项公式(这是解题的关键);(3)最后分析整个物理过程,应用数列特点和规律求解.无穷数列的求和,一般是无穷递减数列,有相应的公式可用.n(a1+an)n(n-1)等差:Sn==na1+d(d为公差). 22a(1-qn)等比:Sn=(q为公比). 1-q比例计算法可以避开与解题无关的量,直接列出和的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,要清楚公式的物理意义和每个量在公式中的作用,以及所要讨论的比例关系是否成立.同时要注意以下几点.(1)比例条件是否满足.物理过程中的变量往往有多个,讨论某两个量间的比例关系时要注意只有其他量为常量时才能成比例.(2)比例是否符合物理意义.不能仅从数学关系来看物理公式中各量的比例关系,要注U意每个物理量的意义.(如不能根据R 认定电阻与电压成正比) I(3)比例是否存在.讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不U2变量.如果该条件不成立,比例也不能成立.(如在串联电路中,不能认为P=中P与RR成反比,因为R变化的同时,U也随之变化而并非常量)m许多物理量都是用比值法来定义的,常称之为“比值定义”.如密度ρ=,导体的电阻VUQfFR= C=,接触面间的动摩擦因数μ=E等.它们的共IUFNq同特征是:被定义的物理量是反映物体或物质的属性和特征的,它和定义式中相比的物理量无关.对此,学生很容易把它当做一个数学比例式来处理而忽略了其物理意义,也就是说教学中还要防止数学知识在物理应用中的负迁移.数学是“物理学家的思想工具”,它使物理学家能“有条理地思考”并能出更多的东西.可以说,正是有了数学与物理学的有机结合,才使物理学日臻完善.物理学的严格定量化,使得数学方法成为物理解题中一个不可或缺的工具.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列综合应用+三角函数重点:掌握特殊数列的综合应用以及三角函数应用 规划:思维加解题方法以及应用技巧一. 数列综合应用:1.等差等比数列基本公式应用——求和,通项——等差中项 ——性质应用 2.特殊数列的通项求法——基本公式——递推法 ——累加法 ——累乘法——构造法。

3.Sn 的求法——基本公式法 ——倒序相加法——错位相减法 ——裂项相消法考点一:等差数列等比数列基本公式的应用1.【2012高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S =( )A.7B.15C.20D.252..【2012高考真题新课标理5】已知为等比数列,472a a +=,,则( ){}n a 568a a =-110a a +=()A 7 ()B 5 ()C -5 ()D -7.3.(广东卷)已知等比数列的公比为正数,且·=2,=1,则= A. B.C. D.2 4.(安徽卷)已知为等差数列,,则等于A. -1B. 1C.3D.7 5.(江西卷)公差不为零的等差数列的前项和为.若是的等比中项, ,则等于A. 18B. 24C. 60D. 90 . 6.(湖南卷)设是等差数列的前n 项和,已知,,则等于【 】A .13B .35C .49D . 63 7.(辽宁卷)已知为等差数列,且-2=-1, =0,则公差d =(A )-2 (B )- (C ) (D )28.(四川卷)等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 9. 设等差数列的前n 项和为。

若,,则当取最小值时,n 等于( )}{n a 3a 9a 25a 2a 1a 21222{}n a n n S 4a 37a a 与832S =10S n S {}n a 23a =611a =7S {}n a 7a 4a 3a 1212n a 1a 2a 1a 5a {}n a n S 111a =-466a a +=-n SA.6B.7C.8D.9 二、填空题1(浙江)设等比数列的公比,前项和为,则 . 2.(浙江)设等差数列的前项和为,则,,,成等差数列.类比以上结论有:设等比数列的前项积为,则, , ,成等比数列. 3.(山东卷)在等差数列中,,则.4.(宁夏海南卷)等比数列{}的公比, 已知=1,,则{}的前4项和= .{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( ) 5.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )6.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( ) 7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )三.解答题1. 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足+15=0。

(Ⅰ)若=5,求及a 1;{}n a 12q =n n S 44S a ={}n a n n S 4S 84S S -128S S -1612S S -{}n b n n T 4T 1612T T }{n a 6,7253+==a a a ____________6=a n a 0q >2a 216n n n a a a +++=n a 4S 56S S 5S 6S(Ⅱ)求d的取值范围。

2.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (1)求数列{b n}的通项公式;3. 已知等比数列{a n}的公比q=3,前3项和S3=13 3.(1)求数列{a n}的通项公式;(2)若函数f(x)=A sin(2x+φ)(A>0,0<φ<π)在x=π6处取得最大值,且最大值为a3,求函数f(x)的解析式.4.已知两个等比数列{a n},{b n},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. 若a=1,求数列{a n}的通项公式;5. 已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.6. 设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .7. 等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.考点二:数列的综合应用1. 设实数数列{a n }的前n 项和S n 满足S n +1=a n +1S n (n ∈N *). (1)若a 1,S 2,-2a 2成等比数列,求S 2和a 3;2.(本题满分12分)已知数列{}n a 的通项公式为,数列的前n 项和为,且满足(I )求的通项公式; (II )在{}n a 中是否存在使得19n a +是中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.3. 数列{n a } 中a 1=13,前n 项和n S 满足1n S +-n S =113n +⎛⎫ ⎪⎝⎭(n ∈*N ).( I ) 求数列{n a }的通项公式n a 以及前n 项和n S ;(II )若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。

4.已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;12-=n a n }{n b n T n n b T -=1}{n b }{n b二.三角函数的综合应用:解斜三角形(正余弦定理)+三角函数+向量1.(安徽卷理16)设是锐角三角形,分别是内角所对边长,并且。

(Ⅰ)求角的值;(Ⅱ)若,求(其中)。

2.(安徽卷文16)的面积是30,内角所对边长分别为,。

(Ⅰ)求;(Ⅱ)若,求的值。

ABC ∆,,a b c ,,A B C 22sin sin() sin() sin 33A B B Bππ=+-+A 12,AB AC a ==,b c b c <ABC ∆,,A B C ,,a b c 12cos 13A =AB AC 1c b -=a3.(辽宁卷文17)在中,分别为内角的对边,且 (Ⅰ)求的大小;(Ⅱ)若,是判断的形状。

4.(浙江卷文18)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足。

(Ⅰ)求角C 的大小; (Ⅱ)求的最大值。

5.(重庆卷文18)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且.(Ⅰ)求的值.(Ⅱ)求的值.ABC a b c 、、A B C 、、2sin (2)sin (2)sin a A b c B c b C =+++A sin sin 1B C +=ABC 222()4S a b c =+-sin sin A B+222333bc a +-=sin A 2sin()sin()441cos 2A B C Aππ+++-6.(重庆卷理16)设函数。

(Ⅰ)求的值域;(Ⅱ)记的内角A 、B 、C 的对边长分别为a ,b ,c ,若=1,,求a 的值。

7△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量=(2sinB ,2-cos2B ),)1),24(sin 2(2-+=Bn π,m ⊥n . (1)求角B 的大小;(2)若a =b=1,求c 的值.三角函数练习补充1.、 已知α为第三象限角,则2α所在的象限是( )(A)第一或第二象限 (B)第二或第三象限(C)第一或第三象限(D)第二或第四象限变式1、若α是第二象限角,则2α是第_____象限角。

()22cos 2cos ,32x f x x x Rπ⎛⎫=++∈ ⎪⎝⎭()f xABC ∆()f B变式2、若α角的终边落在第三或第四象限,则2α的终边落在( ) A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限2、(07全国1文2)α是第四象限角,12cos 13α=,则s i n α= ( ) A .513 B .513- C . 512D .512-3.(07全国 2 理1)sin2100 =( ) A23B-23 C 21D -214.角α的终边过点P (-8m ,-6cos60°)且cos α=-54,则m 的值是( )A.21 B.-21 C.-23D.235.(天津卷6)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是A sin(2)3y x π=-,x R ∈ B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈ D sin(2)32y x π=+,x R ∈6.(2007年辽宁卷19).(本小题满分12分)精品资料 欢迎下载 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.7.(天津卷17)(本小题满分12分) 已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的。

相关文档
最新文档