广义回归神经网络及其在Matlab中的实现

合集下载

RBF神经网络:原理详解和MATLAB实现

RBF神经网络:原理详解和MATLAB实现

RBF神经⽹络:原理详解和MATLAB实现RBF神经⽹络:原理详解和MATLAB实现——2020年2⽉2⽇⽬录RBF神经⽹络:原理详解和MATLAB实现 (1)⼀、径向基函数RBF (2)定义(Radial basis function——⼀种距离) (2)如何理解径向基函数与神经⽹络? (2)应⽤ (3)⼆、RBF神经⽹络的基本思想(从函数到函数的映射) (3)三、RBF神经⽹络模型 (3)(⼀)RBF神经⽹络神经元结构 (3)(⼆)⾼斯核函数 (6)四、基于⾼斯核的RBF神经⽹络拓扑结构 (7)五、RBF⽹络的学习算法 (9)(⼀)算法需要求解的参数 (9)0.确定输⼊向量 (9)1.径向基函数的中⼼(隐含层中⼼点) (9)2.⽅差(sigma) (10)3.初始化隐含层⾄输出层的连接权值 (10)4.初始化宽度向量 (12)(⼆)计算隐含层第j 个神经元的输出值zj (12)(三)计算输出层神经元的输出 (13)(四)权重参数的迭代计算 (13)六、RBF神经⽹络算法的MATLAB实现 (14)七、RBF神经⽹络学习算法的范例 (15)(⼀)简例 (15)(⼆)预测汽油⾟烷值 (15)⼋、参考资料 (19)⼀、径向基函数RBF定义(Radial basis function——⼀种距离)径向基函数是⼀个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意⼀点c的距离,c点称为中⼼点,也就是Φ(x,c)=Φ(‖x-c‖)。

任意⼀个满⾜Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数。

标准的⼀般使⽤欧⽒距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。

在神经⽹络结构中,可以作为全连接层和ReLU层的主要函数。

⼀些径向函数代表性的⽤到近似给定的函数,这种近似可以被解释成⼀个简单的神经⽹络。

径向基函数在⽀持向量机中也被⽤做核函数。

常见的径向基函数有:⾼斯函数,⼆次函数,逆⼆次函数等。

在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。

在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。

而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。

本文将介绍在Matlab中实现神经网络的方法与实例。

首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。

一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。

每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。

这样,神经网络就能够模拟复杂的非线性关系。

常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。

前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。

神经网络的训练是通过最小化损失函数来优化模型的参数。

常用的训练算法包括梯度下降法和反向传播算法。

其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。

二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。

首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。

例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。

如何进行MATLAB神经网络的训练和预测

如何进行MATLAB神经网络的训练和预测

如何进行MATLAB神经网络的训练和预测【第一章】MATLAB神经网络的基础知识神经网络是一种模拟人类神经系统运行方式的计算模型,它通过模拟人类的感知、学习和决策过程,可以对复杂的问题进行处理和求解。

在实际应用中,MATLAB是一个常用的工具来进行神经网络的训练和预测。

本章将介绍MATLAB 神经网络的基础知识,包括神经网络的原理、MATLAB的神经网络工具箱以及神经网络训练和预测的一般步骤。

1.1 神经网络的原理神经网络由神经元(neuron)组成,每个神经元接收多个输入并产生一个输出。

神经网络的基本单元是感知器(perceptron),它由权重、偏置和激活函数组成。

权重决定了输入对输出的影响程度,偏置用于调整输出的偏移量,激活函数用于处理神经元的输出。

通过调整权重和偏置,神经网络可以学习和适应不同的输入输出模式。

常见的神经网络包括前馈神经网络(feedforward neural network)、循环神经网络(recurrent neural network)和卷积神经网络(convolutional neural network)。

前馈神经网络是最基本的神经网络类型,信息只能在网络中的一个方向流动,即从输入层到输出层。

循环神经网络具有反馈连接,可以记忆之前的状态信息,适用于序列数据的处理。

卷积神经网络则主要用于图像和语音等二维数据的处理。

1.2 MATLAB神经网络工具箱MATLAB提供了一个神经网络工具箱(Neural Network Toolbox),用于设计、训练和模拟神经网络。

该工具箱包括多种神经网络类型、各种激活函数、训练算法和性能函数等各种功能模块。

使用MATLAB神经网络工具箱可以方便地进行神经网络的建模和仿真。

在MATLAB神经网络工具箱中,神经网络被表示为一个网络对象(network object)。

网络对象由一系列图层(layer)组成,每个图层由若干个神经元组成。

网络对象还包括连接权重矩阵、偏置向量和训练参数等属性。

MATLAB中的神经网络模型构建与训练

MATLAB中的神经网络模型构建与训练

MATLAB中的神经网络模型构建与训练神经网络模型是一种模拟人脑神经元活动的数学模型,其可以用于进行各种复杂的数据分析和问题求解。

在MATLAB中,我们可以利用其强大的工具和函数来构建和训练神经网络模型。

本文将介绍MATLAB中神经网络模型的构建过程及其相关训练方法。

一、神经网络模型简介神经网络模型是由一系列相互连接的神经元组成的网络结构。

每个神经元都有多个输入和一个输出,输入通过权重被加权后,经过激活函数激活输出。

神经网络可以分为三层:输入层、隐藏层和输出层。

输入层接收原始数据,隐藏层进行信息处理和特征提取,而输出层给出最终结果。

二、神经网络构建在MATLAB中,可以通过Neural Network Toolbox来构建神经网络。

首先,我们需要确定网络结构,包括输入层神经元数、隐藏层神经元数和输出层神经元数。

接下来,我们调用network函数来创建一个空的神经网络对象。

```matlabnet = network;```然后,我们可以通过net的属性来设置神经网络的各个参数,如输入层的大小、隐藏层的大小、激活函数等。

```matlabnet.numInputs = 1; % 设置输入层神经元数net.numLayers = 2; % 设置网络层数net.biasConnect = [1; 1]; % 设置偏置net.inputConnect = [1; 0]; % 设置输入连接yerConnect = [0 0; 1 0]; % 设置层连接net.outputConnect = [0 1]; % 设置输出连接yers{1}.size = 10; % 设置隐藏层神经元数yers{1}.transferFcn = 'tansig'; % 设置激活函数yers{2}.transferFcn = 'purelin'; % 设置激活函数```上述代码中,我们设置了一个具有10个隐藏层神经元的神经网络,其输入和输出分别为1个。

Matlab中的神经网络预测方法

Matlab中的神经网络预测方法

Matlab中的神经网络预测方法引言神经网络是一种模拟人脑神经元的计算模型,通过构建输入层、隐藏层和输出层之间的连接,可以对复杂的非线性问题进行建模和预测。

在Matlab中,有丰富的神经网络工具箱,提供了多种神经网络预测方法和算法。

本文将介绍一些常用的神经网络预测方法,并说明其在Matlab中的实现原理和应用场景。

一、前馈神经网络(Feedforward Neural Network)前馈神经网络是最常见的神经网络模型,也是最基本的一种。

其模型结构包括输入层、隐藏层和输出层,信号在网络中只能向前传播,不会回流。

前馈神经网络使用反向传播算法进行训练,通过不断调整连接权值和阈值来提高网络的预测能力。

在Matlab中,可以使用feedforwardnet函数创建前馈神经网络模型。

该函数的输入参数包括隐藏层节点数、训练算法和激活函数等。

例如,以下代码创建一个具有10个隐藏层节点的前馈神经网络模型:```matlabnet = feedforwardnet(10);```创建好的神经网络模型可以通过train函数进行训练,如下所示:```matlabnet = train(net, X, Y);```其中X和Y为训练数据的输入和输出。

训练完成后,可以使用sim函数对新的数据进行预测,如下所示:```matlabY_pred = sim(net, X_pred);```Y_pred为预测结果,X_pred为待预测的输入数据。

二、递归神经网络(Recurrent Neural Network)递归神经网络是另一种常见的神经网络模型,不同于前馈神经网络,递归神经网络允许信号在网络中进行循环传播,使得模型可以处理序列数据和时间序列数据。

递归神经网络拥有记忆功能,可以通过上一时刻的输出来影响当前时刻的输出。

在Matlab中,可以使用narnet函数创建递归神经网络模型。

该函数的输入参数包括隐藏层节点数、训练算法和激活函数等。

matlab神经网络43个案例分析

matlab神经网络43个案例分析

MATLAB神经网络43个案例分析简介神经网络(Neural Network)是一种模拟人类神经元行为的计算模型,它通过对大量输入数据进行训练,学习到输入和输出之间的复杂关系。

MATLAB是一个强大的数学计算工具,具有丰富的神经网络函数和工具箱,可以用于神经网络的设计、训练和应用。

本文将介绍43个使用MATLAB进行神经网络分析的案例,主要包括神经网络的基本概念、神经网络模型的建立、参数的调整和优化等方面。

二级标题1: 基本概念在开始具体的案例分析之前,首先理解神经网络的基本概念是非常重要的。

三级标题1: 神经元神经网络的基本单元是神经元(Neuron),它模拟了生物神经元的工作原理。

神经元接收多个输入信号,并通过一个激活函数产生输出信号。

常用的激活函数包括Sigmoid函数、ReLU函数等。

三级标题2: 神经网络的结构神经网络由多层神经元组成,通常包括输入层、隐藏层和输出层。

输入层接收外部输入,隐藏层用于处理中间信息,输出层产生最终的输出。

三级标题3: 前向传播和反向传播神经网络的训练过程主要包括前向传播和反向传播两个步骤。

前向传播是通过输入数据按照网络结构进行计算,得到输出结果。

反向传播是根据输出结果与真实结果之间的误差,通过调整网络参数来提高模型性能。

二级标题2: 案例分析三级标题4: 案例1: 图像分类本案例通过使用神经网络和MATLAB工具箱,对手写数字图像进行分类。

首先,将图像数据转化为向量形式,并通过网络进行训练。

然后,将训练好的网络用于分类未知图像,并评估分类性能。

三级标题5: 案例2: 时序预测本案例使用神经网络来预测时间序列数据。

通过对历史数据进行训练,建立时序模型,并利用该模型来预测未来的数据。

通过调整网络结构和参数,提高预测准确性。

三级标题6: 案例3: 异常检测本案例利用神经网络进行异常检测。

通过对正常数据进行训练,建立正常模型,并使用该模型检测异常数据。

通过调整网络的灵敏度和阈值,提高异常检测的性能。

matlab神经网络

matlab神经网络

Matlab神经网络工具箱2010-7-21今天学的是BP神经网络,首先看的是一个关于非线性函数逼近的例子,最后得出一个心得:在使用newff函数生成一个新的网络时,神经元的层数和每一层的神经元数会对结果造成不小的影响,一般都采用[n,1]的建立方法,其中n为隐层的神经元数,1为输出层的神经元数。

然后是做了一个识别系统,算是一个较大的神经网络,具体的代码解释和分析如下:[alphabet,targets]=prprob;[R,Q]=size(alphabet);[S2,Q]=size(targets);S1=10;[R,Q]=size(alphabet);[S2,Q]=size(targets);P=alphabet;net=newff(minmax(P),[S1,S2],{'logsig','logsig'},'traingdx');net.LW{2,1}=net.LW{2,1}*0.01;net.b{2}=net.b{2}+0.01;其中的proprob是matlab自带的一个生成字母表布尔值的函数。

可以具体查看。

T=targets;net.performFcn='sse';net.trainParam.goal=0.1;net.trainParam.show=20;net.trainParam.epochs=5000;net.trainParam.mc=0.95;[net,tr]=train(net,P,T)接下来首先进行无噪声训练。

netn.trainParam.goal=0.6;netn.trainParam.epochs=300;T=[targets targets targets targets];for pass=1:10P=[alphabet,alphabet,(alphabet+randn(R,Q)*0.1),(alphabet+randn(R,Q)*0.2) ];[netn,tr]=train(net,P,T);end接下来是有噪声训练,采用随机数生成影响输入矩阵的方式。

使用Matlab进行神经网络优化问题求解的方法

使用Matlab进行神经网络优化问题求解的方法

使用Matlab进行神经网络优化问题求解的方法一、引言在当今信息时代,神经网络已经成为解决复杂问题的重要工具。

随着计算能力的提升,神经网络优化问题的求解变得越来越重要。

而Matlab作为一种强大的科学计算软件,能够提供丰富的工具和函数来解决神经网络优化问题。

本文将介绍如何使用Matlab来解决神经网络优化问题。

二、神经网络优化问题的建模在使用Matlab解决神经网络优化问题之前,首先需要对问题进行建模。

通常来说,神经网络优化问题可以分为两类:单目标优化问题和多目标优化问题。

单目标优化问题是指希望优化网络的某个特定输出,常见的问题有回归问题和分类问题。

而多目标优化问题则是希望在多个指标上获得最优解,常见的问题有多目标分类和多目标回归问题。

在建模过程中,需要确定网络的结构和参数。

神经网络的结构通常由输入层、隐藏层和输出层组成。

输入层接受原始数据,隐藏层进行特征提取,输出层给出最终的结果。

而参数则包括权重和偏置,这些参数需要进行调整以达到最优解。

三、使用Matlab解决单目标优化问题1. 数据准备在解决单目标优化问题之前,首先需要准备好数据集。

数据集应该包含输入值和对应的目标值。

2. 网络训练使用Matlab的神经网络工具箱,可以方便地进行网络训练。

首先,需要创建一个神经网络对象,并设置好网络的结构和参数。

然后,使用训练函数对网络进行训练,常见的训练函数有Levenberg-Marquardt算法和梯度下降算法。

通过训练函数,可以不断调整网络的权重和偏置,直到达到最优解。

3. 网络评估训练完网络后,需要对网络进行评估。

可以使用测试数据集来评估网络的性能,通常采用预测误差、准确率等指标来评估网络的表现。

四、使用Matlab解决多目标优化问题解决多目标优化问题与解决单目标优化问题的方法类似,只是目标变成了多个。

可以使用多种方法来解决多目标优化问题,如加权法、约束法和分级法等。

1. 加权法加权法是一种常用的解决多目标优化问题的方法。

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。

在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。

而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。

本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。

2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。

该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。

此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。

3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。

该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。

我们可以通过修改这个向量的元素来调整神经网络的结构和参数。

例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。

Matlab提供了各种用于数据导入和预处理的函数和工具。

例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。

5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。

MATLAB中的神经网络算法详解

MATLAB中的神经网络算法详解

MATLAB中的神经网络算法详解一、引言神经网络是一种模拟生物神经元工作原理的计算模型,具有模式识别、分类、优化等各种应用。

在日常生活和工业生产中,我们经常会遇到需要处理大量数据并进行复杂计算的问题。

而神经网络算法正是为了解决这些问题而设计的。

MATLAB作为一种功能强大的数值计算软件,提供了丰富的神经网络算法库。

本文将通过对MATLAB中神经网络算法的详细解释,展示其在数据处理和分析方面的广泛应用。

二、神经网络基础1. 神经网络结构神经网络由神经元(或称为节点)和连接这些神经元的权重组成。

一般而言,神经网络通过层与层之间的连接来进行信息传递。

常见的神经网络结构包括前馈神经网络和循环神经网络。

前馈神经网络是最常见的神经网络结构之一。

它的信息传递是单向的,不会存在回路。

循环神经网络则允许信息在网络中进行循环传递,这使得它能够处理具有时序特点的数据。

2. 权重与偏置在神经网络中,每个连接都有一个权重,用来表示两个神经元之间的关系强度。

权重值可以是正、负,以及接近于零的任意值。

权重值越大,表示两个神经元之间的相关性越强。

除了权重,神经网络中还存在一个偏置值,用来表示神经元的激活阈值。

3. 激活函数激活函数决定了神经元的输出结果。

常见的激活函数包括Sigmoid函数、ReLU函数等。

激活函数的引入可以使神经网络模型拟合非线性问题。

三、MATLAB中的神经网络算法1. 建立神经网络模型在MATLAB中,可以利用神经网络工具箱来建立神经网络模型。

首先,我们需要确定网络的架构,包括输入层的节点数、隐藏层的节点数、输出层的节点数等。

然后,我们可以使用MATLAB提供的函数创建一个神经网络对象,设定各层的节点数以及激活函数类型。

2. 训练神经网络神经网络的训练过程是一个优化问题。

训练过程中,我们需要定义一个损失函数来衡量模型在训练数据上的拟合程度。

MATLAB提供了多种优化算法,如反向传播算法、遗传算法等,用于调整网络中的权重和偏置,从而最小化损失函数。

MATLAB实例:BP神经网络用于回归任务

MATLAB实例:BP神经网络用于回归任务

MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。

通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。

因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。

神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。

BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。

如下图所⽰。

整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。

这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。

y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。

这⾥隐层节点数为20。

BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。

(完整word版)matlab回归分析方法

(完整word版)matlab回归分析方法

第八章回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型.如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。

本章讨论其中用途非常广泛的一类模型——统计回归模型。

回归模型常用来解决预测、控制、生产工艺优化等问题。

变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。

另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来.例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。

回归分析就是处理变量之间的相关关系的一种数学方法。

其解决问题的大致方法、步骤如下:(1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型;(4)判断得到的模型是否适合于这组数据;(5)利用模型对因变量作出预测或解释。

应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上.运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能.MATLAB等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。

MATLAB统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。

运用MATLAB统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。

本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。

广义s变换 matlab -回复

广义s变换 matlab -回复

广义s变换matlab -回复广义s变换(generalized s-transform)是一种时频分析方法,在信号处理和图像处理领域有广泛应用。

它将信号在时域和频域上进行分析,能够提供关于信号短时和频率变化的信息。

本文将逐步介绍广义s变换的原理、计算方法以及在实际应用中的一些问题和解决方法。

第一部分:广义s变换的原理广义s变换是基于希尔伯特变换的一种方法,通过使用复数信号的频谱信息来进行时频分析。

其核心思想是将信号表示为时频平面上的三维图像,其中横轴表示时间,纵轴表示频率,颜色表示幅度。

广义s变换的原理可以描述为以下几个步骤:1. 选择希尔伯特滤波器(Hilbert filter),它是一种能够将实数信号转换为复数信号的滤波器。

希尔伯特滤波器的频率响应为:H(f) = {0, f < 0;1, f = 0;2, f > 0;},其中f表示频率。

2. 对信号进行希尔伯特变换,将实数信号转换为复数信号。

希尔伯特变换可以通过将信号与希尔伯特滤波器的频率响应进行卷积得到。

3. 计算复数信号的频谱,得到在时域和频域上的信息。

频谱的幅度表示信号的能量,相位表示信号的相位差。

第二部分:广义s变换的计算方法广义s变换的计算方法可以总结为以下几个步骤:1. 对信号进行希尔伯特变换,将实数信号转换为复数信号。

希尔伯特变换可以使用matlab中的hilbert函数进行计算。

2. 对复数信号进行频谱分析,可以使用matlab中的fft函数进行计算。

将复数信号的频谱表示为幅值谱和相位谱。

3. 将幅值谱和相位谱进行归一化处理,以便于在时频平面上进行可视化。

归一化可以通过将幅值谱和相位谱分别除以其最大值来实现。

4. 将归一化后的幅值谱和相位谱表示在时频平面上,可以使用matlab 中的surf函数绘制三维图像。

第三部分:广义s变换的应用问题与解决方法在实际应用中,广义s变换可能会面临一些问题,例如数据长度不足、噪声干扰等。

在Matlab中进行回归分析和预测模型的技术

在Matlab中进行回归分析和预测模型的技术

在Matlab中进行回归分析和预测模型的技术在当今数据驱动的社会中,回归分析和预测模型成为了数据科学领域中不可或缺的技术。

在这方面,Matlab作为一个功能强大且广泛应用的数学软件包,为进行回归分析和预测模型提供了丰富的工具和函数。

本文将探讨在Matlab中使用回归分析进行数据建模和预测的技术。

首先,回归分析是一种通过建立一个数学方程来描述变量之间关系的统计方法。

它常用于研究自变量(也称为预测变量)与因变量之间的关系。

在Matlab中,回归分析主要通过线性回归模型来实现。

线性回归模型假设因变量与自变量之间存在线性关系。

在Matlab中,可以使用regress函数来拟合线性回归模型。

该函数可以通过最小二乘法估计回归系数,使得预测变量与实际观测值之间的残差平方和最小化。

除了线性回归模型,Matlab还提供了其他类型的回归模型,如多项式回归模型、岭回归模型和弹性网络回归模型等。

多项式回归模型通过增加自变量的多项式项来处理非线性关系。

岭回归模型和弹性网络回归模型则通过引入正则化项来解决多重共线性问题,提高模型的鲁棒性和预测能力。

在进行回归分析时,特征工程是一个重要的环节。

特征工程涉及到对原始数据进行处理和转换,以提取对模型建立和预测有用的特征。

在Matlab中,可以利用数据预处理工具箱来进行特征工程。

数据预处理工具箱提供了一系列函数和工具来处理数据中的缺失值、异常值和重复值,进行特征选择和降维,并进行数据标准化和归一化等操作。

通过合理的特征工程,可以提高模型的性能和准确度。

除了回归分析,预测模型在许多实际应用中也起着重要的作用。

预测模型可以根据历史数据和趋势来预测未来的趋势和行为。

在Matlab中,可以利用时间序列分析和神经网络等方法进行预测建模。

时间序列分析是一种用于预测未来数值的统计方法,广泛应用于经济学、金融学和气象学等领域。

在Matlab中,时间序列分析主要通过自回归(AR)模型和移动平均(MA)模型来实现。

MATLAB技术神经网络拟合

MATLAB技术神经网络拟合

MATLAB技术神经网络拟合导言:神经网络是一种重要的机器学习技术,具有强大的模式识别和函数拟合能力。

MATLAB作为一种专业的科学计算软件,提供了丰富的工具箱和功能,用于设计和实现神经网络模型。

本文将介绍MATLAB技术在神经网络拟合方面的应用,以及相关的算法原理和实践案例。

一、神经网络概述神经网络是受到人类神经系统启发的一种计算模型,可以通过构建具有多个神经元层的网络结构来实现模式识别和函数拟合。

每个神经元通过权重和激活函数来计算输入信号的输出,多个神经元按照特定的连接方式形成网络。

神经网络的训练过程可以通过调整权重和激活函数的参数来优化模型的性能。

二、MATLAB神经网络工具箱MATLAB提供了神经网络工具箱,用于方便地设计和实现神经网络模型。

工具箱包含了各种神经网络算法和函数,支持多种拓扑结构和学习算法,提供了丰富的可视化和调试工具。

通过使用神经网络工具箱,用户可以快速构建自己的神经网络模型,并进行训练和测试。

三、神经网络拟合问题神经网络拟合是指通过神经网络模型来逼近某个未知函数的过程。

这种拟合方法可以应用于多个领域,如数据挖掘、金融预测、图像处理等。

在MATLAB中,可以通过使用神经网络工具箱中的函数和工具来解决各种拟合问题。

1. 函数拟合问题函数拟合是神经网络最常见的应用之一。

给定一组输入输出的样本数据,神经网络可以通过训练来拟合出输入和输出之间的关系。

MATLAB提供了fitnet函数,可以用于构建并训练一个前馈神经网络,并实现函数拟合。

例如,我们可以使用MATLAB生成一组正弦函数的样本数据,然后通过神经网络进行拟合。

首先,我们创建一个包含若干样本点的数据集,并将其划分为训练集和测试集。

然后,使用fitnet函数选择合适的网络结构和训练参数,并利用训练集对神经网络进行训练。

最后,使用测试集评估神经网络的拟合效果。

2. 数据挖掘问题数据挖掘是指从大量数据中提取有用信息的过程。

神经网络可以应用于数据挖掘问题,例如模式识别、分类、聚类等。

(完整word版)Matlab的神经网络工具箱入门

(完整word版)Matlab的神经网络工具箱入门

Matlab的神经网络工具箱入门在command window中键入help nnet〉〉help nnetNeural Network ToolboxVersion 7。

0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能.nnstart —神经网络启动GUInctool —神经网络分类工具nftool —神经网络的拟合工具nntraintool —神经网络的训练工具nprtool —神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。

查看—查看一个神经网络。

网络的建立功能。

cascadeforwardnet —串级,前馈神经网络。

competlayer —竞争神经层.distdelaynet - 分布时滞的神经网络。

elmannet —Elman神经网络。

feedforwardnet —前馈神经网络.fitnet - 函数拟合神经网络。

layrecnet —分层递归神经网络。

linearlayer —线性神经层.lvqnet —学习矢量量化(LVQ)神经网络。

narnet - 非线性自结合的时间序列网络。

narxnet —非线性自结合的时间序列与外部输入网络。

newgrnn —设计一个广义回归神经网络。

newhop —建立经常性的Hopfield网络。

newlind —设计一个线性层.newpnn —设计概率神经网络.newrb - 径向基网络设计.newrbe - 设计一个确切的径向基网络.patternnet - 神经网络模式识别.感知- 感知。

selforgmap - 自组织特征映射。

timedelaynet - 时滞神经网络。

利用网络。

网络—创建一个自定义神经网络。

SIM卡—模拟一个神经网络.初始化- 初始化一个神经网络.适应—允许一个神经网络来适应。

Matlab神经网络工具及其相关知识

Matlab神经网络工具及其相关知识

Matlab神经网络工具简介MATLAB软件中包含MATLAB神经网络工具箱,工具箱以人工神经网络为基础,只要根据自己需要调用相关函数,就可以完成网络设计、权值初始化、网络训练等,MATLAB神经网络工具箱包括的网络有感知器、线性网络、BP神经网络、径向基网络、自组织网络和回归网络,BP神经网络工具箱主要包括newff,sim 和train三个神经网络函数各函数的解释如下:1 newff::::BP神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数函数功能:构建一个BP神经网络。

函数形式:net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)P:输入数据矩阵T:输出数据矩阵S:隐含层节点数TF:节点传递函数,包括硬限幅传递函数hardlim,对称硬限幅传递函数hardlims,线性传递函数purelin,正切S型传递函数tansig,对数S型传递函数logsig BTF:训练函数,包括梯度下降BP算法训练函数traingd,动量反传的梯度下降BP算法训练函数traingdm,动态自适应学习率的梯度下降BP算法训练函数traingda,动量反传和动态自适应学习率的梯度下降BP算法训练函数traingdx,Levenberg_Marquardt的BP算法训练函数trainlmBLF:网络学习函数,包括BP学习规则learngd,带动量项的BP学习规则learngdmPF:性能分析函数,包括均值绝对误差性能分析函数mae,均方差性能分析函数mse IPF:输入处理函数OPF:输出处理函数DDF:验证数据划分函数一般在使用过程中设置前六个参数,后四个参数采用系统默认参数。

2 train::::BP神经网络训练函数神经网络训练函数神经网络训练函数神经网络训练函数函数功能:用训练数据训练BP神经网络。

函数形式:[net,tr] = train(NET,X,T,Pi,Ai)NET:待训练网络X:输入数据矩阵T:输出数据矩阵Pi:初始化输入层条件Ai:初始化输出层条件net:训练好的网络tr:训练过程记录一般在使用过程中设置前三个参数,后两个参数采用系统默认参数。

MATLAB中的循环神经网络实现指南

MATLAB中的循环神经网络实现指南

MATLAB中的循环神经网络实现指南引言:循环神经网络(Recurrent Neural Network)是一类特殊的神经网络结构,具有记忆和上下文依赖的能力,在自然语言处理、时间序列分析等领域有广泛的应用。

在MATLAB中,我们可以利用神经网络工具箱(Neural Network Toolbox)来实现循环神经网络,并通过调整网络结构和参数来获得所需的性能。

本文将详细介绍如何在MATLAB中实现循环神经网络,并提供一些实用的技巧和注意事项。

一、循环神经网络基础1.1 循环神经网络结构循环神经网络由若干个神经元组成,这些神经元之间通过权重进行连接,形成一个有向图结构。

不同于前馈神经网络,循环神经网络中的神经元可以接受自身之前的输出作为输入,因此具备记忆和上下文依赖的能力。

循环神经网络的结构可以通过图形化方式表示,例如循环神经网络解析图(Recurrent Neural Network Diagram)。

1.2 循环神经网络模型常见的循环神经网络模型包括Elman网络、Jordan网络和长短时记忆网络(Long Short-Term Memory, LSTM)。

Elman网络是一种最简单的循环神经网络模型,每个神经元接收上一时刻的自身输出和外部输入作为输入;Jordan网络在Elman网络的基础上,将当前时刻的自身输出也作为输入。

LSTM是一种具备记忆和遗忘机制的循环神经网络模型,能够有效地解决长期依赖问题。

二、MATLAB中的循环神经网络实现2.1 环境准备在实现循环神经网络之前,我们需要做一些准备工作。

首先,确保已经安装了MATLAB以及神经网络工具箱。

其次,准备好数据集,可以是文本数据、时间序列数据等。

需要注意的是,数据集要经过预处理,例如归一化、分词等。

最后,为了提高训练效果,可以考虑使用GPU加速。

2.2 网络建模在MATLAB中,我们可以通过构建网络模型对象来实现循环神经网络。

首先,选择合适的网络模型。

[matlab工具箱]神经网络NeuralNet

[matlab工具箱]神经网络NeuralNet

[matlab⼯具箱]神经⽹络NeuralNet//⽬的是学习在BP神经⽹络的基础上添加遗传算法,蚁群算法等优化算法来优化⽹络,这是后话。

先简单了解了MATLAB中的神经⽹络⼯具箱,⼯具箱功能还是⾮常强⼤的,已经可以拟合出⾮常多的曲线来分析了。

神经⽹络⼯具箱选择(4种)今天下载了⾃带的example跑了⼀次试⼀下选择隐藏神经元个数训练结束后可以在plot查看各种图表,这⾥只对⼯具箱操作做简单介绍最近⼀段时间在研究如何利⽤预测其销量个数,在⽹上搜索了⼀下,发现了很多模型来预测,⽐如利⽤回归模型、时间序列模型,GM(1,1)模型,可是⾃⼰在结合实际的⼯作内容,发现这⼏种模型预测的精度不是很⾼,于是再在⽹上进⾏搜索,发现神经⽹络模型可以来预测,并且有很多是结合时间序列或者SVM(⽀持向量机)等组合模型来进⾏预测,本⽂结合实际数据,选取了常⽤的BP神经⽹络算法,其算法原理,因⽹上⼀⼤堆,所以在此不必⼀⼀展⽰,并参考了这篇博⽂,运⽤matlab 2016a,给出了下⾯的代码,并最终进⾏了预测clcclear allclose all%bp 神经⽹络的预测代码%载⼊输出和输⼊数据load C:\Users\amzon\Desktop\p.txt;load C:\Users\amzon\Desktop\t.txt;%保存数据到matlab的⼯作路径⾥⾯save p.mat;save t.mat;%注意t必须为⾏向量%赋值给输出p和输⼊tp=p;t=t;%数据的归⼀化处理,利⽤mapminmax函数,使数值归⼀化到[-1.1]之间%该函数使⽤⽅法如下:[y,ps] =mapminmax(x,ymin,ymax),x需归化的数据输⼊,%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]%返回归化后的值y,以及参数ps,ps在结果反归⼀化中,需要调⽤[p1,ps]=mapminmax(p);[t1,ts]=mapminmax(t);%确定训练数据,测试数据,⼀般是随机的从样本中选取70%的数据作为训练数据%15%的数据作为测试数据,⼀般是使⽤函数dividerand,其⼀般的使⽤⽅法如下:%[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)[trainsample.p,valsample.p,testsample.p] =dividerand(p,0.7,0.15,0.15);[trainsample.t,valsample.t,testsample.t] =dividerand(t,0.7,0.15,0.15);%建⽴反向传播算法的BP神经⽹络,使⽤newff函数,其⼀般的使⽤⽅法如下%net = newff(minmax(p),[隐层的神经元的个数,输出层的神经元的个数],{隐层神经元的传输函数,输出层的传输函数},'反向传播的训练函数'),其中p为输⼊数据,t为输%tf为神经⽹络的传输函数,默认为'tansig'函数为隐层的传输函数,%purelin函数为输出层的传输函数%⼀般在这⾥还有其他的传输的函数⼀般的如下,如果预测出来的效果不是很好,可以调节%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';TF1='tansig';TF2='purelin';net=newff(minmax(p),[10,1],{TF1 TF2},'traingdm');%⽹络创建%⽹络参数的设置net.trainParam.epochs=10000;%训练次数设置net.trainParam.goal=1e-7;%训练⽬标设置net.trainParam.lr=0.01;%学习率设置,应设置为较少值,太⼤虽然会在开始加快收敛速度,但临近最佳点时,会产⽣动荡,⽽致使⽆法收敛net.trainParam.mc=0.9;%动量因⼦的设置,默认为0.9net.trainParam.show=25;%显⽰的间隔次数%指定训练参数% net.trainFcn = 'traingd'; %梯度下降算法% net.trainFcn = 'traingdm'; %动量梯度下降算法% net.trainFcn = 'traingda'; %变学习率梯度下降算法% net.trainFcn = 'traingdx'; %变学习率动量梯度下降算法% (⼤型⽹络的⾸选算法)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最⼩%共轭梯度算法% net.trainFcn = 'traincgf'; %Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; %Polak-Ribiere修正算法,内存需求⽐Fletcher-Reeves修正算法略⼤% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求⽐Polak-Ribiere修正算法略⼤% (⼤型⽹络的⾸选算法)%net.trainFcn = 'trainscg'; % ScaledConjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量⽐上⾯三种算法都⼩很多% net.trainFcn = 'trainbfg'; %Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均⽐共轭梯度算法⼤,但收敛⽐较快% net.trainFcn = 'trainoss'; % OneStep Secant Algorithm,计算量和内存需求均⽐BFGS算法⼩,⽐共轭梯度算法略⼤% (中型⽹络的⾸选算法)%net.trainFcn = 'trainlm'; %Levenberg-Marquardt算法,内存需求最⼤,收敛速度最快% net.trainFcn = 'trainbr'; %贝叶斯正则化算法% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'%在这⾥⼀般是选取'trainlm'函数来训练,其算对对应的是Levenberg-Marquardt算法net.trainFcn='trainlm';[net,tr]=train(net,trainsample.p,trainsample.t);%计算仿真,其⼀般⽤sim函数[normtrainoutput,trainPerf]=sim(net,trainsample.p,[],[],trainsample.t);%训练的数据,根据BP得到的结果[normvalidateoutput,validatePerf]=sim(net,valsample.p,[],[],valsample.t);%验证的数据,经BP得到的结果[normtestoutput,testPerf]=sim(net,testsample.p,[],[],testsample.t);%测试数据,经BP得到的结果%将所得的结果进⾏反归⼀化,得到其拟合的数据trainoutput=mapminmax('reverse',normtrainoutput,ts);validateoutput=mapminmax('reverse',normvalidateoutput,ts);testoutput=mapminmax('reverse',normtestoutput,ts);%正常输⼊的数据的反归⼀化的处理,得到其正式值trainvalue=mapminmax('reverse',trainsample.t,ts);%正常的验证数据validatevalue=mapminmax('reverse',valsample.t,ts);%正常的验证的数据testvalue=mapminmax('reverse',testsample.t,ts);%正常的测试数据%做预测,输⼊要预测的数据pnewpnew=[313,256,239]';pnewn=mapminmax(pnew);anewn=sim(net,pnewn);anew=mapminmax('reverse',anewn,ts);%绝对误差的计算errors=trainvalue-trainoutput;%plotregression拟合图figure,plotregression(trainvalue,trainoutput)%误差图figure,plot(1:length(errors),errors,'-b')title('误差变化图')%误差值的正态性的检验figure,hist(errors);%频数直⽅图figure,normplot(errors);%Q-Q图[muhat,sigmahat,muci,sigmaci]=normfit(errors);%参数估计均值,⽅差,均值的0.95置信区间,⽅差的0.95置信区间[h1,sig,ci]= ttest(errors,muhat);%假设检验figure, ploterrcorr(errors);%绘制误差的⾃相关图figure, parcorr(errors);%绘制偏相关图运⾏之后的,结果如下:BP神经⽹络的结果分析图训练数据的梯度和均⽅误差之间的关系图验证数据的梯度与学习次数残差的正态的检验图(Q-Q图)在⽹上,发现可以通过神经⽹络⼯具箱这个GUI界⾯来创建神经⽹络,其⼀般的操作步骤如下:1:在输⼊命令⾥⾯输⼊nntool命令,或者在应⽤程序这个选项下找到Netrual Net Fitting 这个应⽤程序,点击打开,就能看见如下界⾯2:输⼊数据和输出数据的导⼊(在本⽂中选取了matlab⾃带的案例数据)3:随机选择三种类型的数据所占的样本量的⽐例,⼀般选取默认即可4:隐层神经元的确定5:训练算法的选取,⼀般是选择默认即可,选择完成后点击<train>按钮即可运⾏程序6:根据得到的结果,⼀般是MSE的值越⼩,R值越接近1,其训练的效果⽐较,并第⼆张图给出了神经⽹络的各参数的设置以及其最终的结果,其拟合图R越接近1,模型拟合的更好最终的结果图7:如果所得到的模型不能满⾜你的需求,则需重复上述的步骤直⾄能够得到你想要的精确度8:将最终的得到的各种数据以及其拟合值进⾏保存,然后查看,就可以得到所要的拟合值最后参考了⽹上和MATLAB的帮助,给出了⼀些与神经⽹络相关的函数,希望能够帮助⼤家。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广义回归神经网络及其在Matlab中的实现
广义回归神经网络是径向基函数神经网络的一种特殊形式。

与目前流行的前馈神经网络相比,它具有下述几项优点。

1)首先,它的网络结构相对简单,除了输入和输出层外,一般只有两个隐藏层,模式层和求和层。

而模式中隐藏单元的个数,与训练样本的个数是相同的。

2)其次,它的网络训练非常简单。

当训练样本通过隐藏层的同时,网络训练随即完成。

而不像前馈神经网络一样,需要非常长的训练时间和高的计算成本。

3)由于简单的网络结构,我们不需要对网络的隐藏层数和隐藏单元的个数进行估算和猜测。

由于它是从径向基函数引申而来,因此只有一个自由参数,即径向基函数的平滑参数。

而它的优化值可以通过交叉验证的方法非常容易的得到。

4)最后,它的一个非常值得强调的优点就是,网络计算结果的全局收敛性。

标准的前馈神经网络的计算结果则会经常不能达到全局收敛,而停止在局部收敛。

下面是我昨晚匆忙写下的一段Matlab程序,展示如何实现广义回归神经网络和通过交叉验证来估算径向基函数的平滑参数,希望对大家有帮助。

下图是程序运算结果,由此可以轻易看出,平滑参数的最优值应在1.3和1.4之间。

相关文档
最新文档