高三数学竞赛讲义教案及练习 §8函数方程
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
2021年高中数学竞赛培训资料函数
高中数学竞赛培训资料 函数例一. 定义在R 上函数f(x)满足:f(x -x 1)=x 2+21x(对所有x ≠0) 则f(x)表达式是函数f(x)对任意正实数x, y 满足f(xy)=f(x)+f(y), 且f(2)=1, 求f( )之值。
设f(x)=x4+ax3+bx2+cx+d, 其中a, b, c, d 是常数, 若f(1)=10, f(2)=20, f(3)=30, 求f(10)+f(-6)对于每个实数x, 设f(x)是4x+1, x+2, -2x+4三个函数中最小值, 则f(x)最大值是多少?(91年全国联赛试题)设函数y=f(x)对一切实数x 都满足: f(3+x)=f(3-x), 方程f(x)=0恰有6个不同实根, 则这6个实根之和为(A ) 18 (B ) 12 (C ) 9 (D ) 0(A) 例六. (88年全国联赛试题)设有三个函数, 第一种是y= , 它反函数就是第二个函数, 而第三个函数图象与第二个函数图象关于直线x+y=0对称, 那么第三个函数是(B) y=)(x ϕ (B )y=-)(x -ϕ (C) y=-)(1x -ϕ (D) y=-)(1x --ϕ例七. 设f(x)= , 求f( )+f( )+f( ) f( ) 之值。
1. 例八. 定义在R 上函数y=f(x)具备如下性质2. 对任何x ∈R 均有f (x 3 ) = f 3 (x)对任何x1, x2 R 且x1≠x2 均有f (x1)≠f (x2)则f 2(-1)+f 2(0)+f 2(1)=例九. 若a >0,a ≠1, F(x)是一种奇函数, 则G(x)=F(x) 是(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )与a 取值关于例十. 已知函数y=f(x), x R, f(0)≠0, 且对于任意实数x1, x2均有f(x1)+f(x2)=2f( )×f( ), 则此函数是(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )奇偶性不拟定例十一. 已知实数 x,y 满足(3x+y)2+x5+4x+y=0, 求证: 4x+y=0例十二. 已知函数f(x)满足: 1)f( )=12)值域为[]1,1-3)严格递减,4)f(xy)=f(x)+f(y)试求不等式f -1(x) f -1(x -11)≤21解集。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
数学竞赛题目高中讲解教案
数学竞赛题目高中讲解教案
教案:
一、题目分析
这道题目要求求出数列{a_n}的通项公式,通过已知的前n项和的公式f(x)=x^2-x+1来推
导出a_n的表达式。
二、解题思路
根据已知的前n项和的公式f(x)=x^2-x+1,我们可以利用数列的性质来推导出a_n的表达式。
根据数列的性质,我们知道a_n = f(n) - f(n-1)。
因此,我们可以先找到f(n)和f(n-1),然后利用这两个表达式来计算a_n。
三、解题步骤
1. 计算f(n)和f(n-1):
f(n) = n^2 - n + 1
f(n-1) = (n-1)^2 - (n-1) + 1 = n^2 - 3n + 3
2. 计算a_n:
a_n = f(n) - f(n-1) = n^2 - n + 1 - (n^2 - 3n + 3) = 2n - 2
因此,数列{a_n}的通项公式为a_n = 2n - 2。
四、答案验证
可以通过代入一些自然数n来验证我们得到的通项公式是否正确。
比如当n=1时,a_1 =
2*1 - 2 = 0;当n=2时,a_2 = 2*2 - 2 = 2;当n=3时,a_3 = 2*3 - 2 = 4。
可以发现结果符
合我们得到的通项公式。
五、总结
通过这道题目的解答,我们学会了利用已知前n项和的公式来推导数列的通项公式的方法。
在解题过程中,要注意细致地计算每一步的结果,并通过验证来确认答案的正确性。
江苏省数学竞赛提优教案:第08讲 几个基本初等函数(新)
(1998年江苏省数学夏令营数学竞赛)
分析通过解三个对数方程,求出x、y、z,再比较三个数得大小。
解log2loglogx=0,loglogx=1,
logx=,x==;
log3loglogx=0,loglogx=1,
logx=,y==;
log5loglogz=0,loglogz=1,
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞
B类例题
例4下列表中的对数值只有两个是错误的,请予纠正:
x
0.021
0.27
1.5
2.8
lgx
2a+b+c-3
6a-3b-2
3a-b+c
1-2a+2b-c
x
3
5
6
7
lgx
2a-b
a+c
1+a-b-c
2(a+c)
x
8
9
Байду номын сангаас14
lgx
3-3a-3c
4a-2b
⑵-2a+1=0,a=,
即当a=时,④有相等实根x1=x2=,但x=不满足②.故此时原方程无解;
⑶-2a+1<0,a>,即当a>时,④无实根,此时,原方程无解.
综上可知,当a≥时,原方程无解,当0<a<时原方程有两解,当a≤0时,原方程有一解.
说明转化成二次方程时,要注意未知数的取值范围得变化。
分析方程得解的问题可以转化为研究函数图象的交点问题。
第8讲几个基本初等函数
本节主要内容有指数和对数的运算,幂函数y=xn、指数函数 ( )和对数函数 ( ),指数方程和对数方程,指数不等式和对数不等式等.
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高考数学第2章函数、导数及其应用第8节函数与方程教学案文(含解析)北师大版
第八节函数与方程[考纲传真] 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.1.函数的零点(1)定义:把函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点.(2)三个等价关系:方程f(x)=0有实数解⇔函数f(x)的图像与x轴有公共点⇔函数y =f(x)有零点.(3)函数零点的判定(零点存在性定理):若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点.2.二次函数y=ax2+bx+c(a>0)的图像与零点的关系1.函数f(x)在区间[a,b]上的图像是连续不断的曲线,则“f(a)·f(b)<0”是函数f(x)在区间(a,b)内有零点的充分不必要条件.2.若函数f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则函数f(x)在区间(a,b)内只有一个零点.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图像与x轴的交点.( )(2)函数y=f(x),x∈D在区间(a,b)⊆D内有零点(函数图像连续不断),则f(a)·f(b)<0.( )(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.( )(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点.( )[答案](1)×(2)×(3)×(4)√2.(教材改编)函数f (x )=e x+3x 的零点个数是( ) A .0 B .1 C .2 D .3B [∵f (-1)=1e -3<0,f (0)=1>0,∴f (x )在(-1,0)内有零点,又f (x )为增函数,∴函数f (x )有且只有一个零点.]3.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln xD .y =x 2+1A [由于y =sin x 是奇函数,y =ln x 是非奇非偶函数,y =x 2+1是偶函数但没有零点,只有y =cos x 是偶函数又有零点.]4.函数f (x )=3x-x 2的零点所在区间是( ) A .(0,1) B .(1,2) C .(-2,-1)D .(-1,0)D [∵f (-2)=-359,f (-1)=-23,f (0)=1,f (1)=2,f (2)=5,∴f (0)f (1)>0,f (1)f (2)>0,f (-2)f (-1)>0,f (-1)f (0)<0,故选D.]5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.⎝ ⎛⎭⎪⎫13,1 [∵函数f (x )的图像为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.]1.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内A [∵a <b <c ,∴f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函数零点存在性定理可知:在区间(a ,b )和(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点,因此函数f (x )的两个零点分别位于区间(a ,b )和(b ,c )内,故选A .]2.设x 0是方程⎝ ⎛⎭⎪⎫13x=x 的解,则x 0所在的范围是( ) A .⎝ ⎛⎭⎪⎫0,13 B .⎝ ⎛⎭⎪⎫13,12C .⎝ ⎛⎭⎪⎫12,23 D .⎝ ⎛⎭⎪⎫23,1 B [构造函数f (x )=⎝ ⎛⎭⎪⎫13x-x , 因为f (0)=⎝ ⎛⎭⎪⎫130-0=1>0, f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1313-13=⎝ ⎛⎭⎪⎫1313-⎝ ⎛⎭⎪⎫1312>0,f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1312-12=⎝ ⎛⎭⎪⎫1312-⎝ ⎛⎭⎪⎫1212<0.所以由零点存在性定理可得函数f (x )=⎝ ⎛⎭⎪⎫13x-x 在⎝ ⎛⎭⎪⎫13,12上存在零点,即x 0∈⎝ ⎛⎭⎪⎫13,12,故选B .]3.设函数y 1=x 3与y 2=⎝ ⎛⎭⎪⎫12x -2的图像的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N,则x 0所在的区间是________.(1,2) [设f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2,则f (x )在R 上是增函数, 又f (1)=1-2=-1<0,f (2)=8-1=7>0, 则x 0∈(1,2).]4.已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x的零点,则g (x 0)=________.2 [f (2)=ln 2-1<0,f (3)=ln 3-23>0,则x 0∈(2,3),故g (x 0)=2.]【例1】 (1)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3D .4(2)(2019·兰州模拟)已知函数f (x )满足: ①定义域为R ;②任意x ∈R,都有f (x +2)=f (x ); ③当x ∈[-1,1]时,f (x )=-|x |+1.则方程f (x )=12log 2|x |在区间[-3,5]内解的个数是( )A .5B .6C .7D .8(3)函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0x 2-2,x ≤0的零点个数是______.(1)B (2)A (3)3 [(1)令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x. 设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一直角坐标系下分别画出函数g (x ),h (x )的图像,可以发现两个函数图像一定有2个交点,因此函数f (x )有2个零点.(2)由f (x +2)=f (x )知函数f (x )是周期为2的函数,在同一直角坐标系中,画出y 1=f (x )与y 2=12log 2|x |的图像,如图所示.由图像可得方程解的个数为5,故选A .(3)当x >0时,作函数y =ln x 和y =x 2-2x 的图像,由图知,当x >0时,f (x )有2个零点;当x ≤0时,令x 2-2=0,解得x =-2(正根舍去) 所以在(-∞,0]上有一个零点,综上知f (x )有3个零点.](1)函数f (x )=⎩⎪⎨⎪⎧x +x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0(2)(2019·泰安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,若关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.(1)B (2)(1,+∞) [(1)法一:由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.因此函数f (x )共有2个零点.法二:函数f (x )的图像如图所示,由图像知函数f (x )共有2个零点.(2)问题等价于函数y =f (x )与y =-x +a 的图像有且只有一个交点,作出函数f (x )的图像(如图所示),结合函数图像可知a >1.]►考法1 根据零点的范围求参数【例2】 若函数f (x )=log 2x +x -k (k ∈Z)在区间(2,3)上有零点,则k =________. 4 [函数f (x )=log 2x +x -k 在(2,3)上单调递增,所以f (2)·f (3)<0,即(log 22+2-k )·(log 23+3-k )<0,整理得(3-k )(log 23+3-k )<0,解得3<k <3+log 23,而4<3+log 23<5,因为k ∈Z,故k =4.]►考法2 已知函数零点或方程根的个数求参数【例3】 (2019·青岛模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(3,+∞) [作出f (x )的图像如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.](1)函数f (x )=2x-x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞)D .(-∞,0]∪(1,+∞)(1)C (2)D [(1)∵函数f (x )=2x -2x -a 在区间(1,2)上是增加的,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,∴(-a )(4-1-a )<0,即a (a -3)<0,∴0<a <3,故选C .(2)函数g (x )=f (x )+x -m 的零点就是方程f (x )=m -x 的根,在同一坐标系中画出函数f (x )和y =m -x 的图像,如图所示,由图像知,当m ≤0或m >1时方程f (x )=m -x 有根,即函数g (x )=f (x )+x -m 有零点,故选D.]1.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13C .12D .1C [法一:f (x )=x 2-2x +a (ex -1+e-x +1)=(x -1)2+a [ex -1+e-(x -1)]-1,令t =x -1,则g (t )=f (t +1)=t 2+a (e t+e -t)-1. ∵g (-t )=(-t )2+a (e -t+e t)-1=g (t ), ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.故选C .法二:f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一.故选C .]2.(2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)B [f ′(x )=3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2),则当x ∈(-∞,0)时,f ′(x )>0;x ∈⎝⎛⎭⎪⎫0,23时,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫23,+∞时,f ′(x )>0,注意f (0)=1,f ⎝ ⎛⎭⎪⎫23=59>0,则f (x )的大致图像如图(1)所示.图(1)不符合题意,排除A 、C .当a =-43时,f ′(x )=-4x 2-6x =-2x (2x +3),则当x ∈⎝⎛⎭⎪⎫-∞,-32时,f ′(x )<0,x ∈⎝⎛⎭⎪⎫-32,0时,f ′(x )>0,x ∈(0,+∞)时,f ′(x )<0,注意f (0)=1,f ⎝⎛⎭⎪⎫-32=-54,则f (x )的大致图像如图(2)所示.图(2)不符合题意,排除D.]。
高中数学竞赛专题精讲8函数方程(含答案)
8函数方程许多函数方程的解决仅以初等数学为工具,解法富于技巧,对人类的智慧具有明显的挑战意味,因此,函数方程是数学竞赛中一种常见的题型。
1、确定函数的形式尚无一般解法,需因题而异,其解是多样的:有无限多解的,有有限个解的,有可能无解(如:方程01)()(22=+-+x f x f 无解)。
2、确定函数的性质3、确定函数值三、求函数的解析式1、换元法2、赋值法四、研究函数的性质 例题讲解1.设函数)(x f 满足条件x x f x f 2)1(2)1(3=-+-,求)(x f 。
2.设函数)(x f 定义于实数集R ,且)(x f 满足条件x x xf x f +=-+1)1()(,求)(x f 。
3.函数)(x f 在0=x 处没有定义,但对所有非零实数x 有:x x f x f 312)(=⎪⎭⎫⎝⎛+,求)(x f 。
4.求满足条件422)1()(x x x f x f x -=-+的)(x f 。
5.设函数)(x f 定义于实数集R 上,且1)0(=f ,若对于任意实数m 、n ,都有: )12()()(+--=-n m n m f n m f ,求)(x f 。
6.设函数)(x f 定义于自然数集N 上,且1)1(=f ,若对于任意自然数x 、y ,都有:xy y f x f y x f ++=+)()()(,求)(x f 。
7.设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2(=πf ,若对于任意实数x 、y ,恒有:)2()2(2)()(y x f y x f y f x f -⋅+=+。
① 求证:)()2(x f x f =+π② 求证:)()(x f x f -=③ 求证:1)(2)2(2-=x f x f8.对常数m 和任意x ,等式)(1)(1)(x f x f m x f -+=+都成立,求证:函数)(x f 是周期函数。
9.设函数)(x f 定义于实数集R 上,函数)(x f 不恒为零,且对于任意实数1x 、2x ,都有:)()()2()2(212121x x f x x f x f x f -⋅+=+,求证:)()(x f x f -=。
高三数学高考《函数》讲义与练习
考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。 ②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的 函数模型并用来解决问题,是考试的热点。 ③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本
10 2 x1 1 10 2 x2 1 10 2 x1 1 10 2 x2 1
2 10 2x1 10 2 x2 10 2 x1 1 10 2 x2 1
y 102 是增函数,
10 f x1 f x2 0
f x1 f x2
f x 在 , 上是增函数
(A )
( A) 0 6.函数 y
( B) 2
( C) 1
x 1 ( x≥0)的反函数是
( D) -1 (A )
( A) y (x 1)(2 x 1) ( B) y= (x 1) (2 x 1)
( C) y x 2 (1 x 1)
( C) y x2 (1 x 1)
7.函数 f(x)的反函数为
g(x),则下面命题成立的是
1x
f 1x
1 1x
y lg
1 x1
2 1x
例8 定义在 R 上的函数 f x 满足:对任意实数 m, n ,总有 f m n
f m f n,
且当 x 0 时, 0 f x 1.
( 1)试求 f 0 的值;
( 2)判断 f x 的单调性并证明你的结论;
2020届高三数学一轮复习导学案教师讲义 第8讲 函数与方程
第8讲函数与方程1.函数的零点(1)函数零点的定义:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)三个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.我们把这一结论称为函数零点存在性定理.3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系判断正误(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)只要函数有零点,我们就可以用二分法求出零点的近似值.()(4)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.()(5)若函数f(x)在(a,b)上连续单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()答案:(1)×(2)×(3)×(4)√(5)√(教材习题改编)已知函数y=f(x)的图象是连续曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个 D .5个答案:B(教材习题改编)函数f (x )=ln x +2x -6的零点在下列哪个区间内( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案:C(教材习题改编)函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( ) A .0 B .1 C .2 D .3答案:B若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,12C .0,-12D .2,-12解析:选C .因为2a +b =0, 所以g (x )=-2ax 2-ax =-ax (2x +1). 所以零点为0和-12.(教材习题改编)函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.解析:因为f (2)=6-7+ln 2=ln 2-1<0, f (3)=9-7+ln 3=2+ln 3>0, 又f (x )=3x -7+ln x 为增函数, 所以函数f (x )的零点位于区间(2,3)内, 故n =2. 答案:2函数零点所在区间的判断[典例引领](1)函数f (x )=ln x -2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)(2)设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( )A .(0,1)B .(1,2)C .(2,e)D .(e ,3)【解析】 (1)因为f ′(x )=1x +2x 2>0(x >0),所以f (x )在(0,+∞)上单调递增,又f (3)=ln 3-23>0,f (2)=ln 2-1<0,所以f (2)·f (3)<0,所以f (x )唯一的零点在区间(2,3)内.故选B . (2)h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,即为函数y =f (x )与y =g (x )图象的交点的横坐标,其大致图象如图,从图象可知它们仅有一个交点A ,横坐标的范围为(0,1),故选A .【答案】 (1)B (2)A判断函数零点所在区间的3种方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)定理法:利用函数零点的存在性定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)图象法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.[通关练习]已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选C .因为f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)上是增函数,又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫120<0,f (3)=ln 3-⎝⎛⎭⎫121>0, 所以x 0∈(2,3),故选C .函数零点个数的问题[典例引领](1)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .多于4B .4C .3D .2【解析】 (1)法一:由f (x )=0得⎩⎨⎧x ≤0,x 2+x -2=0或⎩⎨⎧x >0,-1+ln x =0,解得x =-2或x =e. 因此函数f (x )共有2个零点. 法二:函数f (x )的图象如图所示, 由图象知函数f (x )共有2个零点.(2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 【答案】 (1)B (2)B判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[通关练习]1.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2D .3解析:选C .由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A .由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A .函数零点的应用(高频考点)函数零点的应用是每年高考的重点,多以选择题或填空题的形式考查,难度中档及以上.主要命题角度有:(1)已知函数在某区间上有零点求参数; (2)已知函数零点或方程根的个数求参数.[典例引领]角度一 已知函数在某区间上有零点求参数设函数f (x )=log 2(2x +1),g (x )=log 2(2x -1),若关于x 的函数F (x )=g (x )-f (x )-m在[1,2]上有零点,则m 的取值范围为________.【解析】 令F (x )=0,即g (x )-f (x )-m =0.所以m =g (x )-f (x )=log 2(2x -1)-log 2(2x+1)=log 2 2x-12x +1=log 2⎝ ⎛⎭⎪⎫1-22x +1.因为1≤x ≤2,所以3≤2x +1≤5. 所以25≤22x +1≤23,13≤1-22x +1≤35.所以log 2 13≤log 2⎝ ⎛⎭⎪⎫1-22x +1≤log 2 35,即log 2 13≤m ≤log 2 35.所以m 的取值范围是⎣⎡⎦⎤log 2 13,log 2 35. 【答案】 ⎣⎡⎦⎤log 2 13,log 2 35角度二 已知函数零点或方程根的个数求参数(2018·昆明质量检测)已知关于x 的方程1x +2=a |x |有三个不同的实数解,则实数a的取值范围是( )A .(-∞,0)B .(0,1)C .(1,+∞)D .(0,+∞)【解析】 方程1x +2=a |x |有三个不同的实数解等价于函数y =1x +2与y =a |x |的图象有三个不同的交点.在同一直角坐标系中作出函数y =1x +2与y =a |x |的图象,如图所示,由图易知,a >0.当-2<x <0时,设函数y =a |x |=-ax 的图象与函数f (x )=1x +2的图象相切于点(x 0,y 0),因为f ′(x )=-1(x +2)2,则有⎩⎪⎨⎪⎧y 0=-ax 0y 0=1x 0+21(x 0+2)2=a , 解得a =1,所以实数a 的取值范围为(1,+∞),故选C .【答案】C已知函数的零点或方程根的情况求参数问题常用的三种方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.[通关练习]1.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14B .18C .-78D .-38解析:选C .因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C .2.(2018·昆明模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2,0≤x <a2x ,x ≥a ,若存在实数b ,使函数g (x )=f (x )-b有两个不同的零点,则a 的取值范围是________.解析:依题意,在同一平面直角坐标系内画出函数y =x 2与y =2x 的大致图象(图略),要存在实数b ,使得函数g (x )有两个不同的零点,即存在直线y =b 与函数y =f (x )的图象有两个不同的交点,结合图象可知,实数a 的取值范围是(2,4).答案:(2,4)转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.判断函数零点个数的常用方法 (1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.已知函数零点情况求参数的一般步骤及方法(1)一般步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围.(2)方法:常利用数形结合法.函数零点问题中的2个易错点(1)函数的零点不是点,是方程f (x )=0的实根.(2)函数零点存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.1.已知函数f (x )=6x -log 2x ,则f (x )的零点所在的区间是 ( )A .(0,1)B .(2,3)C .(3,4)D .(4,+∞)解析:选C .易知f (x )是单调函数,f (3)=2-log 23>0, f (4)=32-log 24=32-2=-12<0,故f (x )的零点所在的区间是(3,4).2.已知函数f (x )=⎝⎛⎭⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4解析:选C .作出g (x )=⎝⎛⎭⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C .3.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选B .因为a >1,0<b <1,f (x )=a x +x -b ,所以f (x )为增函数,f (-1)=1a -1-b <0,f (0)=1-b >0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.4.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C .因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.5.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,3x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)解析:选D.当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x +a =0有一个根即可,即e x =-a .当x ≤0时,e x ∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D.6.已知函数f (x )=⎩⎪⎨⎪⎧-2,x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x的零点个数为________.解析:依题意得⎩⎪⎨⎪⎧c =-2,-1-b +c =1,解得⎩⎪⎨⎪⎧b =-4,c =-2.令g (x )=0,得f (x )+x =0,该方程等价于①⎩⎨⎧x >0,-2+x =0,或②⎩⎨⎧x ≤0,-x 2-4x -2+x =0,解①得x =2,解②得x =-1或x =-2, 因此,函数g (x )=f (x )+x 的零点个数为3. 答案:37.方程2x +3x =k 的解在[1,2)内,则k 的取值范围为________. 解析:令函数f (x )=2x +3x -k , 则f (x )在R 上是增函数.当方程2x +3x =k 的解在(1,2)内时, f (1)·f (2)<0, 即(5-k )(10-k )<0, 解得5<k <10. 当f (1)=0时,k =5. 答案:[5,10)8.已知函数f (x )=⎝⎛⎭⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:59.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝⎛⎭⎫0,12,使f (x 0)=x 0. 证明:令g (x )=f (x )-x .因为g (0)=14,g ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12-12=-18,所以g (0)·g ⎝⎛⎭⎫12<0.又函数g (x )在⎣⎡⎦⎤0,12上是连续曲线, 所以存在x 0∈⎝⎛⎭⎫0,12,使g (x 0)=0, 即f (x 0)=x 0.10.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a ≤12时,须使⎩⎨⎧f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,所以无解.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎫-12a ≤0,f (1)≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,所以a 的取值范围是[1,+∞).1.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4解析:选B .(数形结合法)因为a >0,所以a 2+1>1. 而y =|x 2-2x |的图象如图,所以y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.2.已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定解析:选C .在同一坐标系中作出函数y =2x ,y =log 12x 的图象(图略), 由图象可知,当0<x 0<a 时,有2x 0<log 12x 0,即f (x 0)<0.3.已知函数f (x )=2x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .a >b >cD .c >a >b解析:选B .f (x )=2x +x 的零点a 为函数y =2x 与y =-x 图象的交点的横坐标,由图象(图略)可知a <0,g (x )=log 2x +x 的零点b 为函数y =log 2x 与y =-x 图象的交点的横坐标,由图象(图略)知b >0,令h (x )=0,得c =0.故选B .4.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1)1-|x -3|,x ∈[1,+∞),则函数F (x )=f (x )-1π的所有零点之和为________.解析:由题意知,当x <0时,f (x )=⎩⎪⎨⎪⎧-2x 1-x ,x ∈(-1,0)|x +3|-1,x ∈(-∞,-1],作出函数f (x )的图象如图所示,设函数y =f (x )的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F (x )=f (x )-1π的所有零点之和为11-2π.答案:11-2π5.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解:(1)如图所示.(2)因为f (x )=⎪⎪⎪⎪1-1x =⎩⎨⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数, 由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 6.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎡⎭⎫1,54.。
高中数学竞赛第三章 函数【讲义】
第三章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x -)>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
高三数学高考考前复习函数与方程教案
第八节 函数与方程一、复习目标:1、了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2、理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数。
二、重难点:重点:函数零点的概念,掌握用二分法求函数)(x f y =零点的近似值难点:用二分法求函数)(x f y =的零点近似值三、教学方法:讲练结合,探析归纳。
四、教学过程(一)、谈新课标要求及考纲要求和高考命题考查情况,促使学生积极参与。
新课标要求及考纲要求1、结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2、根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
高考命题考查情况及预测:函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解和函数有零点的判断也一定会是高考的考点。
预计2010年高考对本节的要求是:以二分法为重点、以二次函数为载体、以考查函数与方程的关系为目标来考查学生的能力。
(1)题型可为选择、填空和解答;(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考查函数方程的思想。
(二)、知识梳理整合,方法定位。
(学生完成复资P23填空题,教师准对问题讲评) (Ⅰ)、函数的零点方程0)(=x f 的实数根又叫做函数))((D x x f y ∈=的零点。
方程()0f x =有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点; ②如果函数()y f x =在区间(,)a b 上的图像是连续不断的,且有()()0f a f b ⋅<,则函数()y f x =在区间(,)a b 上有零点。
(Ⅱ)、二分法1.如果函数()y f x =在区间],[n m 上的图像是连续不断的一条曲线,且0)()(<⋅n f m f ,通过不断地把函数()y f x =的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
高中数学竞赛技巧函数教案
高中数学竞赛技巧函数教案一、教学目标:1. 了解数学竞赛中常见的函数题型;2. 掌握解决函数题的常用方法和技巧;3. 提高学生在数学竞赛中的解题速度和准确性。
二、教学内容:1. 常见的函数题型:- 求函数的定义域和值域;- 求函数的最值;- 求函数的导数和导函数;- 利用函数图像解决问题等。
2. 解题方法和技巧:- 对于定义域和值域的问题,要注意函数的性质和约束条件;- 对于最值问题,要注意函数的单调性和导数的应用;- 对于导函数问题,要掌握导数的基本性质和求解方法;- 对于函数图像问题,要善于利用函数的图像和性质解决问题。
三、教学过程:1. 导入:简要介绍数学竞赛中函数题的重要性和解题方法,激发学生学习的兴趣。
2. 教学:逐个介绍常见的函数题型和解题方法,让学生理解并掌握相关知识。
3. 练习:设计一些函数题目供学生练习,帮助他们巩固和应用所学知识。
4. 总结:总结本节课的重点内容,强调解题技巧和注意事项。
5. 作业:布置相关的作业,让学生进一步巩固所学知识。
四、教学资源:1. 课件:包括函数题型和解题方法的介绍和示例;2. 教材:提供相关的函数知识和练习题目。
五、教学评估:1. 平时表现:观察学生在课堂上的学习态度和解题能力;2. 测验考试:定期组织函数题的测试和考试,评估学生的学习效果;3. 作业表现:检查学生完成作业的情况,及时纠正错误并指导学生提高解题能力。
六、教学反思:1. 根据学生的反馈和评估结果,及时调整教学方法和内容,提高教学效果;2. 不断积累和分享解题经验和技巧,指导学生在数学竞赛中取得更好的成绩。
高中数学竞赛讲义-函数方程 新人教A版
§8函数方程许多函数方程的解决仅以初等数学为工具,解法富于技巧,对人类的智慧具有明显的挑战意味,因此,函数方程是数学竞赛中一种常见的题型。
1、确定函数的形式尚无一般解法,需因题而异,其解是多样的:有无限多解的,有有限个解的,有可能无解(如:方程01)()(22=+-+x f x f 无解)。
2、确定函数的性质3、确定函数值三、求函数的解析式1、换元法2、赋值法四、研究函数的性质 例题讲解1.设函数)(x f 满足条件x x f x f 2)1(2)1(3=-+-,求)(x f 。
2.设函数)(x f 定义于实数集R ,且)(x f 满足条件x x xf x f +=-+1)1()(,求)(x f 。
3.函数)(x f 在0=x 处没有定义,但对所有非零实数x 有:x x f x f 312)(=⎪⎭⎫ ⎝⎛+,求)(x f 。
4.求满足条件422)1()(x x x f x f x -=-+的)(x f 。
5.设函数)(x f 定义于实数集R 上,且1)0(=f ,若对于任意实数m 、n ,都有: )12()()(+--=-n m n m f n m f ,求)(x f 。
6.设函数)(x f 定义于自然数集N 上,且1)1(=f ,若对于任意自然数x 、y ,都有:xy y f x f y x f ++=+)()()(,求)(x f 。
7.设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2(=πf ,若对于任意实数x 、y ,恒有:)2()2(2)()(y x f y x f y f x f -⋅+=+。
① 求证:)()2(x f x f =+π② 求证:)()(x f x f -=③ 求证:1)(2)2(2-=x f x f8.对常数m 和任意x ,等式)(1)(1)(x f x f m x f -+=+都成立,求证:函数)(x f 是周期函数。
9.设函数)(x f 定义于实数集R 上,函数)(x f 不恒为零,且对于任意实数1x 、2x ,都有:)()()2()2(212121x x f x x f x f x f -⋅+=+,求证:)()(x f x f -=。
高考数学一轮复习 专题08 函数与方程教学案 理-人教版高三全册数学教学案
专题08 函数与方程1.考查函数零点的个数和取值X围;2.利用函数零点求解参数的取值X围;3.利用二分法求方程近似解;4.与实际问题相联系,考查数学应用能力.1.函数的零点(1)定义:如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.(2)变号零点:如果函数图象经过零点时穿过x轴,则称这样的零点为变号零点.(3)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上,至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0.3.用二分法求函数f(x)零点近似值的步骤第一步,确定区间[a,b],验证f(a)f(b)<0;第二步,求区间(a,b)的中点c1;第三步,计算f(c1):(1)若f(c1)=0,则c1就是函数的零点;(2)若f(a)f(c1)<0,则令b=c1(此时零点x0∈(a,c1));(3)若f(b)f(c1)<0,则令a=c1(此时零点x0∈(c1,b));第四步,判断x0是否满足给定的精确度;否则重复第二、三、四步.高频考点一函数零点个数的判断例1、(1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4(2)令f (x )=2x|log 0,5x |-1=0,得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象(如图).由图象知,两函数的图象有两个交点,因此函数f (x )有2个零点.答案 (1)2 (2)B【方法规律】函数零点个数的判断方法:(1)直接求零点,令f (x )=0,有几个解就有几个零点;(2)零点存在性定理,要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图象与性质确定函数零点个数;(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.【变式探究】f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为________.解析 f (x )=2sin x cos x -x 2=sin 2x -x 2,则函数的零点即为函数y =sin 2x 与函数y =x 2图象的交点,如图所示,两图象有2个交点,则函数有2个零点.答案 2高频考点二、函数零点所在区间的判断例2、(1)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内(2)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( )A.(0,1) B.(1,2) C.(2,3) D.(3,4)解析(1)∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由函数零点存在性定理可知:在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点;因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.(2)法一函数f(x)的零点所在的区间可转化为函数g(x)=ln x,h(x)=-x+2图象交点的横坐标所在的取值X围.作图如下:可知f(x)的零点所在的区间为(1,2).法二易知f(x)=ln x+x-2在(0,+∞)上为增函数,且f(1)=1-2=-1<0,f(2)=ln 2>0.所以根据函数零点存在性定理可知在区间(1,2)内函数存在零点.答案(1)A (2)B【方法规律】确定函数f(x)的零点所在区间的常用方法(1)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【变式探究】 已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120=ln 2-1<0,f (3)=ln 3-12>0. 故f (x )的零点x 0∈(2,3). 答案 C高频考点三、 函数零点的应用例3、已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的实根,求a 的取值X 围.由函数的图象(如图),必须有⎩⎪⎨⎪⎧f (6)<2,f (10)>2,a >1.即⎩⎪⎨⎪⎧log a 6<2,log a 10>2,a >1.解之得6<a <10.故a 的取值X 围是(6,10).【方法规律】已知函数有零点(方根有根)求参数值常用的方法:(1)直接法,直接求解方程得到方程的根,再通过解不等式确定参数X 围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.【变式探究】(1)(已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,3x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值X 围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)(2)(2016·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值X 围是________.解析 (1)当x >0时,f (x )=3x -1有一个零点x =13.因此当x ≤0时,f (x )=e x+a =0只有一个实根, ∴a =-e x(x ≤0),则-1≤a <0.(2)在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则有4m -m 2<m , 即m 2-3m >0.又m >0,解得m >3. 答案 (1)D (2)(3,+∞)高频考点四、 二次函数的零点问题例4、已知f(x)=x2+(a2-1)x +(a -2)的一个零点比1大,一个零点比1小,某某数a 的取值X 围.【感悟提升】解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【变式探究】若函数f(x)=(m -2)x2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值X 围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12C.⎝ ⎛⎭⎪⎫14,12D.⎣⎢⎡⎦⎥⎤-14,12 答案 C解析 依题意,结合函数f(x)的图象分析可知m 需满足⎩⎪⎨⎪⎧m≠2,f -1·f 0<0,f 1·f 2<0,即⎩⎪⎨⎪⎧m≠2,[m -2-m +2m +1]2m +1<0,[m -2+m +2m +1][4m -2+2m +2m +1]<0,解得14<m<121.【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D2.【2016高考某某理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足1(2)(2)a f f ->,则a 的取值X 围是______.【答案】13(,)22【解析】由题意()f x 在(0,)+∞上单调递减,又()f x 是偶函数,则不等式1(2)(2)a f f ->-可化为1(2)(2)a f f ->,则122a -<,112a -<,解得1322a <<.3.【2016高考某某理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值X 围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34} 【答案】C【解析】由()f x 在R 上递减可知3401331,0134a a a a -≥⎧⇒≤≤⎨≥<<⎩,由方程|()|2f x x=-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数的去X 围是123[,]{}334,故选C.4.【2016年高考理数】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值X 围是________. 【答案】2,(,1)-∞-.【解析】如图,作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由2'()33g x x =-,知1x =是函数()g x 的极小值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,由图象可知()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值(1)2f -=;只有当1a <-时,332a a a -<-,()f x 无最大值,所以所求的取值X 围是(,1)-∞-.【2015高考某某,理15】已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b=-有两个零点,则a 的取值X 围是.【答案】),1()0,(+∞-∞ .【解析】分析题意可知,问题等价于方程)(3a xb x ≤=与方程)(2a xb x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,∴23a b a <<,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ,综上,实数a 的取值X 围是),1()0,(+∞-∞ .【2015高考某某,13】已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4【解析】由题意得:求函数()y f x =与1()y g x =-交点个数以及函数()y f x =与1()y g x =--交点个数之和,因为221,011()7,21,12x y g x x x x x <≤⎧⎪=-=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =-有两个交点,又221,011()5,23,12x y g x x x x x -<≤⎧⎪=--=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =--有两个交点,因此共有4个交点(2014·某某卷)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值X 围是( )A .(-∞,1e) B .(-∞,e) C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝ ⎛⎭⎪⎫-e ,1e【答案】B【解析】依题意,设存在P (-m ,n )在f (x )的图像上,则Q (m ,n )在g (x )的图像上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m-12-m (m >0),可得a ∈(-∞,e).(2014·某某卷)已知函数f (x )=|x 2+3x |,x ∈R.若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值X 围为________.【答案】(0,1)∪(9,+∞)(2014·某某卷)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3 B.3<c ≤6 C .6<c ≤9 D.c >9 【答案】C【解析】由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11,则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.(2013·新课标全国卷Ⅰ] 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x >0.若|f(x)|≥ax,则a 的取值X 围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 【答案】D【解析】方法一:若x≤0,|f(x)|=|-x 2+2x|=x 2-2x ,x =0时,不等式恒成立,x<0时,不等式可变为a≥x-2,而x -2<-2,可得a≥-2;若x>0,|f(x)|=|ln(x +1)|=ln(x +1),由ln(x +1)≥ax,可得a≤ln (x +1)x 恒成立,令h(x)=ln (x +1)x ,则h′(x)=xx +1-ln (x +1)x 2,再令g(x)=xx +1-ln(x +1),则 g′(x)=-x(x +1)2<0,故g(x)在(0,+∞)上单调递减,所以g(x)<g(0)=0,可得h′(x)=xx +1-ln (x +1)x2<0,故h(x)在(0,+∞)上单调递减,x→+∞时,h(x)→0, 所以h(x)>0,a≤0.综上可知,-2≤a≤0,故选D.方法二:数形结合:画出函数|f(x)|=⎩⎪⎨⎪⎧x 2-2x ,x≤0,ln (x +1),x>0与直线y =ax 的图像,如下图,要使|f(x)|≥ax 恒成立,只要使直线y =ax 的斜率最小时与函数y =x 2-2x ,x≤0在原点处的切线斜率相等即可,最大时与x 轴的斜率相等即可,因为y′=2x -2,所以y′|x =0=-2,所以-2≤a≤0.(2013·某某卷)若函数f(x)=x 3+ax 2+bx +c 有极值点x 1,x 2,且f(x 1)=x 1,则关于x 的方程3(f(x))2+2af(x)+b =0的不同实根个数是( )A .3B .4C .5D .6【答案】A【解析】因为f′(x)=3x 2+2ax +b ,3(f(x))2+2af(x)+b =0且3x 2+2ax +b =0的两根分别为x 1,x 2,所以f(x)=x 1或f(x)=x 2,当x 1是极大值点时,f(x 1)=x 1,x 2为极小值点,且x 2>x 1,如图(1)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;当x 1是极小值点时,f(x 1)=x 1,x 2为极大值点,且x 2<x 1,如图(2)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;综合以上可知,方程3(f(x))2+2af(x)+b =0共有3个不同实根.(2013·某某卷)函数y =f(x)的图像如图1-2所示,在区间[a ,b]上可找到n(n≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值X 围是( )图1-2A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3} 【答案】B【解析】问题等价于直线y =kx 与函数y =f(x)图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值X 围是{2,3,4}.(2013·某某卷)函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .0 【答案】B【解析】法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:可知它们有2个交点,选B.(2013·某某卷)设函数f(x)=xe 2x +c(e =2.718 28…是自然对数的底数,c∈R).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数. 【解析】解:(1)f′(x)=(1-2x)e -2x.由f′(x)=0,解得x =12,当x<12时,f′(x)>0,f(x)单调递增;当x>12时,f ′(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是-∞,12,单调递减区间是12,+∞,最大值为f ⎝ ⎛⎭⎪⎫12=12e -1+c.(2)令g(x)=|lnx|-f(x)=|lnx|-xe-2x-c ,x∈(0,+∞).①当x∈(1,+∞)时,lnx>0,则g(x)=lnx -xe -2x-c ,所以g′(x)=e-2xe2xx+2x -1.因为2x -1>0,e2xx>0,所以g′(x)>0.因此g(x)在(1,+∞)上单调递增.②当x∈(0,1)时,lnx<0,则g(x)=-lnx -xe -2x-c ,所以g′(x)=e-2x -e2xx+2x -1.因为e 2x∈(1,e 2),e 2x>1>x>0,所以-e2xx<-1.又2x -1<1,所以-e2xx +2x -1<0,即g′(x)<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|lnx|=f(x)根的个数为0;当g(1)=-e -2-c =0,即c =-e -2时,g(x)只有一个零点,故关于x 的方程|lnx|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0; 当c =-e -2时,关于x 的方程|lnx|=f(x)根的个数为1; 当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围.【解析】解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1. 当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1. (3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x+ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.② 由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0), 则h′(x 1)=2x 1-1x 1+1<0.所以,h(x 1)(-1<x 1<0)是减函数. 则h(x 1)>h(0)=-ln 2-1, 所以a>-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h(x 1)无限增大, 所以a 的取值X 围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值X 围是(-ln 2-1,+∞).(2013·某某卷)函数f(x)=2x|log 0.5x|-1的零点个数为( )A .1B .2C .3D .4 【答案】B1.函数f (x )=3x-x 2的零点所在区间是( ) A .(0,1) B .(1,2) C .(-2,-1) D .(-1,0) 解析 由于f (-1)=-23<0,f (0)=30-0=1>0,∴f (-1)·f (0)<0.则f (x )在(-1,0)内有零点. 答案 D2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .0 解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0.答案 D3.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值X 围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0,所以0<a <3.答案 C4.已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18C .-78D .-38解析 令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案 C5.已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值X 围是( )A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)解析 函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,画出h (x )=f (x )+x=⎩⎪⎨⎪⎧x ,x ≤0,e x +x ,x >0的大致图象(图略). 观察它与直线y =m 的交点,得知当m ≤0或m >1时,有交点,即函数g (x )=f (x )+x -m 有零点.答案 D6.已知f (x )=⎩⎨⎧e -x,x ≤0,x ,x >0,g (x )=f (x )-12x -b 有且仅有一个零点时,b 的取值X 围是________.7.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.解析:要求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根, ∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1. ∴g (x )的零点为1+2,1. 答案:1+2,18.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧a x,x ≥0,kx +1,x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值X 围是______.解析:函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y =f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.答案:(0,1)9.已知函数f (x )=x 3-x 2+x 2+14,证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.证明:令g (x )=f (x )-x .∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上是连续曲线, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0,即f (x 0)=x 0. 10.已知二次函数f (x )=x 2+(2a -1)x +1-2a .(1)判断命题:“对于任意的a ∈R,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,某某数a 的取值X 围.解:(1)“对于任意的a ∈R,方程f (x )=1必有实数根”是真命题; 依题意f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根,(2)依题意知,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧f -1>0,f 0<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值X 围为⎝ ⎛⎭⎪⎫12,34. 11.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,某某数a 的取值X 围.解 (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点, 只需⎩⎪⎨⎪⎧f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值X 围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪12<a <34.。
第八节函数与方程学案高三数学一轮复习
第八节函数与方程一、学习目标1、理解函数零点的概念以及函数的零点与方程的根之间的关系,并会求函数的零点或判断个数。
2、会根据函数的零点求参数,了解函数零点存在定理,会判断零点所在区间。
二、学习过程知识点一函数的零点1.函数零点的概念对于函数y=f(x),x∈D,我们把使f(x)=0的叫做函数y=f(x),x∈D的零点.注意:零点不是点,是满足f(x)=0的实数x.2.三个等价关系3.零点存在定理【提醒】函数零点存在定理只能判断函数在某个区间上的变号零点.自查自测1、(判断题)函数的零点就是函数的图象与x 轴的交点. ( )2、函数245y x x =--的零点为( ).A .()5,0B .()1,5-C .1-和5D .()1,0-和()5,03、(人教A 版必修①P155·T1改编)下列图象所表示的函数中不能用零点存在性定理求零点的是( ).A 、B 、C 、D 、考点一 函数零点所在区间的判断例11、设()2f x lnx x =+-,则函数f (x )的零点所在的区间为( ).1(0)A , ).(12?B , .3(2)C , .4(3)D ,变式11:()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2 B .()2,3 C .()3,4 D .()4,5 变式12、(人教A 版必修①P160)已知函数x x f x +=2)(,x x x g +=2log )(,x x x h +=3)(的零点分别为a ,b ,c ,则a ,b ,c ,的大小顺序为( ).A 、c b a >>B 、a c b >>C 、b a c >>D 、c a b >>考点二 函数零点个数问题例21、已知函数()⎪⎩⎪⎨⎧>≤=0,log 0,)(221x x x x f x ,则函数g (x )=f (x )-12的零点个数为( ) A .0 B .1 C .2 D .3变式21、函数()()0.2sin log 02f x x x x π⎛⎫=-> ⎪⎝⎭的零点个数为( ) A .1 B .2 C .3 D .4交点个数为( )A 、3B 、4C 、6D 、8拓展、已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,函数()()g x f x x m =++,若()g x 有两个零点,则m 的取值范围是( ).A .[1,)-+∞B .(,1]-∞- C .[0,)+∞ D .[1,0)-【当堂检测】1.函数()234x f x x =+-的零点所在的区间是( ) A .()1,0- B .()0,1 C .()1,2 D .()2,32.已知函数()1,02,0x f x x x x ⎧>⎪=⎨⎪+≤⎩,则方程()30x f x -=的解的个数是( ) A .0B .1C .2D .3 3.函数()sin 4f x x π⎛⎫=- ⎪⎝⎭在[]0,8π上的所有零点之和为( )A .45πB .40πC .35πD .30π 4.(选做)若函数()2ln f x x m x =+-在区间()1,2上只有一个零点,则常数m 的取值范围为( )A .12m <<B .ln 22m <<C .11ln 2m <<+D .1ln 22m +<<【归纳总结】1、确定函数零点所在区间的常用方法2、函数零点个数的判断方法【作业】1、函数2()log f x x x =+的零点所在的区间为( )A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭2、(多选)函数2()2x f x a x=--的一个零点在区间(1,2)内,则实数a 的可能取值是( ) A .0 B .1 C .2 D .33、函数()32,03e ,0x x x f x x x ⎧+≤=⎨-+>⎩的零点个数为___________. 4、(2024上海模拟卷改编 选做)已知函数()()()122,0,R log 1,0,x x f x a x x ⎧≤⎪=∈⎨+>⎪⎩,a x f x g +=)()(在R 上没有零点,则实数a 的取值范围是( ) A .(){},10-∞- B .(),1∞-- C .()1,-+∞ D .。
高考讲坛高考数学一轮复习 第2章 第8节 函数与方程课
3.二次函数 y=ax2+bx+c(a>0)的图象与零点的关系
Δ>0
Δ=0
Δ<0
函数的图象
与 x 轴的交点 x1=-b2-a Δ,x2=-b2+a Δ x1=x2=-2ba 无交点
零点个数
两个
一个
没有
4.二分法 对于在区间[a,b]上连续不断且 f(a)·f(b)<0 的函数 y=f(x),通 过不断地把函数 f(x)的零点所在的区间一分为二,使区间的两个端 点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打 “×”)
(1)函数的零点就是函数的图象与 x 轴的交点.( ) (2)对于定义域内的两个变量 x1,x2,若 f(x1)·f(x2)<0,则函数有零 点.( ) (3)若 f(x)在区间[a,b]上连续,且 f(a)f(b)>0,则 f(x)在(a,b)内没有 零点.( ) (4)若函数 y=f(x)在区间[a,b]上的图象是连续的,且 f(a)f(b)<0,则 函数 y=f(x)在区间(a,b)内至少有一个零点.( )
[解析] ∵f(x)=x2+ax+b 的两个零点是-2,3. ∴-2,3 是方程 x2+ax+b=0 的两根,
由根与系数的关系知--22+×33==-b,a, ∴ab==--16,, ∴f(x)=x2-x-6.∵不等式 af(-2x)>0,
即[答-案(4]x2+x2-x-326<)x><01,∴2x2+x-3<0,∴解集为x-32<x<1
[答案] {-2- 7,1,3}
【规律方法】 1.求函数的零点,从代数角度思考就是解方程 f(x)=0 的解, 从几何角度,思考就是研究其图象与 x 轴交点,有时也转化为 f(x) =g(x)的形式,此时是求 f(x),g(x)图象交点的横坐标. 2.函数零点的判定常用方法有(1)零点存在性定理;(2)数形结 合;(3)解方程.
高中数学竞赛标准讲义
高中数学竞赛标准讲义高中数学竞赛是对学生数学知识和解题能力的一次全面考验,也是培养学生逻辑思维和数学兴趣的重要途径。
在参加数学竞赛的过程中,学生需要掌握一定的数学知识和解题技巧,才能取得好成绩。
本讲义将从高中数学竞赛的题型、考点和解题技巧等方面进行详细介绍,希望能够帮助广大学生更好地备战数学竞赛。
一、高中数学竞赛题型。
高中数学竞赛的题型主要包括选择题、填空题、解答题和证明题。
选择题是考查学生对基本概念和定理的理解和掌握程度,填空题则更加注重学生对知识的灵活运用能力,解答题和证明题则需要学生具备较强的逻辑思维和解题技巧。
在备战数学竞赛的过程中,学生需要根据不同题型的特点有针对性地进行练习和训练,做到对各种题型都能够熟练应对。
二、高中数学竞赛考点。
高中数学竞赛的考点主要包括数列、函数、方程不等式、三角函数、数学归纳法、排列组合、数论等内容。
这些考点是数学竞赛中经常出现的题型,也是学生备战竞赛时需要重点关注和加强练习的内容。
在备战数学竞赛的过程中,学生需要对这些考点进行系统性的学习和掌握,做到能够熟练运用于解题中。
三、高中数学竞赛解题技巧。
在解高中数学竞赛的题目时,学生需要具备一定的解题技巧。
首先,要注意审题,理清题意,明确问题所求;其次,要善于归纳总结,发现问题的规律,找到解题的突破口;再次,要注重细节,避免粗心导致的错误;最后,要善于思考,灵活运用所学知识,多角度思考问题,找到解题的最佳方法。
通过不断的练习和总结,学生可以逐渐提高解题的能力和技巧,取得更好的成绩。
四、高中数学竞赛备考建议。
在备战高中数学竞赛时,学生需要有计划地进行复习和练习。
首先,要对各个考点进行系统性的复习,巩固基础知识;其次,要针对不同题型进行有针对性的练习,提高解题能力;再次,要多参加模拟考试,检验备考效果,发现问题并及时调整学习计划;最后,要保持良好的心态,相信自己的能力,不断提升自己的数学水平。
通过科学合理的备考方法,相信每位学生都能够在数学竞赛中取得优异的成绩。
高中数学竞赛课程讲座—函数
【校本课程数学竞赛讲义】 第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性 (1)奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3)若函数满足()(2)f x f a x =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)a y x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2)若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为T a的周期函数。
(3)若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
第三单元第8讲 函数与方程微专题讲义 课件-2025届高三数学一轮复习
∴f (x)在区间(2,3),(5,6)内各至少有一个零点.
12
返 回
函数与方程
返 回
+ − , ≤ ,
3.[教材改编]函数f (x)=
的零点个数为
− + , >
(
A.3
B.2
C.7
D.0
答案:B
≤ ,
> ,
解析:由
32
返 回
函数与方程
返 回
2.(2023·莆田模拟)函数f (x)是R上最小正周期为2的周期函数,
当0≤x<2时,f (x)=x2-x,则函数y=f (x)的图象在区间[-3,
3]上与x轴的交点个数为(
)
A.6
B.7
C.8
D.9
答案:B
33
函数与方程
解析:令f (x)=x2-x=0,即x=0或x=1,所以f (0)=0,f (1)
2025届
函数与方程
返 回
第8讲 函数与方程
1
1
函数与方程
返 回
课程标准解读
2
命题方向
数学素养
1.理解函数的零点与方程的解的
1.函数零点区间的判
联系.
定
直观想象
2.理解函数零点存在性定理,并
2.函数零点个数的判
数学运算
能简单应用.
定
逻辑推理
3.了解用二分法求方程的近似解
3.函数零点的应用
函数与方程
28
函数与方程
解法二(图象法) 作出函数f (x)的图象,
如图,函数y=f (x)-3的
零点个数即y=f (x)的图象
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8函数方程
许多函数方程的解决仅以初等数学为工具,解法富于技巧,对人类的智慧具有明显的挑战
意味,因此,函数方程是数学竞赛中一种常见的题型。
1、确定函数的形式
尚无一般解法,需因题而异,其解是多样的:有无限多解的,有有限个解的,有可能无解(如:方程01)()(22=+-+x f x f 无解)。
2、确定函数的性质
3、确定函数值
三、求函数的解析式
1、换元法
2、赋值法
四、研究函数的性质
例题讲解
1.设函数)(x f 满足条件x x f x f 2)1(2)1(3=-+-,求)(x f 。
2.设函数)(x f 定义于实数集R ,且)(x f 满足条件x x xf x f +=-+1)1()(,求)(x f 。
3.函数)(x f 在0=x 处没有定义,但对所有非零实数x 有:x x f x f 312)(=⎪⎭
⎫
⎝⎛+,求)(x f 。
4.求满足条件422)1()(x x x f x f x -=-+的)(x f 。
5.设函数)(x f 定义于实数集R 上,且1)0(=f ,若对于任意实数m 、n ,都有: )12()()(+--=-n m n m f n m f ,求)(x f 。
6.设函数)(x f 定义于自然数集N 上,且1)1(=f ,若对于任意自然数x 、y ,都有:xy y f x f y x f ++=+)()()(,求)(x f 。
7.设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2
(=π
f ,若对于任意实数x 、y ,恒有:)2
()2(2)()(y x f y x f y f x f -⋅+=+。
① 求证:)()2(x f x f =+π
② 求证:)()(x f x f -=
③ 求证:1)(2)2(2-=x f x f
8.对常数m 和任意x ,等式)
(1)(1)(x f x f m x f -+=
+都成立,求证:函数)(x f 是周期函数。
9.设函数)(x f 定义于实数集R 上,函数)(x f 不恒为零,且对于任意实数1x 、2x ,都有:)()()2()2(212121x x f x x f x f x f -⋅+=+,求证:)()(x f x f -=。