第七章第三 万有引力定律

第七章第三 万有引力定律
第七章第三 万有引力定律

第七章第三节 万有引力定律 理解领悟

本节在前一节得出太阳与行星间引力规律的基础上,进一步将“天上”的力与“人间”的力统一起来,得出了万有引力定律。要了解万有引力定律得出的思路和过程,了解万有引力定律的含义,并会初步应用万有引力定律进行分析与求解。

1. 猜想Ⅰ:“天上”的力与“人间”的力可能出于同一个本源

通过上节的分析,我们对于行星的运动规律可以理解了。但是,太阳与行星间的引力使得行星不能飞离太阳;而地面上的物体,如苹果被抛出后总要落回地面,是什么力使得苹果不离开地球呢?

牛顿设想:苹果不离开地球,是否也是由于地球对苹果的引力造成的?地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢?若真是这样,物体离地面越远,其受到地球的引力就应该越小。可是地面上的物体距地面很远时,如在高山上,似乎重力没有明显地减弱,是物体离地面还不够远吗?这样的高度比起天体之间的距离来,真的不算远!再往远处设想,如果物体延伸到月球那么远,物体是否也会像月球那样围绕地球运动?地球对月球的力、地球对地面上物体的力、太阳对行星的力,也许真是同一种力!

2. 验证:月—地检验

假定上述猜想成立,即维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”律,那么,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的1/602。根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速度)也就应该是它在地面附近下落时的加速度(自由落体加速度)的1/602。

在牛顿的时代,重力加速度、月—地距离、月球的公转周期都已能较精确地测定,从而能够算出月球运动的向心加速度。计算结果表明,月球运动的向心加速度确实等于地面重力加速度的1/602,这说明地面物体所受地球的引力,与月球所受地球的引力,真的是同一种力!至此,“平方反比”律已经扩展到太阳与行星间、地球与月球间、地球与地面物体间。

3. 猜想Ⅱ:推广到宇宙中的一切物体

牛顿在上述推断的基础上,作了更大胆的猜想:任意两个物体之间都存在着这样的引力,它与两个物体的质量成正比,与它们之间距离的二次方成反比。只是由于一般物体的质量比天体的质量小得多,我们不易觉察。于是,上述结论被推广到宇宙中的一切物体之间。 牛顿当时的魄力、胆识和惊人的想象力实在让我们敬佩!物理学的许多重大理论的发现,不是简单的实验结果的总结,它需要直觉和想象力、大胆的猜想和假设,再引入合理的模型,需要深刻的洞察力、严谨的数学处理和逻辑思维,常常是一个充满曲折和艰辛的过程。

4. 万有引力定律

经过上述第Ⅱ步猜想,牛顿的结论是:

自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比,即

221r

m m G F 。 需要指出的是,上述结论至此还只是一种猜想,尽管这个推广是十分自然的,但仍要接受事实的直接或间接的检验。在下一节“万有引力理论的成就”中讨论的问题表明,由此得

出的结论与事实相符。于是,它成为科学史上最伟大的定律之一——万有引力定律。

5. 对万有引力定律的进一步说明

关于万有引力定律,我们可从以下几方面来加深理解:

① 万有引力是宇宙间的一种基本的相互作用力,万有引力定律是一个非常重要的定律,它适用于宇宙中的一切物体。万有引力定律的发现,对物理学和天文学的发展具有深远的影响。

② 万有引力公式只适用于两质点间的引力的计算,因为对一般物体而言,“两个物体之间的距离”到底是指物体哪两部分的距离,无法确定。实际物体当它们之间的距离远大于它们本身的尺度时,可视为质点。对质量均匀分布的球体,也可以用此公式计算它们之间的引力,其中的距离即两球心之间的距离。但是,对于一般物体间的万有引力,切不可用它们质心间的距离代入上式计算。

③ 求一个质点受到多个质点的万有引力时,可先用万有引力公式求出各个质点的引力,再求它们的矢量和。

④ 万有引力公式中G 的是比例系数,叫做引力常量,是自然界中少数几个最重要的物理常量之一,通常取 G=6.67×10-11N·m 2/kg 2。

6. 牛顿发现万有引力定律的思路

现在,我们来回顾一下牛顿发现万有引力定律的思路。万有引力定律的发现是按照下面的思路展开的:

① 观察方法获得规律:行星运动的开普勒定律。问题:行星运动为什么会有这样的规律?

② 猜想原因:太阳对行星的引力作用。问题:太阳对行星的引力与什么因素有关? ③ 数学演绎得到规律:根据已知规律(开普勒行星运动定律和牛顿运动定律)推出太阳与行星间的引力遵从的规律: 2r

Mm F ∝。 ④ 进一步猜想:地球使地面上物体下落的力,与太阳使行星运动的力、地球使月球运动的力是否出于同一原因?

⑤ 猜想得到检验:月—地检验使猜想得到证实。

⑥ 更大胆地猜想:自然界任何两个物体之间是否也有这样的吸引力?

⑦ 得到万有引力定律: 2

21r m m G F =。

7. 探索“行星运动的原因”的历史

公元1世纪,古希腊哲学家柏拉图认为,匀速圆周运动是最和谐、最完美的,不需要任何外力的推动和维持。一个半世纪以后的伽利略时代,开始用动力学理论来解释天体运动的原因。开普勒受到英国医生吉尔伯特的影响,提出引力是来自同一发出的“磁力流”,它们像轮辐一样沿太阳旋转的方向而转动,沿切线的方向推动着行星的公转。法国的笛卡尔则用

“漩涡”来解释引力现象,提出了“以太”的流质存在。牛顿同一时代的科学家胡克、哈雷、伦恩等关心引力问题的研究,1680年胡克给牛顿的信中提到了行星受到太阳的引力,这个引力与距离的平方成反比,但是他们无法证明在椭圆轨道下引力也遵循同样的规律。牛顿早在1666年,也就是苹果砸到头上的日子里,牛顿就在考虑这个问题,经过20多年的探索,终于在1687年发表的《自然哲学的数学原理》一书中公布了万有引力定律。

8. 有关月—地检验的计算

牛顿进行了著名的月—地检验,验证了地面上的重力与地球吸引月球的力是相同性质的力。

假设地面的重力 21R

G ≈

, 月球受到的引力 21r F ≈, 因为 2

2

,,r R g a ma F mg G ===, 又因为月心到地心的距离是地球半径的60倍,即R r 60=,所以 232s /m 107.2s /m 3600

8.93600,36001-?≈===g a g a 。 月球绕地球做匀速圆周运动,向心加速度

r T r a 22

2

4πω==, 经天文观察月球绕地球运动的周期

27.3s 2436003.27??==天T ,

m 104.660606

??==R r , 所以 232622

s /m 107.2s /m 104.660)

3.27243600(1

4.34-?≈??????=a 。 两种计算结果一致,验证了地面上的重力与地球吸引月球的力是相同性质的力。

9. 不能看成质点的物体间的引力

如果两个物体的距离很远,就可以忽略它们的形状和大小,把它们看成质点,直接运用万有引力公式计算它们之间的引力。如果两个物体相距不太远,在计算它们之间的万有引力时,一般就不能把它们看成质点,而应将每一物体看成一个质点系。物体A 包含的所有质点与物体B 包含的所有质点之间都有引力。

如图7—3所示,物体B 的各质点m 1’、m 2’、m 3’、……m k ’ 对物体A 的任一质点均有引力,所以质点m 1所受引力的总和为 ∑'=k k k r m m G

F 2111(矢量和)。 物体B 的各质点m 1’、m 2’、m 3’、……m k ’ 对物体A 的其它质点m 2、m 3、m 4、……m i 均有引力,这些力的合力就是物体B 对物体A 的引力,可用下式表示:

图7—3

∑'=k i ik

k i r m m G

F ,2(矢量和)。 物体A 对物体B 的引力F ’ 与F 大小相等,方向相反。

10. 地球引力与重力

重力是物体在地球表面附近所受到的地球对它的引力。这种说法,实际上是忽略了地球自转对物体的影响,若考虑这一影响,则重力应是物体所受到的地球对它的引力的一个分力(另一分力为物体跟随地球自转所需要的向心力)。当然,由于地球引力与物体的重力差别较小,在通常情况下可以认为两者相等。由2

)(h R Mm G g m +='得,离地h 高处重力加速度 2)

(h R GM g +=', 这里M 、R 分别为地球的质量和半径。将h 取作0,即得地面附近重力加速度 2R

GM g =。 可见, 2

2

)(h R R g g +='。 11. 引力常量的测量

1798年,英国物理学家卡文迪许在实验室里利用“扭秤”,通过几个铅球之间万有引力的测量,比较准确地得出了引力常量G 的数值。 卡文迪许的“扭秤”实验装置如图7—4所示。图中T 型框架的水平轻杆两端固定两个质量均为m

的小球,竖直部分装有一个小平面镜,上端用一根石

英细丝将这杆扭秤悬挂起来,每个质量为m 的小球附近各放置一个质量均为M 的大球,用一束光射入平面镜。

由于大、小球之间的引力作用,T 型框架将旋转,当引力力矩和金属丝的扭转力矩相平衡时,利用光源、平面镜、标尺测出扭转力矩,求得万有引力F ,再测出m 、M 和球心的距

离r ,即可求出引力常量Mm

Fr G 2

=。 大小球之间的引力非常小,这里巧妙地改测定力为测定力矩的方法。引力很小,但是加长水平杆的长度增加了力臂,使力矩增大,提高了测量精度。同时又利用了平面镜反射光光点的移动的方法,精确地测定了石英丝的扭转角,从而第一次在实验室较精确地测出了引力常量。

卡文迪许的测量方法非常精巧,在以后的八、九十年间竟无人能赶超他的测量精度。卡文迪许在实验室测出了引力常量,表明万有引力定律同样适用于地面的任意两个物体,用实验方法进一步证明了万有引力定律的普适性。同时,引力常量的测出,使得包括计算星体质量在内的关于万有引力的定量计算成为可能。

图7—4

应用链接

本节知识的应用主要涉及对万有引力定律发现思路与过程的认识,对万有引力定律含义的了解,以及涉及万有引力问题的初步分析与计算。

例1 关于万有引力公式221r

m m G F =,以下说法中正确的是( ) A. 公式只适用于星球之间的引力计算,不适用于质量较小的物体

B. 当两物体间的距离趋近于0时,万有引力趋近于无穷大

C. 两物体间的万有引力也符合牛顿第三定律

D. 公式中引力常量G 的值是牛顿规定的

提示 注意万有引力公式的适用条件。

解析 万有引力公式2

21r m m G F =,虽然是牛顿由天体的运动规律而得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力。当两个物体的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用。两物体间的万有引力也符合牛顿第三定律。公式中引力常量G 的值,是经过实验测定的,而不是由谁来规定的。正确选项为C 。

点悟 万有引力定律适用于宇宙中的任何物体,但万有引力公式2

21r m m G F =只适用于计算两质点间的引力和两个质量均匀分布的球体间的引力。两物体间的引力大小相等,方向相反,是一对作用力与反作用力。

例2 设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )

A. 2

R Mm G B. 无穷大 C. 0 D. 无法确定 提示 将地球看成是由无数质点组成的,各质点对放在地球中心的物体都有引力作用,可运用对称思维的方法进行分析。

解析 设地球的质量分布是均匀的,则放在地球中心的物体受到地球各部分质点的引力各向均等,合力为0。正确选项为C 。

点悟 有人会乱代万有引力公式,得出物体与地球间的万有引力F=2R Mm G

;或者根据F=2r

Mm G ,而物体放在地球的中心,r=0,故F 为无穷大。这些错误都是由于对万有引力公式的适用条件不注意引起的。

例3 地球表面的平均重力加速度为g ,地球半径为R ,引力常量为G ,可估计地球的平均密度为( )

A. RG g π43

B. G R g 243π

C. RG g

D. 2

RG g 提示 忽略地球自转的影响,物体的重力等于地球对物体的万有引力。球体积公式

33

4R V π=。 解析 忽略地球自转的影响,对于处于地球表面的物体,有

2R

Mm G

mg =, 又地球质量 ρπρ33

4R V M ==, 代入上式化简可得地球的平均密度为RG g πρ43=。 正确选项为A 。

点悟 测出地球的半径,由地球表面的重力加速度和引力常量,即可估算出地球的平均密度。这为我们提供了一种估测地球平均密度的方法。

例4 应用万有引力公式证明和计算:

(1) 在星体上物体做自由落体运动的加速度g 跟运动物体的质量无关,g 的值由星体质量和运动物体所处的位置所决定。

(2) 如果在离地面高度等于地球半径的高度释放一个物体,让它做自由落体运动,它开始运动的加速度是多大?

提示 不考虑物体随星体自转的影响,物体做自由落体运动的加速度是由星体对运动物体的引力产生的。

解析 (1) 设物体和星体的质量分别为m 和M ,两者相距r ,则物体所受星体的引力为 F=2

r Mm G

。 所以,自由落体加速度为 2r M G m F g ==。 可见,g 跟运动物体的质量m 无关,g 的值由星体质量M 和运动物体所处的位置(离星体球心的距离r )所决定。

(2) 从离地面为R 处做自由落体运动的物体,开始时的加速度 441)2(022g R

M G R M G g =?=='地地

。 (g 0为地球表面的重力加速度)

点悟 要区分不同星球的重力加速度与同一星球随高度升高而重力加速度减小的问题。例如,要区分在月球轨道上的星球受到地球引力的加速度与月球表面物体的重力加速度。

例5 如图7—5所示,在半径为R 的铅球中挖出一个球形空穴,

空穴与球相切,并通过铅球的球心。在未挖去空穴前铅球质量为M 。

求挖出空穴后铅球与至铅球球心距离为d 、质量为m 的小球间的引

力。 提示 设法将铅球重新填满。 解析 设挖出空穴前铅球与小球的引力为F 1,挖出的球形实体

(质量为M/8)与小球的引力为F 2,铅球剩余部分与小球的引力为F ,则有 F 1=F +F 2。

图7—5

由 222128,??? ?

?-==R d Mm G F d Mm G F , 可得挖出空穴后铅球与小球间的引力为

2222222128)287(28??? ?

?-+-=??? ??--=-=R d d R dR d GMm R d Mm G d Mm G F F F 。 点悟 本题若先求出挖出空穴后铅球剩余部分的重心,以此重心到小球的距离作为万有引力公式中的r ,便会得到21487??? ??+=R d GMm

F 的错误结论,因为公式中的r 并不是两物体重

心间的距离。

例6 一物体在地球表面时重16N ,它在以5m/s 2的加速度上升的火箭中的视重为9N ,则此时火箭离地球表面的距离为地球半径的多少倍?(g 取10m/s 2)

提示 设法求出物体所在位置的重力加速度。

解析 设物体视重为9N 时,所在位置第三重力加速度为g ’,火箭对物体的支持力F N 即等于物体的视重9N 。对物体应用牛顿第二定律,有

ma g m F ='-N , 故2220N N N s /625m .0s /5m s /m 16

109=-?=-=-=-='a G g F a m F m ma F g 。 由 ,)

(,22h R Mm G g m R Mm G mg +='= 可得 2??

? ??+='R h R g g , 从而火箭离地球表面的距离为 R R R g g h 31625.0101=???

? ??-=???? ??-'=。

点悟 本题涉及视重、重力加速度的概念和牛顿第二定律、万有引力定律等规律,比例关系的应用也是本题求解的一个特点。在求解万有引力的问题时,常常要用到比例关系,因为这样可将一些未知量消去,从而简化解题过程。

课本习题解读

]

1. 假设两个人的质量都是60kg ,相距1m ,则可估算他们之间的万有引力为

N 104.2N 1

601067.6722

1122--?≈??==r m G F 。

这样小的力我们是无法觉察的,所以我们通常分析物体受力时不需要考虑物体间的万有引力。

值得注意的是,两人相距1m 时不能把人看成质点,而简单套用万有引力公式。上面的计算是一种估算。

2. 根据万有引力定律,可得大、小麦哲伦云之间的引力 22

1r m m G F = N 1019.1N )

360024365100.3105(100.2100.21067.62828439

4011?≈???????????=-。 可见,天体之间的万有引力是很大的。

3. 根据万有引力定律,可得两个夸克相距1.0×10-16m 时的引力

221r m m G F =N 103.4N )100.1()101.7(1067.637-2162

3011?≈????=---。

16-17版 第3章 第1节 万有引力定律

第一节万有引力定律 学 习目标知识脉络 1.了解地心说和日心说的内 容. 2.知道开普勒行星运动规律. 3.知道万有引力定律的发现 过程.理解万有引力定律的内 容、公式并能解答有关问 题.(重点、难点) 4.知道万有引力常数,了解 引力常数的测定方法. 天体的运动 [先填空] 1.地心说与日心说 (1)地心说 地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动.以古希腊科学家托勒密为代表人物. (2)日心说 太阳是宇宙的中心,地球和其他行星都围绕太阳运动.由波兰天文学家哥白尼提出. 2.开普勒行星运动规律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上. (2)行星和太阳之间的连线,在相等的时间内扫过相同的面积.

(3)行星绕太阳公转周期的平方和轨道半长轴的立方成正比.公式表示则为T2 a3 =k,a为轨道的半长轴. [再判断] 1.为了便于研究问题,通常认为行星绕太阳做匀速圆周运动.(√) 2.太阳系中所有行星的运动速率是不变的.(×) 3.太阳系中轨道半径大的行星其运动周期也长.(√) [后思考] 图3-1-1 如图3-1-1所示,所有行星都绕太阳在椭圆轨道上运行,某一行星绕太阳运动的速率在不同位置都一样大吗? 【提示】不一样,在行星距离太阳较近时速率大,在行星距离太阳较远时速率小. [合作探讨] 如图3-1-2所示为地球绕太阳运动的示意图,A、B、C、D分别表示春分、夏至、秋分、冬至时地球所在的位置. 图3-1-2 探讨1:太阳是否在轨道平面的中心?夏至、冬至时地球到太阳的距离是否相同? 【提示】太阳不在轨道平面中心,夏至、冬至地球到太阳的距离不同.探讨2:一年之内秋冬两季比春夏两季为什么要少几天? 根据地球的公转周期计算火星的公转周期还需要知道什么数据? 【提示】根据开普勒第二定律,地球在秋冬两季比在春夏两季离太阳距离

高一第六章万有引力定律课后习题

高一第六章万有引力定律课后习题 §6.1 1.关于日心讲被人们所同意的缘故是 〔 〕 A .以地球为中心来研究天体的运动有专门多无法解决的咨询题 B .以太阳为中心,许多咨询题都能够解决,行星的运动的描述也变得简单了 C .地球是围绕太阳转的 D .太阳总是从东面升起从西面落下 2. 哪位科学家第一次对天体做圆周运动产生了怀疑?〔 〕 A.布鲁诺 B.伽利略 C.开普勒 D.第谷 3. 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为T A : T B = 1: 8,那么轨道半径之比是多少? 4. 设月球绕地球运动的周期为27天,那么地球的同步卫星到地球中心的距离r 与月球中心到地球中心 的距离R 之比r/R 为 ( ) A. 1/3 B. 1/9 C. 1/27 D. 1/18 §6.2 1.关于公式R 3 / T 2=k,以下讲法中正确的选项是〔 〕 A.公式只适用于围绕太阳运行的行星 B.不同星球的行星或卫星,k 值均相等 C.围绕同一星球运行的行星或卫星,k 值不相等 D.以上讲法均错 2. 关于万有引力和万有引力定律的明白得错误的选项是......〔 〕 A.不能看作质点的两物体间不存在相互作用的引力 B.只有能看作质点的两物体间的引力才能用221r m Gm F = 运算 C.由2 21r m Gm F = 知,两物体间距离r 减小时,它们之间的引力增大 D.万有引力常量的大小第一是由牛顿测出来的,且等于6.67×10-11N ·m 2/kg 2 3. 设地球是半径为R 的平均球体,质量为M,设质量为m 的物体放在地球中心,那么物体受到地球的 万有引力为〔 〕 A.零 B.GMm/R 2 C.无穷大 D.无法确定 4. 如下图,两球的半径分不是r 1和r 2,均小于r ,而球质量分布平均。大 小分不为m 1、m 2,那么两球间的万有引力大小为〔 〕 A.221r m m G B.2121r m m G C. 22121)(r r m m G + D. 5. 某物体在地面上受到地球对它的万有引力为F ,为使此物体受到的引力减小到4F ,应把此物体置 于距地面的高度为〔R 指地球半径〕 ( ) A. 1R B. 2R C. 4R D. 8R 6. 两个物体之间的万有引力大小为F 1,假设两物之间的距离减小x ,两物体仍可视为质点,现在两个物体之间的万有引力为F 2,依照上述条件能够运算〔 〕 A.两物体的质量 B.万有引力常量 C.两物体之间的距离 D.条件不足,无法运算上述中的任一个物理量 7. 关于万有引力定律的表述式221r m m G F =,下面讲法中正确的选项是〔 〕 A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大

第三节万有引力定律

第六章 曲线运动 第3节 万有引力定律 【学习目标】 编写:温敬霞 审核: 1.了解万有引力定律发现的思路和过程 2.理解万有引力定律,知道它的适用范围 3.会用万有引力定律解决简单的引力计算问题,知道公式中r 的物理意义 4. 引力常量G 的物理意义及万有引力定律发现的意义 【课堂探究】 一. 万有引力定律提出的背景 通过上节的学习,我们知道:行星绕太阳匀速圆周运动所需的向心力由太阳与行星间的引力 来提供的,从而使得行星不能飞离太阳; 那么现在我们来进一步思考: ⑴. 地面上的物体,如苹果,被抛出后总要落回地面,是什么力使得苹果不离开地球呢? ————是否也是由于地球对苹果的引力造成的? ————地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢? ⑵. 进一步设想: 如果物体延伸到月球那么远,物体是否也会向月球那样围绕地球运动? 太阳吸引行星的力; 地球吸引月球的力; 是否是同一性质的力?遵循相同的规律? 地球吸引苹果的力; 这个想法的正确性要由事实来检验 二. 万有引力的检验 思考:“月 地检验”基本思路是怎样的? 假设维持月球绕地球运动的力与使苹果下落的力是同一种力,同样遵循F =G 2r Mm 因为 r 月 = r 地 所以 F 月= F 地 根据牛顿第二定律 所以a 月= g 地

已知:月球与地球之间的距离r=3.8×108m ,月 T=27.3天,重力加速度28.9s m g 求: 三. 万有引力定律 1.定律内容: 2. 公式 3. 万有引力定律的适用条件 【典型例题】 例题1. 既然任何物体间都存在着引力,为什么当两个人接近时他们不会吸在一起?我们通常分析物体的受力时是否考虑物体间的万有引力? 例题2. 大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系。大麦哲伦云的质量是太阳质量的1010倍,即2.0×1040㎏,小麦哲伦云的质量是太阳质量的109倍,两者相距5×104 光年,求它们之间的引力。 g a 月

第六章万有引力定律单元测试含答案

第六章单元测试 (时间:90分钟 满分:100分) 一、选择题(本题共10小题,每小题5分,共50分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内) 1.万有引力定律首次揭示了自然界中物体间一种相互作用的基本规律,以下说法正确的是( ) A .物体的重力不是地球对物体的万有引力引起的 B .人造地球卫星离地球越远,受到地球的万有引力越大 C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供 D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用 解析:选C.由重力的定义由于地球的吸引(万有引力)而使物体受到的力,可知选项A 错 误;根据F 万=GMm r2可知卫星离地球越远,受到的万有引力越小,则选项B 错误;卫星绕地球做圆周运动.其所需的向心力由万有引力提供,选项C 正确;宇宙飞船内的宇航员处于失重状态是由于万有引力用来提供他自身做圆周运动所需要的向心力,选项D 错误. 2.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( ) A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B .一人在南极,一人在北极,两卫星到地球中心的距离可以相等也可不等 C .两人都在赤道上,两卫星到地球中心的距离一定相等 D .两人都在赤道上,两卫星到地球中心的距离可能相等也可能不等 解析:选C.两卫星是同步卫星. 3.如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( ) A .地球对一颗卫星的引力大小为错误! B .一颗卫星对地球的引力大小为GMm r2 C .两颗卫星之间的引力大小为Gm23r2 D .三颗卫星对地球引力的合力大小为3GMm r2

人教版必修二第六章第三节万有引力定律同步训练(包含答案)

6.3 万有引力定律同步训练 一.选择题 1.要使两物体间的万有引力减小到原来的1/4,不能采用的方法是( ) A. 使两物体的质量各减小一半,距离保持不变 B. 使两物体间的距离增至原来的 2 倍,质量不变 C. 使其中一个物体的质量减为原来的一半,距离不变 D. 使两物体的质量及它们之间的距离都减为原来的1/4 2.下列说法中正确的是( ) A. 牛顿发现了万有引力定律,开普勒发现了行星的运动规律 B. 人们依据天王星偏离万有引力计算的轨道,发现了冥王星 C. 海王星的发现和哈雷彗星的“按时回归”确定了万有引力定律的地位 D. 牛顿根据万有引力定律进行相关的计算发现了海王星和冥王星 3.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半 径 r 1 上时运行线速度为 v 1,周期为 T 1,后来在较小的轨道半径 r 2 上时运行线速度为 v 2, 周期为 T 2,则它们的关系是 A .v 1﹤v 2,T 1﹤T 2 C .v 1﹤v 2,T 1﹥T 2 B .v 1﹥v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 4.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 5.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 ( )

第六章 第三节 万有引力定律

第六章万有引力与航天 第3节万有引力定律 本节是在学习了太阳与行星间的引力之后,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律.根据万有引力定律而得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的.万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值. 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件.教师可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法. 教学重点 万有引力定律的理解及应用. 教学难点 万有引力定律的推导过程. 课时安排 1课时 三维目标 知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3.记住引力常量G并理解其内涵. 过程与方法 1.了解并体会科学研究方法对人们认识自然的重要作用. 2.认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 教学过程 导入新课 故事导入 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律.

万有引力定律公开课教案

第二节万有引力定律 【教材分析】 本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. 【三维目标】 一、知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、过程与方法 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 【教学重点】 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. 【教学难点】 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. 【教学方法】 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. 【教学用具】 多媒体课件 【课时安排】 1课时 【教学设计】 导入 本节课主要以启发式教学为主。首先通过前面知识 的回顾和提出问题使学生产生对引力是否同一性质的探 究兴趣。 问题设置:师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用? 【新课教学】 课件展示:画面1:八大行星围绕太阳运动 画面2:月球围绕地球运动 演示3:地面上的人向上抛出物体,物体总落回地面

人教版高中物理(必修2)课时作业:第六章 第3节 万有引力定律(附答案)

第三节万有引力定律 1.假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力,同样遵从 “____________”的规律,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力是地球上的________倍.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球______________加速度)是它在地面附近下落时的加 速度(____________加速度)的________.根据牛顿时代测出的月球公转周期和轨道半径, 检验的结果是____________________. 2.自然界中任何两个物体都____________,引力的方向在它们的连线上,引力的大小与 ________________________成正比、与__________________________成反比,用公式表示即________________.其中G叫____________,数值为________________,它是英国 物理学家______________在实验室利用扭秤实验测得的. 3.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于 物体本身的大小时;特殊地,用于两个均匀球体,r是________间的距离. 4.关于万有引力和万有引力定律的理解正确的是() A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F=Gm1m2 r2计算 C.由F=Gm1m2 r2知,两物体间距离r减小时,它们之间的引力增大 D.万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11N·m2/kg2 5.对于公式F=G m1m2 r2理解正确的是() A.m1与m2之间的相互作用力,总是大小相等、方向相反,是一对平衡力 B.m1与m2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力C.当r趋近于零时,F趋向无穷大 D.当r趋近于零时,公式不适用

第六章万有引力定律习题

第六章万有引力定律习题 6.1.1设某行星绕中心天体以公转周期T沿圆轨道运行.试用开普勒第三定律证明:一个物体由此轨道自静止而自由 下落至中心天体所需的时间为. 解: 6.2.1 土星质量为,太阳质量为,二者的平均距离是.(1)太阳对土星的引力有多大?(2)设土星沿圆轨道运行,求它的轨道速度. 解: ( 1) ( 2) 6.2.2 某流星距地面一个地球半径,求其加速度. 解:

6.2.3 (1)一个球形物体以角速度旋转.如果仅有引力阻碍球的离心分解,此物体的最小密度是多少?由此估算巨蟹座中转速为每秒30转的脉冲星的最小密度.这脉冲星是我国在1054年就观察到的超新星爆的结果. (2)如果脉冲星的质量与太阳的质量相当(~ 或~ ,为地球质量),此脉冲星的最大可能半径是多少?(3)若脉冲星的密度与核物质的相当,它的半径是多少?核密度约为 . 解: ( 1)以最外层任一质元计算: (2) ( 3)可求。 6.2.4 距银河系中心约25000光年的太阳约以170 000 000年的周期在一圆周上运动.地球距太阳8光分.设太阳受到的引力近似为银河系质量集中在其中心对太阳的引力.试求以太阳质量为单位银河系质量.

解: 6.2.5 某彗星围绕太阳运动,远日点的速度为10km/s,近日点的速度为80km/s若地球在半径为 的圆周轨道绕日运动,速度为30km/s.求此彗星的远日点距离. 解: 又 6.2.6 一匀质细杆长L质量为M.求距其一端为d处单位质量质点受到的引力(亦称引力场强度). 解:

单位质量受力: 6.2.7 半径为R的细半圆环线密度为.求位于圆心处单位质量质点受到的引力. 解: 引力场强度: 6.3.1 考虑一转动的球形行星,赤道上各点的速度为V,赤道上的加速度是极点上的一半.求此行星极点处的粒子的逃逸速度.

高中物理必修二检测:第六章第三节万有引力定律

第六章万有引力与航天 第二节太阳与行星间的引力 第三节万有引力定律 A级抓基础 1.测定万有引力常量G=6.67×10-11 N·m2/kg2的物理学家是( ) A.开普勒B.牛顿 C.胡克D.卡文迪许 解析:牛顿发现了万有引力定律F=G Mm r2 ,英国科学家卡文迪许利用扭秤装 置,第一次测出了引力常量G,引力常量G=6.67×10-11 N·m2/kg2.故D正确,A、B、C错误. 答案:D 2.(多选)下列说法中正确的是( ) A.在探究太阳对行星的引力规律时,我们引用了公式F=mv2 r ,这个关系式 实际上是牛顿第二定律,是可以在实验室中得到验证的 B.在探究太阳对行星的引力规律时,我们引用了公式v=2πr T ,这个关系 式实际上是匀速圆周运动的一个公式,它是由速度的定义式得来的

C.在探究太阳对行星的引力规律时,我们引用了公式r3 T2 =k,这个关系式是 开普勒第三定律,是可以在实验室中得到证明的 D.在探究太阳对行星的引力规律时,我们使用的三个公式都是可以在实验室中得到证明的 解析:开普勒的三大定律是根据行星运动的观察结果而总结归纳出来的规律.每一条都是经验定律,都是从观察行星运动所取得的资料中总结出来的.故开普勒的三大定律都是在实验室中无法验证的规律. 答案:AB 3.如图所示,两个半径分别为r1=0.60 m、r2=0.40 m,质量分布均匀的实心球质量分别为m1= 4.0 kg、m2=1.0 kg,两球间距离为r0=2.0 m,则两球间相互引力的大小为( ) A.6.67×10-11 N B.大于6.67×10-11 N C.小于6.67×10-11 N D.不能确定 解析:运用万有引力定律公式F=G m1m2 r2 进行计算时,首先要明确公式中各物 理量的含义,对于质量分布均匀的球体,r指的是两个球心间的距离,两球心间 的距离应为r=r0+r1+r2=3.0 m.两球间的引力为F=G m1m2 r2 ,代入数据可得引 力约为2.96×10-11 N.故选项C正确.答案:C

新教材2021春高中物理粤教版必修第二册学案-第三章-第二节-认识万有引力定律含解析

第二节认识万有引力定律 学 习目标STSE情境导学 1.了解万有引力定律的发现历程. 2.理解万有引力定律,记住其表达式和适用条件.(重点、难点) 3.了解引力常量G. 4.会用万有引力定律求解相关问题(重点) 宇航员在其他星球 上也受到万有引力 的作用 牛顿思考月亮绕地球运行的原因时,苹果偶然落地引起了他的遐想 知识点一行星绕日运动原因的探索和万有引力定律的发现 1.雷恩和哈雷的推导. 英国天文学家雷恩(C.Wren,1632-1723)和哈雷(E.Halley,1656-1742)按照圆形轨道,对行星与太阳间的引力问题进行了如下

推导. 设行星质量为m ,绕太阳公转的周期为T .把行星沿椭圆轨道的运动简化为匀速圆周运动,行星的轨道半径为r ,太阳对行星的引力就是行星绕太阳运动的向心力,即 F 引=m v 2r =m 4π2 T 2r . 根据开普勒第三定律,把r 3 T 2=k 代入上式,得到太阳对行星的引力 F 引=4π2 k m r 2,即F 引∝m r 2. 上式表明,作用于行星的引力与它到太阳的距离的平方成反比. 2.牛顿的推导. (1)根据牛顿第三定律,行星间的引力是相互的,即太阳吸引行星,行星也同时吸引太阳.根据F 引∝m r 2可知,太阳受到行星的引力F ′ 应与太阳自身的质量M 成正比,即 F 引′∝M r 2.F 引与F 引′大小相等,因此有F 引=F 引′∝Mm r 2. (2)研究表明,使月球绕地球运动的引力与重力是同一性质的力. 以上述证明为基础,牛顿把引力推广到所有行星,乃至所有物体之间,由此发现了万有引力定律. 知识点二 万有引力定律的表达式 1.万有引力定律的内容. 宇宙间的一切物体都是互相吸引的.两个物体间引力的方向在它们的连线上.引力的大小与它们质量的乘积成正比,与它们之间距离的二次方成反比. 2.万有引力定律的表达式:F =G m 1m 2 r 2.

第七章第三 万有引力定律

第七章第三节 万有引力定律 理解领悟 本节在前一节得出太阳与行星间引力规律的基础上,进一步将“天上”的力与“人间”的力统一起来,得出了万有引力定律。要了解万有引力定律得出的思路和过程,了解万有引力定律的含义,并会初步应用万有引力定律进行分析与求解。 1. 猜想Ⅰ:“天上”的力与“人间”的力可能出于同一个本源 通过上节的分析,我们对于行星的运动规律可以理解了。但是,太阳与行星间的引力使得行星不能飞离太阳;而地面上的物体,如苹果被抛出后总要落回地面,是什么力使得苹果不离开地球呢? 牛顿设想:苹果不离开地球,是否也是由于地球对苹果的引力造成的?地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢?若真是这样,物体离地面越远,其受到地球的引力就应该越小。可是地面上的物体距地面很远时,如在高山上,似乎重力没有明显地减弱,是物体离地面还不够远吗?这样的高度比起天体之间的距离来,真的不算远!再往远处设想,如果物体延伸到月球那么远,物体是否也会像月球那样围绕地球运动?地球对月球的力、地球对地面上物体的力、太阳对行星的力,也许真是同一种力! 2. 验证:月—地检验 假定上述猜想成立,即维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”律,那么,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的1/602。根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速度)也就应该是它在地面附近下落时的加速度(自由落体加速度)的1/602。 在牛顿的时代,重力加速度、月—地距离、月球的公转周期都已能较精确地测定,从而能够算出月球运动的向心加速度。计算结果表明,月球运动的向心加速度确实等于地面重力加速度的1/602,这说明地面物体所受地球的引力,与月球所受地球的引力,真的是同一种力!至此,“平方反比”律已经扩展到太阳与行星间、地球与月球间、地球与地面物体间。 3. 猜想Ⅱ:推广到宇宙中的一切物体 牛顿在上述推断的基础上,作了更大胆的猜想:任意两个物体之间都存在着这样的引力,它与两个物体的质量成正比,与它们之间距离的二次方成反比。只是由于一般物体的质量比天体的质量小得多,我们不易觉察。于是,上述结论被推广到宇宙中的一切物体之间。 牛顿当时的魄力、胆识和惊人的想象力实在让我们敬佩!物理学的许多重大理论的发现,不是简单的实验结果的总结,它需要直觉和想象力、大胆的猜想和假设,再引入合理的模型,需要深刻的洞察力、严谨的数学处理和逻辑思维,常常是一个充满曲折和艰辛的过程。 4. 万有引力定律 经过上述第Ⅱ步猜想,牛顿的结论是: 自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比,即 221r m m G F 。 需要指出的是,上述结论至此还只是一种猜想,尽管这个推广是十分自然的,但仍要接受事实的直接或间接的检验。在下一节“万有引力理论的成就”中讨论的问题表明,由此得

第一节万有引力定律2

参加市新课标比赛获奖的教案 第三章第一节万有引力定律教材:物理(必修2)广东版 教学步骤

新课教学 一.天体究竟做怎样的运动 (一)古人对天体运动的看法及发展过程 1、A.让同学自己阅读天体究竟做怎样的运 动这一小节,提出问题: (1)人们对天体运动的探索过程存在 哪些看法? (2)这些看法的观点是什么? [投影显示] “地心说”和“日心说”课件 B.深入探究 [投影显示] 请冋学们在前面的基础上讨论:1?“地心 说”为什么能占领较长的统治时间? 2?俗话说“眼见为实”,这种说法是否绝 对正确?式举例. 3?“日心说”为什么能战胜“地心说”? 4?“日心说”的观点是否正确? 5?“地心说”和“日心说”理论提出后, 即使是错误的理论也包含一定的价值,对人们的 生活、生产产生了哪些影响?(同学们课外查找 资料了解) C.教师总结 事实上从“地心说”向“日心说”的过渡经 历了漫长的时间,并且科学家们付出了艰苦的奋 斗咼白尼的“日心说”观点不符合当时欧洲统 治教会的利益,因而受到了教会的迫害。然而, 科学真理的确立是任何愚昧势力所阻挡不了的。 经过后人的不懈努力和探索,哥白尼的日心说终 于取得胜利。 前人的这种对冋题一丝不苟、孜孜以求的精 神值得大家学习,所以我们对待学习要脚踏实 地,认认真真,不放过一点疑问? (二)开普勒对行星运动的研究 不论“地心说”还是“日心说”,古人 把天体的运动看得十分神圣,都认为天体的运动 不冋于地面物体的运动,天体做的是最完美、最 和谐的匀速圆周运动? 后来,开普勒在应用行星绕太阳做椭圆运动 的模型描述火星的运动时,发现与他的老师第谷 对火星运行轨道的观测值有误差。开普勒思考: 是第谷观察数据错了,还是火星根本就不做圆形 轨道运动呢?开普勒坚 阅读课文,并从课文中找出相应 的答案? 1.地心说一日心说一圆周运动— 与事实矛盾一椭圆运动一开普勒对行星 运动的描述 2?“地心说”认为地球是宇宙 的中心,是静止不动的,太阳\,月亮以 及其他行星都绕地球运动;“日心 说认为太阳是于宙的中心地球\, 月亮以及其他行星都在绕太阳运动 ? 1?“地心说”占领统治地位时间 较长的原因是由于它比较符合人们的日 常经验,如:太阳从东边升起,从西边 落下;冋时它也符合当时在政治上占统 治地位的宗教神学观点? 2?由于“日心说”最终战胜了 “地心说”,虽然“地心说”符合人们 的经验,但它还是错误的?进而说明 “眼见为实”的说法并非绝对正确?例 如:我们乘车时观察到树木在向后运动 , 而事实上并没有动(相对于地面)? 3?“日心说”所以能够战胜“地 心说”是因为好多“地心说”不能解析 的现象“日心说”则能说明也 就是说,“日心说”比“地心说”更科 学、更接近事实?例如:若地球不动, 昼夜交替是太阳绕地球运动形成的?那 么,每天的情况就应是相同的 , 而事实上,每天白天的长短不冋,冷暖 不同?而“日心说”则能说明这种情 况:白昼是地球自转形成的,而四 季是地球绕太阳公转形成的? 4.从目前科研结果和我们所掌握 的知识来看,“日心说”也并不是绝对 正确的,因为太阳只是太阳系的一个中 心天体,而太阳系只是于宙中众多星系 之一,所以太阳并不是宇宙的中心,也

第六章万有引力定律知识归纳

第六章:万有引力定律知识归纳 1、(1)开普勒第一定律: _______________________________________________________________________________________________________________________________________ (2)开普勒第二定律: ____________________________________________________________________ 从这个定律能得出行星在近日点的速度______(填大于,小于,等于)远日点的速度。 (3)开普勒第三定律: ______________________________________________________________________________________________________________________________________ 用公式k=_________来表示;R 表示______________;T 表示____________周 期;K 与_________有关;根据公式3Mm G =R m 2)2(π 可得K=____________;当我们把行星的椭圆轨道按圆的轨道来近似处理时,则R 表示______________ 2、万有引力定律内容及公式: 内容: ____________________________________________________________________ ____________________________________________________________________ 公式:_________________________其中引力常量G=_______________ 定律适用条件: (1)______________________(2)_______________________________ 3、(1)地球上的重力和重力加速度:在质量为M 、半径为R 的天体表面上,如果忽略天体自转的影响,质量为m 的物体的重力加速度g ,可以认为是由天体对它的万有引力产生的。由万有引力定律和牛顿第二定律有:mg R Mm G =2,则该天体表面的重力加速度为:=g ________由此式可知,天体表面的重力加速度是由天体的质量和半径决定的 (2)远离地面的高空物体: 远离地面高空且只受万有引力作用的物体,作落体运动,这时万有引力不提供向心力,也不产生向心加速度,即,万有引力

万有引力定律_行星的运动

第六章万有引力定律 第一节行星的运动 [教学要求] 1、了解日心说和地心说的内容和历史之争。 2、能再现开普勒天文三定律的内容,并能写出第三定律的代数式。 [重点难点] 掌握天体运动的演变过程 熟记开普勒三定律 [正文] 1.地心说:认为地球是宇宙中心,任何星球都围绕地球旋转。该学说最初由古 希腊学者欧多克斯提出,后经亚里士多德、托勒密进一步发展而逐渐建立和完善起来。管它把地球当作宇宙中心是错误的,然而它的历史功绩不应抹杀。 存在条件:第一符合人们的日常经验,第二人们多信奉宗教神学,认为地球是宇宙中心。 2.日心说:认为太阳是宇宙的中心,地球和其他行星都绕太阳转动。日心说最 早于十六世纪,由波兰天文学家哥白尼提出。哥白尼认为,地球不是宇宙的中心,而是一颗普通行星,太阳才是宇宙的中心,一年的周期是地球每年绕太阳公转一周的反映。哥白尼的日心说也有缺点和错误,这就是:(1)太阳是宇宙的中心,实际上,太阳只是太阳系中的一个中心天体,不是宇宙的中心; (2)沿用了行星在圆形轨道作匀速圆周运动的旧观念,实际上行星轨道是椭圆的,速度的大小也不是恒定的。 存在条件:地心说解释天体运动不仅复杂,而且许多问题都不能解释。而用日心说,许多天体运动的问题不但能解决,而且还变得特别简单。 地心说和日心说的共同点:天体的运动都是匀速圆周运动。 3.冲破圆周运动天体运动:最早由开普勒证实了天体不是在做匀速圆周运动。他是在研究丹麦天文学家第谷的资料时产生的研究动机。 4.开普勒天文三定律: (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)任何一个行星与太阳的联线在相等的时间内扫过的面积相等。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。即R3 /T2=k [练习]

人教版高中物理必修二第二节 万有引力定律优质教案

第二节万有引力定律 ●本节教材分析 这节课主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力证明万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。并为高中阶段无法证明椭圆轨道的情况而只能近似以圆轨道来处理的一种“近似”的物理思路.这是一种极好的研究物理的方法. 本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. ●教学目标 一、知识目标 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、能力目标 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、德育目标 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. ●教学重点 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. ●教学难点 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. ●教学方法 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. ●教学用具 投影仪、投影片 ●教学步骤 一、导入新课 请同学们回忆一下上节课的内容,回答如下问题: 1.行星的运动规律是什么? 2.开普勒第一定律、第三定律的内容? 同学们回答完以后,老师评价、归纳总结. 同学们回答得很好,行星绕太阳运转的轨道是椭圆,太阳处在这个椭圆的一个焦点上,那么行星为什么要这样运动?而且还有一定的规律?这类问题从17世纪就有人思考过,请阅读课本,这个问题的答案在不同的时代有不同的结论,可见,我们科学的研究要经过一个相当长的艰巨的过程. 二、新课教学

第六章 万有引力定律

第六章 万有引力定律 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ 一、填空题(共18题,题分合计18分) 1.已知地面的重力加速度为g ,距地面高为半径处的重力加速度是 . 2.已知地球半径为6.4×106 m ,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算 从月球到地心的距离约为 m.(结果只保留一位有效数字) 3.如下图所示,飞船沿半径为R 的圆周围绕着地球运动,其运行周期为T .如果飞船沿椭圆轨 道运行,直至要下落返回地面,可在轨道的某一点A 处将速率降低到适当数值,从而使飞船沿着以地心O 为焦点的椭圆轨道运动,轨道与地球表面相切于B 点.则飞船由A 点到B 点的时间为 .(图中R 0是地球半径) 4.已知太阳的质量是1.97×1030 kg ,地球的质量是6.68×1024 kg ,太阳与地球间的平均距离 是1.49×1011 m ,则太阳与地球间的万有引力为 N.已知拉断截面积为1 cm 2的钢棒需要5.98×1024 N 的拉力,那么地球和太阳间的万有引力可以拉断截面积是 m 2的钢棒. 5.在某一星球上,宇航员用一弹簧秤称量一个质量为m 的物体,其重力为F .乘宇宙飞船在靠 近该星球表面空间飞行,测得其环绕周期为T .已知万有引力常量为G ,试求该星球的质量为 . 6.据观测,某一有自转的行星外围有一模糊不清的环,为了判断该环是行星的连续物还是 行星的卫星群,测出了环中各层的线速度v 的大小与该层至行星中心的距离R ,那么,若测量结果是v 与R 成正比,则环是 ;若v 2与R 成反比,则环是 .

人教版高中物理必修二万有引力定律 (示范课)优质教案

万有引力定律(示范课教案) 一、教学目标: (一)、知识目标:⒈了解万有引力定律得出的思路和过程。 ⒉理解万有引力定律的含义并会推导。 ⒊知道任何物体间都存在着万有引力,且遵循相同的规律。 (二)、能力目标:⒈培养学生建立物理模型的能力 ⒉培养学生的科学推理能力 ⒊用数学公式表述物理概念和规律的能力。 二、教学重点:⒈万有引力定律的推导。 ⒉万有引力定律的内容及表达公式。 三、教学难点:⒈对万有引力定律的理解;①用数学公式描述万有引力定律; ②计算万有引力时物体间距离的含义; ⒉对万有引力的理解:①地面物体受到的重力与天体间的引力性质相同; ②一般物体间的引力很小,学生缺乏感性认识; 四、教学方法:⒈对万有引力定律的推导-采用分析推理、归纳总结的方法。 ⒉对疑难问题的处理-采用讲授法、例证法。 五、教学过程: 〖复习引入〗 上节课讲述了开普勒定律是描述天体运动的基本规律,回答了行星怎样运动的问题,(提问) 行星为什么这样运动是这节课要研究的问题。 〖新课教学〗 ㈠、对行星运动的动力学原因的认识:(阅读课本第一段) 对于行星运动的动力学原因的解释,人们也进行了长期的探索。科学家们面对实践中发现的问题,进行了大胆的猜想和假设。 1.天体引力的假设: 伽利略:一切物体都有合并的趋势,这种趋势导致天体作圆周运动。 开普勒、吉尔伯特:行星是依靠从太阳发出的磁力运行的,这是早期的引力思想。 笛卡尔:“旋涡”假设,宇宙空间存在一种不可见流质“以太”,形成旋涡,带动行星运动。 牛顿:“月-地”检验的思想实验,推测地球对月球的引力与地球对物体的重力是同样性质的力。 2.平方反比假设: 布里阿德(法):首次提出了引力大小与距离平方成反比的假设。 哈雷、胡克:利用向心力公式和开普勒定律按照圆轨道推出行力与太阳之间的距离平方成反比。 牛顿:成功地运用了质点模型,证明了如果太阳与行星之间的引力与距离平方成反比,则行星的轨道是椭圆。并阐述了普遍意义上的万有引力定律。 ㈡、万有引力定律

人教版必修二 第六章第3节万有引力定律同步练习题

6.3万有引力定律同步练习 1.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M ,半径为R.则物体与地球间的万有引力是( ) A .零 B .无穷大 C.GMm R 2 D .无法确定 2.物理学发展历程中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是( ) A. 白尼 B. 第谷 C. 开普勒 D. 伽利略 3.以下说法符合物理史实的是( ) A. 开普勒提出行星运动的三大定律,牛顿测出了万有引力常量G 的数值 B. 牛顿第三定律为我们揭示了自然界中存在的惯性及惯性定律 C. 亚里士多德认为只有力作用在物体上,物体才会运动 D. 伽利略通过理想斜面实验得出,物体在不受摩擦力的情况下,会作减速运动,直至停止运动 4.一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( ) A .恒星的质量为v 3 T 2πG B .行星的质量为4π2v 3 GT 2 C .行星运动的轨道半径为vT 2π D .行星运动的加速度为2πv T 5.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕地月连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动线速度大小之比约为( ) A .1∶6400 B .1∶80 C .80∶1 D .6400∶1 6.假设有一“太空电梯”悬在赤道上空某处,相对地球静止,如图所示,那么关于“太空电梯”,下列说法正确的是( )

A .“太空电梯”各点均处于完全失重状态 B .“太空电梯”各点运行周期随高度增大而增大 C .“太空电梯”上各点线速度与该点离地球球心距离的开方成反比 D .“太空电梯”上各点线速度与该点离地球球心距离成正比 7.设地球表面重力加速度为g 0,物体在距离地心4R(R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则 g g 为( ) A .1 B. 19 C. 14 D. 116 8.对于万有引力定律的表达式F = 12 2 Gm m r ,下列说法中正确的是( ) A .公式中的G 为比例常数,无单位 B .m 1与m 2之间的相互作用力,总是大小相等,方向相反,是一对作用力和反作用力 C .当r 趋近于0时,F 趋向无穷大 D .当r 趋近于0时,公式不成立 9.关于万有引力,下列说法中正确的是( ) A .万有引力只有在研究天体与天体之间的作用时才有价值 B .由于一个苹果的质量很小,所以地球对它的万有引力几乎可以忽略 C .地球对人造卫星的万有引力远大于卫星对地球的万有引力 D .地球表面的大气层是因为万有引力的约束而存在于地球表面附近 10.科技日报北京2017年9月6日电,英国《自然天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞。科学研究表明,当天体的逃逸速度(即第二宇宙速度,为第一宇宙速度的 倍)超过光速时,该天体就是黑洞。已知

高一物理必修一第六章 第3节《万有引力定律》 人教版

1.假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力,同样遵从 “____________”的规律,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍, 所以月球轨道上一个物体受到的引力是地球上的________倍.根据牛顿第二定律,物体 在月球轨道上运动时的加速度(月球______________加速度)是它在地面附近下落时的加 速度(____________加速度)的________.根据牛顿时代测出的月球公转周期和轨道半径, 检验的结果是____________________. 2.自然界中任何两个物体都____________,引力的方向在它们的连线上,引力的大小与 ________________________成正比、与__________________________成反比,用公式表 示即________________.其中G 叫____________,数值为________________,它是英国 物理学家______________在实验室利用扭秤实验测得的. 3.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于 物体本身的大小时;特殊地,用于两个均匀球体,r 是________间的距离. 4.关于万有引力和万有引力定律的理解正确的是( ) A .不能看做质点的两物体间不存在相互作用的引力 B .只有能看做质点的两物体间的引力才能用F =Gm 1m 2 r 2计算 C .由F =Gm 1m 2 r 2知,两物体间距离r 减小时,它们之间的引力增大 D .万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10- 11 N ·m 2/kg 2 5.对于公式F =G m 1m 2 r 2理解正确的是( ) A .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对平衡力 B .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力 C .当r 趋近于零时,F 趋向无穷大 D .当r 趋近于零时,公式不适用 6.要使两物体间的万有引力减小到原来的1 4 ,下列办法不可采用的是( ) A .使物体的质量各减小一半,距离不变 B .使其中一个物体的质量减小到原来的1 4 ,距离不变 C .使两物体间的距离增为原来的2倍,质量不变 D .使两物体间的距离和质量都减为原来的1 4 【概念规律练】 知识点一 万有引力定律的理解 1.关于万有引力定律的适用范围,下列说法中正确的是( ) A .只适用于天体,不适用于地面上的物体 B .只适用于球形物体,不适用于其他形状的物体 C .只适用于质点,不适用于实际物体 D .适用于自然界中任何两个物体之间 2.两个大小相同的实心小铁球紧靠在一起,它们之间的万有引力为F ,若两个半径是小 铁球2倍的实心大铁球紧靠在一起,则它们之间的万有引力为( ) A .14F B .4F C .116 F D .16F 3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地 球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受万有 引力的( )

相关文档
最新文档