各种天线参数和分类

合集下载

天线的基本参数

天线的基本参数

天线的基本参数1.1天线的基本参数从左侧的传输线的⾓度看,天线是⼀个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的⾃由空间⾓度来看,天线的特征可以⽤辐射⽅向图(radiation pattern)或者包含场量的⽅向图。

R r不等于天线材料⾃⼰的电阻,⽽是天线、天线所处的环境(⽐如温度)和天线终端的综合结果。

影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。

对于⽆损天线来说,天线温度T A和天线材料本⾝的温度⼀点都没有关系,⽽是与⾃由空间的温度有关。

确切地说,天线温度与其说是天线的固有属性,还不如说是⼀个取决于天线“看到”的区域的参数。

从这个⾓度看,⼀个接收天线可以被视作能遥感测温设备。

辐射电阻R r和天线温度T A都是标量。

另⼀⽅⾯,辐射⽅向图包括场变量或者功率变量(功率变量与场变量的平⽅成正⽐),这两个变量都是球体坐标θ和Φ的函数。

1.2天线的⽅向性(D,Directivity)和增益(G,Gain)D=4π/ΩA,其中ΩA是总波束范围(或者波束⽴体⾓)。

ΩA由主瓣范围(⽴体⾓)ΩM+副瓣范围(⽴体⾓)Ωm。

如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。

各向同性天线具有最低的⽅向性,所有实际的天线的⽅向性都⼤于1。

如果⼀个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。

简单短偶极⼦具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。

如果⼀个天线的主瓣在θ平⾯和Φ平⾯的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg)≈103≈20dBi(dB over isotropic)。

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

天线的主要参数

天线的主要参数

天线的主要参数一、引言天线是无线通信系统中至关重要的组成部分,它负责将无线信号转换成电磁波并进行传输。

天线的性能直接影响到通信系统的覆盖范围、传输质量和容量等方面。

本文将探讨天线的主要参数,包括增益、方向性、频率响应、带宽、极化和效率等。

二、增益增益是衡量天线辐射功率相对于理想点源天线的能力的参数。

增益越高,天线辐射的功率越大,覆盖范围也就越广。

增益的单位通常用dBi(dB相对于理想点源天线)来表示。

天线的增益受到天线结构、天线尺寸和工作频率等因素的影响。

三、方向性方向性是指天线在空间中辐射或接收电磁波的能力。

天线的方向性可以分为全向性和定向性两种。

全向性天线可以在水平方向上均匀地辐射或接收信号,适用于需要覆盖全方向的应用场景。

定向性天线则可以将信号主要辐射或接收到某个特定方向,适用于需要特定方向性的应用场景。

四、频率响应频率响应是指天线在不同频率下的辐射或接收能力。

天线的频率响应通常以辐射图或接收图的形式呈现,用于描述天线在不同频段下的辐射或接收特性。

频率响应对于天线的设计和使用非常重要,不同频率下的天线性能差异可能导致通信系统的不稳定性或性能下降。

五、带宽带宽是指天线能够工作的频率范围。

天线的带宽决定了它在不同频段下的适用性。

带宽越宽,天线在不同频段下的性能越稳定。

带宽可以通过调整天线结构和参数来进行优化,以满足不同频段的需求。

六、极化极化是指天线辐射或接收电磁波时电场或磁场的振动方向。

常见的极化方式包括水平极化、垂直极化和圆极化等。

天线的极化方式需要与通信系统中其他设备的极化方式相匹配,以确保信号的传输效果。

七、效率效率是指天线将输入的电能转换成辐射电磁波的能力。

天线的效率越高,输入的电能转换成辐射电磁波的比例就越大,系统的传输效率也就越高。

天线的效率受到天线结构、材料和工作频率等因素的影响。

八、总结天线的主要参数包括增益、方向性、频率响应、带宽、极化和效率等。

这些参数直接影响到天线的性能和应用范围。

天线原理、性能参数以及分类

天线原理、性能参数以及分类

天线原理、性能参数以及分类天线的原理要分两部分来说,⼀是发射天线,⼀是接收天线。

发射天线简单说,就是通过⼀根叫做“天线”的电极将天线与地之间形成的⾼频电场变成电磁波,从⽽能发射出去并传波到远⽅。

接收天线简单说,就是通过⼀根叫做“天线”的电极将空中传来的电磁波感应为电场,⽣成⾼频信号电压,送到接收机进⾏信号处理。

天线的性能参数1、⼯作频段(Frequency Range)⼯作频段:⽆论天线还是其他通信产品,总是在⼀定的频率范围(频带宽度)内⼯作,其取决于指标的要求。

通常情况下,满⾜指标要求的频率范围即可为天线的⼯作频率。

⼯作频段的宽度称为⼯作带宽,⼀般全向天线的⼯作带宽能达到中⼼频率的3-5%,定向天线的⼯作带宽能达到中⼼频率的5-10%。

2、输⼊阻抗(Input Impedance)输⼊阻抗:天线输⼊端信号电压与信号电流之⽐,称为天线的输⼊阻抗。

⼀般移动通信天线的输⼊阻抗为50Ω。

输⼊阻抗与天线的结构、尺⼨以及⼯作波长有关,在要求的⼯作频率范围内,使输⼊阻抗的虚部很⼩且实部相当接近50Ω,这是天线能与馈线处于良好的阻抗匹配所必须。

3、电压驻波⽐(VSWR)电压驻波⽐:天线的电压驻波⽐是把天线作为⽆耗传输线的负载时,在沿传输线产⽣的电压驻波图形上,其最⼤值与最⼩值之⽐。

驻波⽐的产⽣,是由于⼊射波能量传输到天线输⼊端并未被全部吸收(辐射)产⽣的反射波迭加⽽形成的。

VSWR越⼤,反射越⼤,匹配越差。

在移动通信系统中,⼀般要求驻波⽐⼩于1.5。

4、隔离度(Isolation)隔离度代表馈送到双极化天线⼀个端⼝(⼀种极化)的信号在另外⼀个端⼝(另⼀种极化)中出现信号的⽐例。

5、三阶互调(Third Order Inter modulation)三阶互调信号:是指两个信号在⼀个线性系统中,由于⾮线性因素存在使⼀个信号的⼆次谐波与另⼀个信号的基波产⽣差拍(混频)后的寄⽣信号。

互调现象就是由频带外的两个或多个载波频率混频后落在频带内的新的频率分量,造成系统性能下降的现象6、功率容量(Power Capacity)功率容量:天线的功率容量是指按规定的条件在规定的时间周期内可连续地加到天线上⽽⼜不致降低其性能的最⼤连续射频功率。

天线的几个重要参数介绍

天线的几个重要参数介绍

一、天线的几个重要参数介绍1.天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

2.天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。

双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

卫星天线参数范文

卫星天线参数范文

卫星天线参数范文
卫星天线是一种用于接收地面或空中信号的天线设备。

它的参数包括频率范围、增益、方向性、波束宽度、极化方式和天线尺寸等。

下面将对这些参数进行详细介绍。

1.频率范围:卫星天线的频率范围是指它能够接收的信号频率范围。

不同类型的卫星天线有不同的频率范围,一般分为L波段、C波段、Ku波段、Ka波段和X波段等。

2.增益:卫星天线的增益是指它在特定频率下接收信号的能力。

增益一般以dBi(dB打印机)为单位,数值越大表示接收信号能力越强。

增益取决于天线的大小、形状和方向性等因素。

3.方向性:卫星天线的方向性是指它在收发信号时的辐射模式。

天线的方向性可以是定向的(指向一些方向)、全向的(在各个方向上均匀辐射)或者半定向的(在一些范围内均匀辐射)。

4.波束宽度:卫星天线的波束宽度是指它的辐射能力在主瓣方向上的宽度。

波束宽度可以用角度来表示,数值越小表示天线的辐射范围越窄,接收信号的精度越高。

5.极化方式:卫星天线的极化方式是指它接收和发送信号时电场的方向。

常见的极化方式有水平极化、垂直极化和圆极化等。

不同的卫星系统有不同的极化要求。

6.天线尺寸:卫星天线的尺寸通常以直径来表示,单位为米。

天线的尺寸与其频率范围和增益密切相关,一般来说,频率越高、增益越大的天线尺寸一般也越大。

这些参数对于卫星通信系统的设计和性能都起着至关重要的作用。

在选择适合的卫星天线时,需要根据具体的通信需求和环境条件综合考虑这些参数。

常用天线和无源器件技术参数

常用天线和无源器件技术参数

常用天线和无源器件技术参数天线是将电磁能转换为电信号或将电信号转换为电磁能的一种设备。

无源器件是指不含有源(电源)的电子元件,如电阻、电容、电感等。

在通信领域中,常用的天线和无源器件具有一系列的技术参数,下面将对其进行详细介绍。

1.天线技术参数(1) 增益(Gain):天线的增益是指天线辐射功率与理想点源辐射功率之比,单位为dBi。

增益越大,天线辐射的信号强度越大,接收到的信号质量也越好。

(2) 频率范围(Frequency Range):天线的频率范围是指天线能够工作的频带范围。

通常以最小和最大工作频率来表示。

(3)驻波比(VSWR):驻波比是指由于天线阻抗与信号源或负载阻抗不匹配而产生的反射信号的大小。

驻波比越小,表示天线与信号源或负载的匹配度越好,信号损耗越小。

(4) 角度范围(Vertical and Horizontal Beamwidth):天线的角度范围是指天线在水平和垂直方向上能够辐射或接收信号的范围。

角度范围越大,表示天线的辐射范围越广。

(5) 前后比(Front-to-Back Ratio):前后比是指天线在主导方向上的辐射功率与在反向方向上的辐射功率之比。

前后比越大,表示天线在主导方向上的信号强度越大,抗干扰能力越强。

(1) 电阻值(Resistance):电阻值是指无源器件电阻的数值。

通常用欧姆(Ω)来表示。

(2) 电容值(Capacitance):电容值是指无源器件电容的数值。

通常用法拉德(F)来表示。

(3) 电感值(Inductance):电感值是指无源器件电感的数值。

通常用亨利(H)来表示。

(4) 响应频率范围(Frequency Response):响应频率范围是指无源器件在频率范围内的响应情况。

通常以最小和最大工作频率来表示。

(5) 损耗(Loss):无源器件的损耗是指无源器件在信号传输过程中产生的能量损失。

损耗越小,信号传输效率越高。

以上是常用天线和无源器件的一些常见技术参数。

天线的主要参数

天线的主要参数

天线的主要参数天线是一种电子设备,用来接收或发射无线电波信号。

它是通信系统的重要组成部分,用于传输和接收无线信号。

天线的主要参数包括增益、频率范围、方向性、带宽、阻抗匹配、极化方式等。

本文将对这些主要参数进行详细介绍。

一、增益天线的增益是指天线辐射或接收信号的能力。

增益越高,天线的辐射或接收能力就越强。

增益通常用分贝(dB)来表示。

天线的增益与其尺寸、形状、辐射模式等因素密切相关。

二、频率范围天线的频率范围是指天线能够工作的频率范围。

不同的天线适用于不同的频率范围。

例如,对于无线电通信系统,常见的频率范围包括2.4GHz、5GHz等。

三、方向性天线的方向性是指天线在空间中辐射或接收信号的特性。

方向性可以分为全向性和定向性。

全向性天线可以在360度范围内辐射或接收信号,而定向性天线只能在特定方向上进行辐射或接收。

定向性天线通常具有较高的增益。

四、带宽天线的带宽是指天线能够工作的频率范围。

带宽越大,天线在不同频率下的性能就越好。

带宽通常用百分比表示。

五、阻抗匹配天线的阻抗匹配是指天线的输入端阻抗与传输线或无线电设备的输出阻抗之间的匹配程度。

阻抗匹配对于天线和设备之间的信号传输非常重要。

如果阻抗不匹配,就会导致信号反射和损耗。

六、极化方式天线的极化方式是指天线辐射或接收信号时电磁波的振动方向。

常见的极化方式包括垂直极化、水平极化和圆极化。

不同的应用场景需要不同的极化方式。

七、天线类型根据不同的应用需求和工作频率,天线可以分为各种类型,包括定向天线、全向天线、扇形天线、饼状天线、螺旋天线等。

不同类型的天线具有不同的特点和适用范围。

八、天线材料天线的性能和特性与其材料密切相关。

常见的天线材料包括金属、塑料、陶瓷等。

不同的材料具有不同的电磁特性,影响天线的性能。

九、天线设计天线的设计是为了满足特定的应用需求和性能要求。

天线设计需要考虑到天线的形状、尺寸、材料、辐射模式等因素,以达到最佳的性能。

天线的主要参数包括增益、频率范围、方向性、带宽、阻抗匹配、极化方式等。

天线知识培训

天线知识培训

天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。

天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。

其基本原理基于电磁波的传播和辐射。

二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。

2. 按照方向性:可分为全向和定向天线。

3. 按照增益:可分为无源和有源天线。

4. 按照结构:可分为线天线和面天线。

不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。

三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。

2. 方向图:表示天线接收和辐射电磁波的方向和强度。

3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。

4. 带宽:表示天线的工作频率范围。

5. 极化:表示电场矢量的方向,影响着天线的性能。

四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。

电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。

五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。

常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。

工艺方面,需要考虑天线的精度、防腐、防水等因素。

六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。

现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。

七、天线测量与调试天线的性能需要通过实际测量来评估。

测量内容包括阻抗、方向图、增益、极化等。

一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。

八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。

天线基础知识

天线基础知识

。这种同一天线收发参数相同的性质被称为天线的收发互易性
,它可以用电磁场理论中的互易定理予以证明。
• 1.2.2 有效接收面积 ;

有效接收面积(Effective Aperture)是衡量接收天线接收
无线电波能力的重要指标。接收天线的有效接收面积的定义为
:当天线以最大接收方向对准来波方向进行接收时,并且天线
化,若符合左手螺旋,则为左旋圆极化。

图6显示了某一时刻,以+z轴为传播方向的x方向线极化
的场强矢量线在空间的分布图。图7和图8显示了某一时刻,以
+z轴为传播方向的右、左旋圆极化的场强矢量线在空间的分布
图。要注意到,固定时间的场强矢量线在空间的分布旋向与固
定位置的场强矢量线随时间的旋向相反。椭圆极化的旋向定义
20
20. 5
主轴
图5 天线方向图的一般形状

(2)半功率点波瓣宽度(HalfPower Beam Width, HPBW
)2θ0.5E或2θ0.5H:指主瓣最大值两边场强等于最大值的0.707倍 (或等于最大功率密度的一半)的两辐射方向之间的夹角,又
叫3分贝波束宽度。如果天线的方向图只有一个强的主瓣,其它
第1章 天线基础知识
• 1.1 天线的电参数 • 1.2 天线辐射基础 • 1.3 常见天线分类 • 1.4 阵列天线 • 1.5 智能天线
1.1 发射天线的电参数

描述天线工作特性的参数称为天线电参数(Basic Antenna
Parameters),又称电指标。它们是定量衡量天线性能的尺度。我
,与传输线之间存在阻抗匹配问题。天线与传输线的连接处称
为天线的输入端,天线输入端呈现的阻抗值定义为天线的输入 阻抗(Input Resistance),即天线的输入阻抗Zin为天线的输入端 电压与电流之比:

天线简介介绍

天线简介介绍

天线的历史与发展
历史
天线的发展可以追溯到20世纪初,当时的天线主要用于无线电报和广播。随着通 信技术的发展,天线也逐渐发展出了更多的种类和应用领域。
发展
目前,天线技术正在不断地发展和改进。新型材料、加工技术和计算机辅助设计 等技术的应用,使得天线的性能和可靠性得到了极大的提升。同时,智能天线的 出现也使得无线通信系统的性能和效率得到了显著提高。
研究热点包括新型太赫兹天线设计、高性能太赫兹天线制造 技术、太赫兹频段的传播特性等。
THANKS
感谢观看
阻抗失配
当天线与发射设备或接收设备之间的 阻抗不匹配时,会导致信号反射和能 量损失。
阻抗匹配电路
为了解决阻抗失配问题,需要设计阻 抗匹配电路,使天线与发射设备或接 收设备之间的阻抗匹配。
天线的极化方式
线极化
天线可以发射和接收线极化电磁波,即电场矢量在传播方向上的投影为一条直 线。
圆极化
天线可以发射和接收圆极化电磁波,即电场矢量在传播方向上的投影为一条旋 转的圆弧线。
天线的电参数
天线增益
天线增益是指天线在某特定方向 上的辐射强度与理想点源的辐射 强度之比,增益越高,信号传输
距离越远。
天线效率
天线效率是指天线辐射出去的功率 与输入到天线的功率之比,效率越 高,天线性能越好。
天线带宽
天线带宽是指天线能够正常工作的 频率范围,带宽越宽,天线的应用 范围越广。
天线的阻抗匹配
02
天线的基本Байду номын сангаас理
电磁波传播原理
01
02
03
电磁波的产生
天线是用来发射和接收电 磁波的设备,电磁波是由 交变的电场和磁场组成的 。

天线培训资料

天线培训资料

天线培训资料一、天线的基本概念天线,简单来说,就是一种用于发射和接收无线电波的装置。

无论是我们日常使用的手机、无线网络,还是广播电视、卫星通信等,都离不开天线的作用。

天线的主要功能是将传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

也就是说,它在发射时能将电信号转换成电磁波辐射出去,在接收时能将电磁波转换成电信号。

二、天线的分类天线的种类繁多,常见的分类方式有以下几种:1、按工作频段划分短波天线:工作在 3MHz 到 30MHz 频段。

超短波天线:工作在 30MHz 到 3000MHz 频段,例如我们常见的移动通信基站天线。

微波天线:工作在 3000MHz 以上频段,常用于卫星通信、雷达等领域。

2、按方向性划分全向天线:在水平方向上均匀辐射,例如室内的无线路由器天线。

定向天线:具有较强的方向性,将能量集中在特定方向上辐射,比如卫星电视接收天线。

3、按极化方式划分线极化天线:又分为水平极化和垂直极化,手机天线通常是线极化天线。

圆极化天线:分为左旋圆极化和右旋圆极化,在卫星通信中应用较多。

4、按用途划分通信天线:用于各种通信系统,如手机基站天线、卫星通信天线等。

广播天线:用于广播电视发射。

雷达天线:用于雷达系统,探测目标的位置和速度等信息。

三、天线的参数了解天线的性能,需要关注以下几个重要参数:1、频率范围这是天线能够有效工作的频段。

不同的应用需要不同频段的天线,例如 5G 通信需要特定频段的天线来支持高速数据传输。

2、增益天线增益表示天线在特定方向上辐射或接收电磁波的能力。

增益越高,信号在该方向上的传播距离越远,但覆盖范围可能会变窄。

3、方向性描述天线辐射或接收电磁波的方向性特性。

方向性好的天线可以减少干扰,提高通信质量。

4、输入阻抗天线与传输线之间的匹配程度由输入阻抗决定。

如果阻抗不匹配,会导致信号反射,降低传输效率。

5、驻波比用来衡量天线与传输线之间的匹配程度。

天线的基本参数

天线的基本参数

天线的基本参数天线是一种广泛应用于无线通信技术中的重要元件,它由发射/接收元件和一个反射器组成,可用来接收和发射电波。

天线的基本参数,包括其频率、发射功率、指向性能、输入阻抗和效率等,对于改善天线的工作性能来说至关重要。

由此可见,了解天线的基本参数是研究此领域的重要性质,因此本文将对天线的基本参数做一个简要的介绍。

首先,天线的频率是指它可以有效接收或发射的电磁波的频率范围,通常在0.3-300GHz之间。

由于在这个范围内天线的有效性能有所不同,因此天线的实际应用范围受限于其频率范围。

其次,天线的发射功率是指由天线发射的电路功率,可以认为是天线的输出信号强度。

一般来说,发射功率越大,发射距离越远,接收信号质量也越好,因此一般需要尽可能大的发射功率。

此外,天线的指向性性能也是重要的参数,它可以衡量天线发射和接收信号的方向性,也就是把信号发射或接收到一个特定的方向。

一般来说,天线只能指向特定的一个方向,这就是所谓的“单向性”,因此,要想有效的利用天线的能力,就需要精确的控制天线的方向。

再次,输入阻抗是指天线发射/接收时的阻抗值,正确的输入阻抗值可以有效的利用输入信号的能量,从而使天线更好的工作。

一般来说,输入阻抗越小,发射功率也就越大,因此,平均而言,输入阻抗越小越好。

最后,天线的效率也是重要的参数,效率可以反映出天线发射/接收的能源利用率。

一般来说,效率越高,发射/接收的能效比越高,就可以有效的节约能源。

综上所述,天线的基本参数是研究改善天线工作性能的重要参数,包括其频率、发射功率、指向性能、输入阻抗和效率等。

而且,找到正确的参数,对于改善天线的工作性能来说是非常重要的。

因此,在实际应用中,使用者应根据实际情况正确识别并调整各种参数,这有助于提高天线的性能。

总而言之,天线的基本参数是研究此领域的重要参数之一,要改善天线的工作性能,必须正确识别并调整各种参数,以实现最佳使用效果。

常用天线和无源器件技术参数汇总

常用天线和无源器件技术参数汇总

常用天线和无源器件技术参数汇总天线是无线通信系统中重要的组成部分,它通过发射和接收电磁波来实现无线信号的传输。

无源器件则是在电路中不需外加电源的元器件,如电阻、电容、电感等。

下面将对常用天线和无源器件的技术参数进行详细介绍。

1.天线参数:(1) 增益(Gain):指天线相对于理论上的理想点源天线的增益。

增益越高,天线辐射能力越强。

单位为dBi(相对于理论点源天线的增益)或dBd(相对于半波子天线的增益)。

(2) 方向性(Directivity):指天线辐射或接收信号的能力在各个方向上的分布。

一般用功率密度图或辐射图来表示。

(3) 频率(Frequency):指天线设计的工作频段。

在选择天线时,要确保其频率范围覆盖所需的工作频段。

(4) 阻抗(Impedance):天线的阻抗要与系统中其他组件的阻抗匹配,以达到最高效率。

(5) 极化方式(Polarization):天线的电磁波辐射方向与地面平面之间的夹角。

常见的极化方式有水平极化、垂直极化和圆极化。

2.无源器件参数:(1) 电阻(Resistance):电阻是物质对电流流动的阻碍程度的量度。

单位为欧姆(Ω)。

(2) 电感(Inductance):电感是导线或线圈储存磁能的能力。

单位为亨利(H)。

(3) 电容(Capacitance):电容是电荷存储的容量。

单位为法拉(F)。

(4) 系统带宽(System bandwidth):在无源器件应用中,系统带宽指的是可以通过无源器件的频率范围。

(5) 衰减(Dissipation):衰减是指电能从无源器件中转化为其他形式的能量,如热能。

它的单位为瓦特(W)。

(6) 第一峰返波损耗(Insertion loss):第一峰返波损耗是指无源器件引起的信号损耗。

单位一般为分贝(dB)。

(7) 耐压(Voltage rating):无源器件的耐压表示可以承受的最高电压。

单位为伏特(V)。

(8) 温度系数(Temperature coefficient):无源器件参数随温度变化的程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车天线
汽车天线又叫车载天线,一般汽车上的天线用于车上的收音机和电台,可分汽车内置天线和外置天线。

但根据不同用途的汽车也有安装其他的天线。

如公交车有DVB-T天线,车载TV天线。

物流及出租车还装有GSM天线、GPS卫星天线。

收音机和电台天线主要就是AM/FM天线、软PCB数字天线、AM/FM/TV天线等。

根据不同的功能和用途,所用的天线的频率也不同。

目录
名词释义:
又叫车载天线,是指设计安装在车辆上的移动通讯天线。

最常见就是吸盘天线。

由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。

结构分类:
车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。

缩短型:
由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。

缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。

八分之五波长和中部加感型
一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。

400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。

八分之五波长和中部加感型也有较高的增益,且价格比较便宜,因此得到广泛的使用。

在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。

由于吸盘天线是根据汽车使用环境而设计所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。

由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。

在天线选型阶段主要参考天线的外型和增益。

建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。

如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。

汽车天线(8张)
频率分类:
GSM天线
1. 工作频率:900MHZ/1800MHZ
900MHZ增益:3dBi
1800MHZ 增益:3dBi
2. VSWR:GSM〈1.8
DCS 〈1.8
3.线长:RG174线,3米/5米
4.安装方式:磁铁吸附
5.适用接头:SMA/SMB/GT5/BNC/MCX/MMCX
6.工作温度:-20℃~+85℃
7.贮藏温度:-40℃~+90℃
TV天线
1.电源电压DC 10.5∽16.5V
2.电源60∽100MA
3.工作频率48∽860MHZ
4.增益15±3DB
5.噪声系数≤7DB
6.输出阻抗75Ω
7.输出驻波≤3
8.环境温度 -20℃∽+70℃
9.贮藏温度 -40℃∽+90℃
收音机天线
1.电源电压DC 10.5V∽16.5V
2.电源电流 <80 MA
3.工作频率 AM/FM/
4.放大器增益
AM 5±3db
FM 3±3db
5.输出阻抗75Ω
6.天线夹角65°
7.环境温度 -20℃∽+85℃
8.贮藏温度 -40℃∽+90℃
功能分类:
汽车天线
一根小小的汽车天线,同时具备了数字广播、移动电视、GPS导航和语言识别等多种功能,申报国家发明专利10项。

用于接收和加强收音信号,目前的我国大部分地区信号多很弱,汽车还需外置天线,在信号不稳定的地区有很大的帮助。

汽车天线是一个静电释放器,主要是将行驶中汽车外壳积聚的静电释放出来,保护乘员安全和汽车电路。

汽车天线是指设计安装在车辆上的移动通讯天线,最常见就是吸盘天线。

由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。

按类型:
1、汽车电视天线
2、汽车收音机天线
3、GPS车载天线
4、汽车防静电天线
5、汽车自动伸缩天线
按安装型式:
1、粘贴式
2、吸盘式
3、即插型
4、螺纹
5、吸车顶
6、贴玻璃
7、卡边式。

相关文档
最新文档