新北师大版八年级上册《.认识无理数》教案
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。
北师大版数学八年级上册1《认识无理数》教学设计6
北师大版数学八年级上册1《认识无理数》教学设计6一. 教材分析《认识无理数》是北师大版数学八年级上册的教学内容,这部分内容是在学生已经掌握了有理数的概念和运算法则的基础上进行的。
无理数是实数的一个分支,它不能表示为两个整数的比,且无限不循环小数。
本节课的主要内容有:理解无理数的概念,了解无理数与有理数的区别,掌握无理数的估算方法,以及了解无理数在现实生活中的应用。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但无理数的概念比较抽象,学生理解起来可能会有一定的困难。
因此,在教学过程中,需要教师通过生活中的实例和丰富的教学手段,帮助学生建立无理数的概念,并理解无理数与有理数的区别。
三. 教学目标1.了解无理数的概念,能正确地表示无理数。
2.掌握无理数与有理数的区别,能进行无理数的估算。
3.理解无理数在现实生活中的应用,提高学生的数学应用能力。
四. 教学重难点1.无理数的概念和表示方法。
2.无理数与有理数的区别。
3.无理数的估算方法。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生通过自主学习、合作交流,掌握无理数的概念和性质,提高学生的数学思维能力和团队合作能力。
六. 教学准备1.教学PPT。
2.教学案例和实例。
3.学生分组合作的准备。
七. 教学过程1.导入(5分钟)通过提出问题:“生活中有哪些现象是无法用有理数来描述的?”引导学生思考,引出无理数的概念。
2.呈现(10分钟)教师通过PPT呈现无理数的定义和性质,让学生初步了解无理数的概念。
同时,通过实例展示无理数在现实生活中的应用,让学生感受无理数的存在和重要性。
3.操练(10分钟)学生通过自主学习和合作交流,掌握无理数的表示方法,并能正确地表示无理数。
4.巩固(10分钟)学生通过PPT上的练习题,巩固无理数的概念和性质,能正确地区分无理数和有理数。
5.拓展(10分钟)学生通过PPT上的拓展问题,了解无理数在现实生活中的应用,提高学生的数学应用能力。
北师大版八年级数学上册:2.1《认识无理数》教学设计
北师大版八年级数学上册:2.1《认识无理数》教学设计一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节内容是在学生学习了实数、有理数的基础上,引入无理数的概念,使学生了解无理数在生活中的应用和实际意义,培养学生运用数学解决实际问题的能力。
教材通过丰富的实例和探究活动,让学生感受无理数的存在,体验数的概念的扩展,培养学生的数感。
二. 学情分析八年级的学生已经学习了实数和有理数,对数的概念有一定的了解。
但是,学生对无理数的理解可能还比较模糊,需要通过具体的实例和实践活动来加深对无理数概念的理解。
此外,学生可能对无理数的存在感到困惑,需要教师通过讲解和引导,让学生逐渐接受无理数的存在。
三. 教学目标1.了解无理数的概念,理解无理数的存在和实际意义。
2.能够识别常见的无理数,如π、√2等。
3.能够运用无理数解决实际问题,提高运用数学解决实际问题的能力。
4.培养学生的数感,提高学生的数学思维能力。
四. 教学重难点1.重点:无理数的概念和实际意义的理解。
2.难点:无理数的识别和运用。
五. 教学方法1.实例教学法:通过具体的实例,让学生感受无理数的存在和实际意义。
2.实践活动法:通过实践活动,让学生加深对无理数概念的理解。
3.问题驱动法:通过提问和引导,让学生主动探索无理数的性质和运用。
六. 教学准备1.教材和教案。
2.投影仪和教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用投影仪展示生活中的实例,如圆的周长和面积的关系,引出无理数的概念。
2.呈现(10分钟)讲解无理数的定义,通过具体的实例,让学生感受无理数的存在。
如π、√2等。
3.操练(10分钟)让学生进行练习,识别常见的无理数,加深对无理数概念的理解。
4.巩固(10分钟)讲解无理数的性质和运用,让学生通过实践活动,加深对无理数概念的理解。
5.拓展(10分钟)引导学生思考无理数在生活中的应用和实际意义,培养学生的数感。
八年级数学上册2.1认识无理数教学设计 (新版北师大版)
八年级数学上册2.1认识无理数教学设计(新版北师大版)一. 教材分析《八年级数学上册2.1认识无理数》这一节,主要让学生了解无理数的概念,掌握无理数的性质,以及学会用有理数和无理数表示实数。
教材通过生活中的实例引入无理数的概念,接着引导学生通过观察、思考、探究,掌握无理数的性质。
在这一过程中,学生需要理解无理数与有理数的区别,以及无理数在实际生活中的应用。
二. 学情分析八年级的学生已经学习了有理数的概念和性质,具备一定的数学基础。
但是,对于无理数这一概念,学生可能较为陌生,难以理解。
因此,在教学过程中,教师需要结合学生的实际情况,从生活实例出发,引导学生逐步理解无理数的概念,并掌握无理数的性质。
三. 教学目标1.让学生了解无理数的概念,知道无理数是一种实数。
2.让学生掌握无理数的性质,能够辨别一个数是有理数还是无理数。
3.让学生理解无理数在实际生活中的应用,提高学生运用数学知识解决问题的能力。
四. 教学重难点1.重难点:无理数的概念和性质。
2.难点:理解无理数在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例引入无理数的概念,让学生在实际情境中感受无理数。
2.启发式教学法:引导学生观察、思考、探究,从而掌握无理数的性质。
3.小组合作学习:让学生在小组讨论中,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示无理数的定义、性质和实际应用。
2.教学素材:准备一些生活中的实例,用于引入无理数的概念。
3.练习题:准备一些有关无理数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如圆的周长、声音的频率等,引导学生思考这些实例与数学的关系。
进而提出问题:“你知道无理数吗?无理数是什么?”让学生分享自己对无理数的理解。
2.呈现(15分钟)教师利用课件,详细讲解无理数的定义、性质和特点。
同时,通过展示一些实际应用的例子,让学生了解无理数在生活中的重要作用。
北师大版数学八年级上册1《认识无理数》教案5
北师大版数学八年级上册1《认识无理数》教案5一. 教材分析《认识无理数》是人教版八年级数学上册的一章,本章主要让学生了解无理数的概念、性质和应用。
无理数是实数的一个重要组成部分,与有理数相比,无理数具有无限不循环的小数特点。
本章内容在数学系统中占有重要地位,为学生深入学习三角函数、复数等数学知识打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了有理数、实数等基础知识,对数的运算和性质有一定的了解。
但学生对无理数的概念、性质和应用可能较为陌生,因此,在教学过程中,需要注重引导学生从已有知识出发,逐步理解和掌握无理数的相关概念。
三. 教学目标1.了解无理数的概念,掌握无理数的性质;2.能够对无理数进行简单的运算和估计;3.理解无理数在实际生活中的应用,提高数学素养。
四. 教学重难点1.无理数的概念及其与有理数的区别;2.无理数的性质,如无限不循环小数、不能表示为分数等;3.无理数在实际生活中的应用。
五. 教学方法1.采用情境教学法,以生活实例引导学生认识无理数;2.采用探究教学法,让学生通过小组合作、讨论,探索无理数的性质;3.采用实践教学法,让学生通过实际操作,体会无理数在生活中的应用。
六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节;2.准备无理数的性质和运算练习题,用于操练和家庭作业环节;3.准备PPT或黑板,用于呈现和板书。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算圆的周长等,引导学生认识无理数。
让学生感受无理数在实际生活中的存在,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT或黑板,呈现无理数的概念和性质。
详细解释无理数的定义,阐述无理数与有理数的区别,展示无理数的性质,如无限不循环小数、不能表示为分数等。
3.操练(10分钟)让学生进行无理数的运算练习,如求无理数的和、差、积、商等。
通过实际操作,让学生加深对无理数的理解,巩固所学知识。
4.巩固(10分钟)通过小组合作、讨论,让学生探究无理数的性质。
北师大版数学八年级上册2.1.2认识无理数教学设计
1.通过探索无理数的发现过程,培养学生自主探究、合作交流的能力。
2.通过数轴比较无理数的大小,使学生掌握数形结合的数学思想方法。
3.利用实际问题引入无理数,引导学生运用数学知识解决生活中的问题,提高学生将数学应用于实际情境的能力。
4.通过讲解和练习,使学生掌握无理数的运算方法,培养他们的逻辑思维能力和数学推理能力。
3.合作交流,共同提高:鼓励学生进行小组讨论和交流,分享彼此的学习心得和问题解决方法,提高他们的合作能力和沟通能力。
4.紧密联系生活,注重实际应用:结合生活实际,设计相关习题,让学生在实际问题中运用无理数知识,提高数学应用能力。
5.适时总结,巩固知识:在教学过程中,教师应适时进行总结,帮助学生梳理无理数知识体系,巩固所学内容。
四、教学内容与过程
(一)导入新课
1.教师通过提问方式引导学生回顾有理数的知识,为新课的学习做好铺垫:“同学们,我们已经学习了有理数,那么有理数包括哪些数呢?它们有什么特点?”
2.学生回答后,教师继续引导:“今天我们将学习一种新的数,它和有理数不同,它叫做无理数。那么,什么是无理数呢?它又有什么特点呢?接下来,我们就一起来探讨这个问题。”
4.课后拓展:
a.查找资料,了解无理数的发现和发展历程,了解数学家们在无理数研究方面的贡献。
b.尝试利用无理数知识解决实际问题,例如计算圆形物体的面积、周长等。
5.家长参与:
a.请同学们向家长介绍本节课所学无理数知识,增进家长对子女学习情况的了解。
b.家长协助孩子完成课后作业,关注孩子在数学学习中的困难和问题。
2.学生在小组内进行讨论,教师巡回指导,关注学生的讨论过程,适时给予提示和引导。
3.各小组汇报讨论成果,教师点评并总结。
新北师大版数学八上(教案):2.1.认识无理数
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《认识无理数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆的周长与直径的比值π)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索无理数的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和表示方法这两个重点。对于难点部分,如无理数的估算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如估算√2的大小。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量一个正方形的对角线长度,验证√2的无理性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是指不能表示为两个整数之比的数,它们通常以无限不循环小数的形式出现。无理数在数学中具有重要地位,如在几何、物理等学科中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以圆的周长与直径的比值π为例,解释π是一个无理数,并探讨其在实际中的应用。
举例:计算√9和√16,解释其结果为3和4,强调开平方运算的结果可能是有理数,也可能是无理数。
(3)无理数在几何中的应用:学生可能难以理解无理数在几何图形中的应用,如勾股定理。教师应通过具体图形和实例,引导学生理解无理数在几何中的意义。
举例:直角三角形中,边长为1、√2、1的三角形的勾股定理应用,说明√2是无理数。
在讲授过程中,我注意到一些学生在理解无理数表示方法时显得有些困惑,特别是根号的使用。我通过重复解释和举例,让学生看到无理数表示的直观性,并强调它与有理数的区别。此外,通过小ቤተ መጻሕፍቲ ባይዱ讨论和实验操作,学生们有了更直观的感受,这有助于他们深化对无理数的认识。
北师大版八年级数学上册:21认识无理数教学设计
3.引出无理数:告诉学生,像√2这样不能表示为两个整数之比的数,我们称之为无理数。从而导入新课——认识无理数。
(二)讲授新知
1.无理数的定义:详细讲解无理数的概念,强调无理数的不可度量性和无限不循环性。
-解释:无理数是无限不循环小数,不能精确地表示为分数形式。
6.分层教学,关注差异:针对不同学生的学习能力,设计不同难度的练习题和拓展任务,使每个学生都能在原有基础上得到提高。
-对于基础较弱的学生,重点在于理解无理数的概念和基本性质;对于基础较好的学生,可以增加一些拓展性问题,提高他们的思维能力。
7.持续评价,激励发展:采用多元化的评价方式,如课堂问答、小组讨论、作业反馈等,对学生的学习过程和结果进行持续评价,激励学生不断进步。
(二)过程与方法
1.通过对无理数的探究,培养学生独立思考、合作交流的能力。
2.引导学生通过观察、猜想、验证等环节,发现无理数的性质,提高学生的归纳总结能力。
3.运用数轴、几何图形等工具,将无理数与直观图形相结合,培养学生的空间想象力和数形结合思想。
4.通过解决实际问题,让学生体会数学在实际生活中的应用,提高学生的实际问题解决能力。
-解释无理数与有理数的区别和联系。
-计算√9-√16,并说明结果是有理数还是无理数。
2.实际应用题:
-一个正方形的对角线长度是边长的√2倍,求该正方形的对角线长度。
-估算圆的周长,已知半径为3cm,π取3.14。
-某同学在跑步时,以每秒√2米的速度匀速前进,求1分钟内跑过的距离。
3.拓展提升题:
-证明:如果一个数的平方是无理数,那么这个数本身也是无理数。
7.课后作业:布置适量的课后作业,巩固学生对无理数的认识,提高学生的实际问题解决能力。
北师大版八年级上册2.1认识无理数教学设计
三、教学重难点和教学设想
(一)教学重难点
1.无理数概念的理解:无理数对于学生来说是新的数学概念,理解无理数的本质和特点是一大难点。学生需要从具体的例子中抽象出无理数的定义,并理解其与有理数的区别。
2.无理数的运算:无理数的运算规则与有理数不同,如何进行无理数的近似计算、比较大小等是教学的另一个重点和难点。
2.自主探究,合作交流:鼓励学生在小组内或全班范围内进行讨论,通过自主探究和合作交流,发现无理数的性质和规律。在此过程中,教师应适时引导,帮助学生突破难点。
3.利用多媒体,直观演示:运用多媒体教具和软件,如几何画板、计算器等,直观演示无理数在数轴上的位置、无理数的运算过程等,增强学生的直观体验。
4.分层教学,因材施教:针对不同学生的学习水平和能力,设计不同难度的例题和练习,使每个学生都能在原有基础上得到提高。
(1)已知某正方形的对角线长为10cm,求该正方形的面积。
(2)计算圆的周长与直径的比值,并说明这个比值为什么是一个无理数。
4.探究题:小组合作,探究以下问题:
(1)无理数在数轴上的位置关系。
(2)如何用数轴上的点来表示一个无理数。
5.思考题:让学生思考以下问题,并用自己的语言总结:
(1)无理数与有理数的区别和联系。
(2)无理数在数学和其他学科中的应用。
作业要求:
1.学生需独立完成基础练习题和提高题,确保对无理数的概念、性质和运算有深刻的理解。
2.应用题和探究题要求学生在小组内合作完成,培养团队合作精神和解决问题的能力。
3.思考题要求学生在完成作业后进行总结,提高自己的数学思维能力。
4.作业完成后,学生需认真检查,确保解答过程正确、清晰。
新北师大版八年级上册《2.1.认识无理数》教案
新北师大版八年级上册《2.1.认识无理数》教案第二章实数2.1. 理解无理数教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力培训要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感和价值要求1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分开展交流、讨论、探究等教学活动,培养学生的合作与研究精神3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学困难1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教具有两个边长为1的正方形,剪刀.投影片两张:第一页:动手(记录为§2.1.1a);表2:补充练习(记录为§2.1.1b)教学过程ⅰ. 创造问题情境,介绍新课程:[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.是的,我们在小学学过非负数。
在初中的第一天,我们发现数字是不够的。
我们引入了负数,也就是说,我们把小学里学到的正数和零扩展到了有理数的范围。
有理数包括整数和分数。
有理数的范围能满足我们实际生活的需要吗?现在让我们一起研究这个问题ⅱ. 教授新课程1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).【老师】通过大家的共同努力,每个小组都完成了任务。
北师大版八年级数学上册2.1. 认识无理数(第1课时)教案
1. 认识无理数(第1课时)一、教学分析教学目标:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;重点、难点:能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;课型:新授课情感态度价值观:学生亲自动手做拼图活动,培养学生的动手能力和探索精神;二、教学过程设计第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?第二环节:课题引入1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?第三环节:获取新知【议一议】:已知22a=,请问:①a可能是整数吗?②a可能是分数吗?【释一释】:释1.满足22a=的a为什么不是整数?释2.满足22a=的a为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形(右1)2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3) 第五环节:课堂小结内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗? 第六环节:布置作业习题2.1板书设计 情景引入————————— 合作探究———— 1.—————— 1. ——————2.—————— 2.——————三、教学反思。
八年级数学上册第二章实数:认识无理数第2课时认识无理数教案新版北师大版
八年级数学上册教案新版北师大版:2.1认识无理数第2课时教学目标【知识与能力】掌握无理数的概念;能用所学定义正确判断所给数的属性.【过程与方法】借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.【情感态度价值观】在掌握估算方法的过程中,发展学生的数感和估算能力.教学重难点【教学重点】能用所学定义正确判断所给数的属性.【教学难点】无理数概念的建立.教学准备计算器、立方体、多媒体课件.教学过程第一环节:情境引入导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如−1,0,2,3,…)分数(如13,−25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建1.数的小数表示面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)【思考】 a ,哪个更接近正方形的实际边长?【归纳总结】 a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a =1.41421356…,它是一个无限不循环小数.【做一做】 (1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢? (提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.[设计意图] 让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,c =1.25992105…是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么?3,45,59,-845,211. 【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·; 无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能. [设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.第三环节:课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是 ( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数.4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n. (2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第五环节:布置作业1.教材作业【必做题】教材随堂练习.【选做题】教材习题2.2第2,4题.2.课后作业【基础巩固】1.面积为3的正方形的边长为x ,则x ( )A .1<x <2B .2<x <3C .3<x <4D .4<x <52.一个正三角形的边长是4,高为h ,则h 是 ( )A .整数B .分数C .有限小数D .无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是 ,则斜边长是 数.【拓展探究】4.设半径为a 的圆的面积为20 π.(1)a 是有理数吗?说说你的理由;(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5. (3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.板书设计2.1.2认识无理数1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.教学设计反思成功之处本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.不足之处对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.再教设计知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.。
八年级数学上册2.1认识无理数教案 新版北师大版
八年级数学上册2.1认识无理数教案新版北师大版一. 教材分析本节课的主题是“认识无理数”,是无理数概念的学习。
无理数是实数的重要组成部分,与有理数相对应。
学生在学习有理数的基础上,进一步认识无理数,理解无理数的性质和无理数在实际生活中的应用。
教材通过引入π、√2等具体例子,让学生感受无理数的存在,并通过观察、实验、推理等方法,引导学生认识无理数的概念。
二. 学情分析八年级的学生已经学习了有理数,对实数的概念有了一定的了解。
但无理数作为实数的一个分支,与有理数有很大的不同,学生可能难以理解。
因此,在教学过程中,需要结合学生的认知水平,采用生动形象的例子和直观的演示,引导学生理解和接受无理数的概念。
三. 教学目标1.让学生理解无理数的概念,认识无理数的存在。
2.让学生掌握无理数的性质,了解无理数在实际生活中的应用。
3.培养学生的观察能力、实验能力和推理能力。
四. 教学重难点1.教学重点:无理数的概念和性质。
2.教学难点:无理数的理解和应用。
五. 教学方法采用问题驱动法、情境教学法、观察实验法、小组合作法等教学方法。
通过生动形象的例子和直观的演示,引导学生观察、实验、推理,从而理解和掌握无理数的概念。
六. 教学准备1.准备相关例题和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备相关教学素材,如π、√2等。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念,进而引出无理数的概念。
提问:“同学们,我们已经学习了有理数,那么你们知道有理数有哪些特点吗?今天我们将要学习一种新的数——无理数,你们猜猜无理数有哪些特点呢?”2.呈现(10分钟)利用多媒体展示无理数的定义和性质,让学生直观地感受无理数的存在。
呈现无理数的定义:“无理数是不能表示为两个整数比的数。
”呈现无理数的性质:“无理数是实数的一部分,与有理数相对应。
无理数不能精确表示,它们的小数部分是无限不循环的。
”3.操练(15分钟)让学生通过观察、实验、推理等方法,加深对无理数概念的理解。
北师大版数学八年级上册1《认识无理数》教学设计7
北师大版数学八年级上册1《认识无理数》教学设计7一. 教材分析《认识无理数》是北师大版数学八年级上册的教学内容,这部分内容是在学生已经掌握了有理数的概念和运算法则的基础上进行学习的。
无理数是实数的重要组成部分,它包括无限不循环小数和无限循环小数。
本节课的教学内容主要包括无理数的定义、性质和估算方法,以及无理数在实际生活中的应用。
教材通过丰富的实例和生动的活动,引导学生认识无理数,理解无理数的概念,感受无理数在生活中的重要性。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数的概念和运算法则有了初步的了解。
但是,学生对无理数的认识还比较陌生,无理数的概念和性质较为抽象,学生理解起来可能会有一定的困难。
因此,在教学过程中,需要教师通过生动的生活实例和丰富的教学活动,帮助学生建立起无理数的直观形象,引导学生理解和掌握无理数的概念和性质。
三. 教学目标1.知识与技能:让学生理解无理数的定义,掌握无理数的性质,学会估算无理数的大小。
2.过程与方法:通过观察、实验、探究等活动,培养学生提出问题、分析问题、解决问题的能力。
3.情感态度与价值观:让学生感受数学与生活的密切联系,体验成功的喜悦,提高学习数学的兴趣。
四. 教学重难点1.重点:无理数的定义和性质。
2.难点:无理数的估算方法。
五. 教学方法1.情境教学法:通过生活实例和数学故事,激发学生的学习兴趣,引导学生理解和掌握无理数的概念和性质。
2.启发式教学法:在教学过程中,教师引导学生观察、实验、探究,激发学生的思维,培养学生提出问题、分析问题、解决问题的能力。
3.小组合作学习:学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,展示无理数的定义、性质和估算方法。
2.教学素材:准备一些生活实例和数学故事,用于引导学生理解和掌握无理数的概念和性质。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例和数学故事,引导学生认识无理数,激发学生的学习兴趣。
北师大版数学八年级上册1《认识无理数》教学设计5
北师大版数学八年级上册1《认识无理数》教学设计5一. 教材分析《认识无理数》是北师大版数学八年级上册的教学内容,本节课主要让学生了解无理数的概念,理解无理数与有理数的区别,通过实例感受无理数的存在,从而培养学生的数形结合思想,提高学生的数学思维能力。
二. 学情分析学生在七年级时已经学习了有理数,对数的概念有了初步的认识,但无理数作为一个新的概念,对学生来说比较抽象,难以理解。
因此,在教学过程中,教师需要从学生的实际出发,通过具体实例,引导学生感受无理数的存在,理解无理数的概念。
三. 教学目标1.了解无理数的概念,理解无理数与有理数的区别。
2.能够识别常见的无理数,如π、√2等。
3.能够运用无理数的概念解决实际问题。
四. 教学重难点1.重点:无理数的概念,无理数与有理数的区别。
2.难点:无理数的理解,无理数的存在感受。
五. 教学方法1.情境教学法:通过具体实例,引导学生感受无理数的存在。
2.数形结合法:通过图形直观展示无理数的特点。
3.自主探究法:学生通过小组合作,共同探讨无理数的概念。
六. 教学准备1.教学课件:制作课件,展示无理数的实例和图形。
2.教学素材:准备一些具体的无理数实例,如π、√2等。
3.计算器:用于计算和展示无理数的值。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的概念,为新课的学习做好铺垫。
然后,教师提出问题:“同学们,你们知道除了有理数之外,还有其他的数吗?”从而引出无理数的概念。
2.呈现(10分钟)教师通过课件展示一些无理数的实例,如π、√2等,并让学生尝试用计算器计算这些无理数的值。
同时,教师解释无理数的概念,即无限不循环小数。
3.操练(10分钟)教师布置一些练习题,让学生区分无理数和有理数。
学生独立完成后,教师选取部分学生的答案进行讲解。
4.巩固(10分钟)教师通过课件展示一些生活中的实际问题,让学生运用无理数的概念解决问题。
例如,计算足球场地的周长和面积等。
北师大版八年级数学上册第二章实数第1节认识无理数教学设计
一、教学目标
(一)知识与技能
1.理解无理数的概念,掌握无理数与有理数的区别,能够识别常见的无理数,例如π和√2等。
2.学会使用数轴比较无理数的大小,能够进行无理数的近似计算,提高数学运算能力。
3.能够运用无理数的性质进行简单的数学推导,为后续学习打下基础。
(四)课堂练习,500字
课堂练习是检验学生知识掌握情况的重要环节。我会设计一系列由浅入深的练习题,让学生独立完成。这些题目将涵盖无理数的定义、性质、大小比较和近似计算等方面。
在学生完成练习后,我会组织他们进行互相批改和讨论,鼓励他们解释自己的解题过程,分享解题心得。我会及时给予反馈,指出学生的错误和不足,并提供正确的解题方法。通过这样的方式,学生能够及时巩固所学知识,提高解题能力。
3.生活实例分析:请同学们在生活中找到一个涉及无理数的实例,如建筑、艺术、科学等领域,分析无理数在这个实例中的应用,并说明其重要性。这将有助于同学们认识到数学与生活的紧密联系,提高数学在实际生活中的应用能力。
4.小组合作任务:以小组为单位,设计一道关于无理数的数学题目,要求题目具有一定的挑战性和趣味性。各小组之间可以互相交换题目进行解答,并在课堂上分享解题过程和心学生在情境中感知数学,提高学习的兴趣和参与度。
-及时反馈,针对学生的个别差异,给予个性化指导,帮助学生克服学习难点。
-培养学生的数学语言表达能力,让他们能够清晰地表达自己的思考和推理过程。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生的已有知识作为切入点,激发他们对新知识的兴趣和好奇心。首先,我会通过一个简单的数轴活动开始本节课。让学生在数轴上标出他们已知的整数和分数,然后提问:“数轴上的点是否都已经被我们找到了对应的数?”这个问题将引导学生思考数轴上除了有理数之外,是否还有其他类型的数。
北师大版八年级数学上册:2.1《认识无理数》教案
北师大版八年级数学上册:2.1《认识无理数》教案一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节课的主要内容是让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握一些估算无理数大小方法。
教材通过引入π和√2等实际例子,帮助学生建立起无理数的直观印象,进而引导学生通过观察、思考、探究,发现无理数的特点和性质。
二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对数的概念有一定的了解。
但是,学生对无理数的概念和性质可能感到陌生,理解起来有一定难度。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动具体的例子和实际操作,帮助学生理解和掌握无理数的概念。
三. 教学目标1.了解无理数的概念,理解无理数与有理数的关系。
2.能够运用逼近法估算无理数的大小。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.重点:无理数的概念和性质。
2.难点:理解无理数与有理数的关系,以及运用逼近法估算无理数的大小。
五. 教学方法1.采用情境教学法,通过引入实际例子,激发学生的学习兴趣。
2.采用探究教学法,引导学生通过观察、思考、动手操作,自主发现无理数的特点和性质。
3.采用讲解法,教师详细讲解无理数的概念和性质,引导学生理解和掌握。
4.采用小组合作学习法,鼓励学生互相讨论、交流,共同解决问题。
六. 教学准备1.准备相关课件和教学素材。
2.准备计算器、纸张等学习工具。
七. 教学过程1.导入(5分钟)利用课件展示π和√2的实际应用场景,如圆的周长和物体尺寸的测量等,引发学生对无理数的兴趣。
同时,提出问题:“你们认为π和√2是什么类型的数?”让学生思考并发表观点。
2.呈现(15分钟)教师讲解无理数的概念,通过PPT展示无理数的定义和性质,让学生了解无理数的特点。
同时,举例说明无理数与有理数的关系,如π和√2都是无理数,而2和3是有理数。
3.操练(10分钟)教师提出问题:“如何估算无理数的大小?”引导学生运用逼近法估算无理数的大小。
北师大版数学八年级上册2.1.1认识无理数教学设计
一、教学目标
(一)知识与技能
1.理解无理数的概念,掌握无理数与有理数的区别和联系,能够识别常见的无理数,例如π和√2等。
2.学会使用数轴比较无理数的大小,能够进行无理数的近似计算,提高学生的数学运算能力。
3.掌握无理数的基本性质,如无理数的不可约性、无理数与有理数的运算规律等,为后续学习打下基础。
1.分组讨论:将学生分成小组,针对以下问题进行讨论:
-无理数在实际生活中的应用例子;
-无理数与有理数的运算规律;
-无理数证明的方法。
2.小组分享:各小组派代表分享讨论成果,其他小组进行补充和评价。教师在此过程中,引导学生相互学习,相互借鉴,提高课堂氛围。
(四)课堂练习
1.设计具有针对性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实践中巩固所学知识。
2.无理数的运算:通过具体例题,讲解无理数与有理数的加减乘除运算规律,以及无理数的大小比较方法。同时,强调在计算过程中,如何进行近似计算,提高学生的运算能力。
3.无理数的证明:引导学生通过合情推理和严谨证明来理解无理数的存在。以根号2为例,使用反证法进行证明,让学生感受数学的严谨性。
(三)学生小组讨论
(二)过程与方法
在教学过程中,采用以下方法使学生达到以上目标:
1.采用情境引入法,通过实际例子或故事激发学生对无理数的兴趣,引导学生主动探究无理数的奥秘。
2.利用数轴、图片等直观教具,帮助学生形象地理解无理数的概念,培养学生的直观想象能力。
3.设计小组讨论、合作探究等活动,让学生在交流互动中掌握无理数的性质和运算规律,提高学生的合作能力和解决问题的能力。
2.学生在数学运算方面,对无理数的处理可能存在困难。教师应关注学生的运算过程,及时纠正错误,指导学生掌握无理数的运算规律。
北师大版数学八年级上册1《认识无理数》教案7
北师大版数学八年级上册1《认识无理数》教案7一. 教材分析《认识无理数》是北师大版数学八年级上册第一单元的第一课时,本节课的内容包括了解无理数的定义、性质和应用。
无理数是实数的一个重要组成部分,它对于学生来说是一个新的概念,难度较大。
通过本节课的学习,学生能够理解无理数的概念,掌握无理数的性质,并能够运用无理数解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对于实数的概念有一定的了解。
但是,无理数作为一个新的概念,学生可能难以理解。
因此,在教学过程中,教师需要从学生的实际出发,用生动形象的例子和实际问题引入无理数的概念,激发学生的学习兴趣,引导学生主动参与学习。
三. 教学目标1.了解无理数的定义,能够正确地判断一个数是否为无理数。
2.掌握无理数的性质,能够运用无理数解决一些实际问题。
3.培养学生的逻辑思维能力和数学素养,提高学生的数学思维水平。
四. 教学重难点1.无理数的定义和性质。
2.运用无理数解决实际问题。
五. 教学方法1.情境教学法:通过生动的例子和实际问题,引导学生了解无理数的定义和性质。
2.探究教学法:通过学生的自主探究和实践,让学生掌握无理数的性质和运用。
3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,包括无理数的定义、性质和应用等方面的内容。
2.教学素材:准备一些实际问题,用于引导学生运用无理数解决。
3.黑板、粉笔:用于板书和标注重要内容。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实际问题,如测量金字塔的高度、计算运动员的跳远距离等,引导学生思考这些问题是如何解决的。
通过这些问题,引出无理数的概念。
2.呈现(15分钟)利用PPT课件呈现无理数的定义和性质,让学生初步了解无理数的概念。
同时,通过例题和练习题,让学生巩固无理数的定义和性质。
3.操练(15分钟)让学生分组进行讨论,每组选择一个实际问题,运用无理数进行解决。
北师大版八年级数学上册:2.1《认识无理数》教学设计1
北师大版八年级数学上册:2.1《认识无理数》教学设计1一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节课主要让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握一些估算无理数大小的方法。
教材通过实例引入无理数的概念,让学生在实际问题中感受无理数的存在,并通过探究无理数的性质,使学生对无理数有更深入的了解。
二. 学情分析学生在七年级时已经学习了有理数,对数的运算、平方根等概念有了一定的了解。
但学生对无理数的概念和性质可能还比较陌生,需要通过实例和探究活动来逐步理解和掌握。
此外,学生可能对无理数的实际应用价值有一定的疑问,需要在教学中加以引导和解释。
三. 教学目标1.了解无理数的概念,能正确识别无理数和有理数。
2.理解无理数与有理数的关系,掌握无理数的性质。
3.学会估算无理数的大小,提高数的估算能力。
4.培养学生的探究能力和合作精神,提高学生解决实际问题的能力。
四. 教学重难点1.无理数的概念和性质。
2.估算无理数的大小。
五. 教学方法1.实例引入:通过实际问题引出无理数的概念,让学生感受无理数的存在。
2.小组探究:学生进行小组讨论和探究,共同发现无理数的性质。
3.讲练结合:在讲解无理数的概念和性质的同时,结合练习题进行巩固。
4.数形结合:利用图形和图像帮助学生直观地理解无理数的大小。
六. 教学准备1.PPT课件:制作相关的PPT课件,展示无理数的实例和性质。
2.练习题:准备一些有关无理数的练习题,用于巩固和拓展学生的知识。
3.图形工具:准备一些图形工具,如直尺、圆规等,用于数形结合的教学。
七. 教学过程1.导入(5分钟)通过一个实际问题引出无理数的概念,如“√2的平方等于多少?”,让学生感受无理数的存在。
2.呈现(10分钟)呈现无理数的定义和性质,如“无理数是不能表示为两个整数比的数”,并通过PPT课件展示一些无理数的实例,如π、√2等。
3.操练(10分钟)让学生进行一些有关无理数的练习题,如“判断以下哪个数是无理数?”、“计算√3的平方”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
2.1. 认识无理数
教学目标
(一)教学知识点
1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
2.能判断给出的数是否为有理数;并能说出理由.
(二)能力训练要求
1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.
2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.
(三)情感与价值观要求
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.
教学重点
1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.
2.会判断一个数是否为有理数.
教学难点
1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2.判断一个数是否为有理数.
教具准备
有两个边长为1的正方形,剪刀.
投影片两张:
第一张:做一做(记作§2.1.1 A);
第二张:补充练习(记作§2.1.1 B).
教学过程
Ⅰ.创设问题情境,引入新课:
[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?
[生]在小学我们学过自然数、小数、分数.
[生]在初一我们还学过负数.
[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
Ⅱ.讲授新课
1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?
[生]好.(学生非常高兴地投入活动中).
[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.
同学们非常踊跃地呈现自己的作品给老师.
[师]现在我们一齐把大家的做法总结一下:
下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?
[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.
[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.
[生乙]因为
9
1
3
1
3
1
,
9
4
3
2
3
2
,
4
1
2
1
2
1
=
⨯
=
⨯
=
⨯
,…两个相同因数的乘积都为分数,所以a不可能是
分数.
[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.
2.做一做:投影片§2.1.1 A
(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?
(2)设该正方形的边长为b,则b应满足什么条件?
(3)b是有理数吗?
[师]请大家先回忆一下勾股定理的内容.
[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.
[师]在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.
[生甲]因为22=4,32=9,4<5<9,所以b不可能是整数.
[生乙]没有两个相同的分数相乘得5,故b不可能是分数.
[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.
[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.
我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.
Ⅲ.课堂练习
(一)课本P25随堂练习
如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?
解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分
数.
Ⅳ.课时小结
1.通过拼图活动,让学生感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.
2.能判断一个数是否为有理数.
Ⅴ.课后作业
课本P49习题2.1
解:设长、宽分别为3、2的长方形的对角线长为a,得a2=32+22,a2=13
a不可能是整数,也不可能是分数.
Ⅵ.活动与探究
下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.
解:如图,AB=2,BE=1,AB、BE是有理数.
AD2=AB2+BD2=22+32=13,AC2=1+1=2.
AE2=AB2+BE2=22+12=5.
AC、AD、AE既不是整数,也不是分数,所以不是有理数.
§2.1.1 认识无理数(一)
一、问题的提出(讨论a2=2中的a既不是整数,也不是分数)
二、做一做(由勾股定理得b2=5,且b既不是整数,也不是分数)
三、练习
四、小结
五、作业
无理数的引入是比较重要的,也渗透着估计数的大小的问题,为后面教学内容做一个好的铺垫。