金属材料成型基础之金属液态成型(ppt 101页)_5572

合集下载

第一章 金属液态成形理论基础

第一章 金属液态成形理论基础

第一节 液态金属充型能力与流动性
0、什么是液态金属的充型能力
1)定义:
液体金属充满铸型型腔,获得尺寸精确、轮廓清晰的 成型件的能力,称为充型能力。
2)充型能力对成型的影响
充型能力不足时,会产生浇不足、冷隔、夹渣、气孔 等缺陷。
3)影响充型能力的因素
充型能力首先取决于金属本身的流动性(流动能力),同 时又受铸型性质、浇注条件和铸件结构等因素影响。
一、铸件的凝固方式
在铸件凝固过程中,其断面上一般存在三个区 域:固相区、凝固区和液相区。
1、分类
依据对铸件质量影响较大的凝固区的宽窄划分 铸件的凝固方式为如下三类:
(1)逐层凝固
纯金属和共晶成分的合金在凝固过程中不存在液、固并 存的凝固区,随着温度下降,固体层不断加厚,液体不 断减少,直达铸件中心,这种凝固方式称为逐层凝固。
机械应力
二、铸件的变形及其防止
1、变形的原因:
铸件内部残余内应力。 只有原来受拉伸部分产生压缩 变形、受压缩部分产生拉伸变 形,才能使铸件中的残余内应 力减小或消除。
平板铸件的变形
杆件的变形
床身铸件的变形
粱形铸件的弯曲变形
2、防止措施:
减小应力; 将铸件设计成对称结构,使其内应力互相平衡; 采用反变形法; 设置拉肋; 时效处理。
2、冷裂纹的特征
裂纹细小,呈连续直线状,裂缝内有金属光泽或轻 微氧化色。
3、防止措施
凡是能减少铸件内应力和降低合金脆性的因素 均能防止冷裂。 设置防裂肋亦可有效地防止铸件裂纹。
防裂肋
三、合金的吸气性
液态合金中吸入的气体,若在冷凝过程中不能溢 出,滞留在金属中,将在铸件内形成气孔。
一)气孔的危害
气孔破坏了金属的连续性,减少了其承载的有效 截面积,并在气孔附近引起应力集中,从而降低 了铸件的力学性能。 弥散性气孔还可促使显微缩松的形成,降低铸件 的气密性。

第一篇金属的液态成形-图文

第一篇金属的液态成形-图文

第一篇金属的液态成形-图文1.金属的液态成形(铸造)1.0概述将金属材料加热到高温熔化状态,然后采取一定的成形方法,待其冷却、凝固后获得所需金属制品,这种制造金属毛坯的过程称为金属的液态成形。

金属的液态成形除了铸造之外,还有液态模锻。

1.0.1铸造的定义铸造是指将液态合金浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,获得所需形状、尺寸和性能的毛坯或零件的金属液态成形方法。

它是生产机器零件毛坯的主要方法之一。

1.0.2铸造的基本过程铸造生产的基本过程包括以下三个步骤:①根据零件的要求,准备一定的铸型;②把金属液体浇满铸型的型腔;③金属液体在铸型型腔中冷凝成形,获得一定形状和尺寸的铸件。

1.0.3铸造生产的特点铸造的实质就是液态金属(合金)逐步冷凝成形,具有以下特点:优点:①适应性广几乎所有金属及其合金,只要能够熔化成液态便能铸造,尤其是适合生产塑性差的材料。

②工艺灵活性大各种形状、尺寸(壁厚从0.5~1000mm、轮廓从几毫米至几十米)、重量(从几克~几百吨)和生产批量的铸件都能生产,能够制成如机床床身、箱体、机架、支座等具有复杂内腔的毛坯。

某些形状极其复杂的零件只能用铸造方法制造毛坯。

③省工省料铸件毛坯与零件形状相似,尺寸相近,加工余量小,金属利用率高,可以省工省料,精密铸件甚至不需切削加工,就可直接装配。

④生产成本低①铸件内部晶粒比较粗大,组织疏松,容易产生气孔、夹渣等铸造缺陷,机械性能和可靠性不如锻件,尤其是冲击韧性较差,不宜制造受冲击或交变载荷作用的零件。

②生产过程比较复杂,工序多且一些工艺过程难以精确控制,铸件质量不稳定,废品率较高。

③工人劳动强度大,劳动条件差。

1.0.4铸造生产的发展历史我国是世界上最早掌握铸造生产的文明古国之一。

早在三千多年前,青铜铸器已有应用,二千五百多年前,铸铁工具也已相当普遍。

我国劳动人民对世界铸造业的三大贡献(三大铸造技术):泥型铸造(砂型铸造)、铁型铸造(金属型铸造)、失蜡铸造(熔模铸造)。

材料成型基础-金属液态成型

材料成型基础-金属液态成型

根据气体来源不同,气孔可分为侵入气孔、析出气孔和反应 气孔。 (a)侵入气孔 由于砂型或砂芯受热而产生的气体侵入金属液内部而形成。
防止侵入气孔的主要途径是尽量降低型(芯)砂的发气量和 增加砂型(芯)的排气能力,并正确设计浇冒口系统。
(b)析出气孔
合金在熔炼和浇注过程中因接触气体而使氢、氧、氮等气体 而溶解在其中,且其溶解度随温度的升高而增大。当合金凝 固时,气体溶解度下降并析出。 防止析出气孔,必须严格控制炉料质量,炉料不能含水、氧 化物和油污等;熔炼时加覆盖剂,尽量缩短熔炼时气口
常用合金的流动性
(砂型,试样截面8mm×8mm)
常用铸造合金中,灰铸铁、硅黄铜的流动性最 好,铸钢的流动性最差。
2016/12/19
(1)影响流动性的因素
合金流动性主要取决于合金化学成分所决定的结晶特点
合金种类:铸铁和有色金属的流动性比铸钢好。 杂质:铸铁中的硅和磷可提高铁水的流动性,硫能使铁 水的流动性降低。
V0 V1 100% V ( T0 T1 ) 100% 体收缩率 V V0 l0 l1 100% l ( T0 T1 ) 100% 线收缩率 l l0
V0,V1-合金在温度为T0,T1时的体积; l0,l1-合金在温度为T0,T1时的长度; av,al-合金在T0-T1温度范围的体膨胀系数和线膨胀系数。 液态收缩和凝固收缩导致了体收缩,固态收缩是导致线收 缩的直接原因。
铸型条件和铸件结构
• 铸型的导热能力:导热性越好,热量越容易散失,流动性越差。 铸型为砂型时,若水分过多、排气不畅、透气性不好,产生大量 气体,增加铸型阻力,则使合金流动性变差。 • 浇注系统:系统越复杂,直浇道越低,内浇口截面越小、铸型内 腔越粗糙,流动性越差。 • 排气能力 :铸型的透气性越好,充型能力越强,流动性越好。 • 铸型温度:铸型温度越高、液态金属与铸型的温差越小,充型能

金属液态成形pptConvertor

金属液态成形pptConvertor

金属材料加工工艺材料加工工艺基础金属材料加工系刘少平制作第一篇液态金属的铸造成形目录概述第一章液态金属成形过程及控制第二章铸造工艺方案第三章典型铸造方法§1 造型材料§2 砂型铸造方法§3 特种铸造方法教学目的和要求一、铸造生产的特点及重要性铸造是液态金属成形的方法,铸造过程是熔炼金属,制造铸型,并将熔融金属在重力、压力、离心力、电磁力等外力场的作用下充满铸型,凝固后获得一定形状与性能零件和毛坯生产过程。

具有生产成本低,工艺灵活性大,几乎不受零件尺寸大小及形状结构复杂程度限制等特点。

铸件的质量可由几克到数百吨,壁厚可由0.3mm到1m以上。

现代铸造技术在生产中占据重要位置。

铸件在一般机器中占总质量40~80%,但其制造成本只占机器总成本的25~30%。

概述(1)材料来源广;(2)废品可重熔;(3)设备投资低。

铸造生产的特点1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。

如汽缸体、汽缸盖、蜗轮叶片、床身件等。

(1)合金种类不受限制;(2)铸件大小几乎不受限制。

2、适应性强3、成本低4、废品率高、表面质量较低、劳动条件差。

铸件的生产工艺方法按充型条件的不同,可分为重力铸造、压力铸造、离心铸造等。

按照形成铸件的铸型分可分为砂型铸造、金属型铸造、熔模铸造、壳型铸造、陶瓷型铸造、消失模铸造、磁型铸造等。

传统上,将有别于砂型铸造工艺的其它铸造方法统称为“特种铸造”。

其中砂型铸造应用最为广泛,世界各国用砂型铸造生产的铸件占铸件总产量的80%以上。

二、铸造生产分类三、砂型铸造工艺流程(一)工艺流程图四、国内外铸造生产技术水平比较第一章液态金属成形过程及控制§1 金属的充型过程及流动液态金属充满铸型,获得尺寸精确、轮廓清晰的铸件,取决于充型能力。

合金充型过程中,一般伴随结晶现象,若充型能力不足,在型腔被填满之前,形成的晶粒将充型的通道堵塞,金属液被迫停止流动,于是铸件将产生浇不足或冷隔等缺陷。

金属的液态成形原理资料PPT课件

金属的液态成形原理资料PPT课件

合金成分和温度
铸件的收缩
铸型、型芯条件
铸件结构
第23页/共47页
常用铸造合金的收缩率
合• 金铸造合含金从碳浇量注,凝固浇直注到至冷却液到态室温的过凝程固中,其体固积或态尺寸缩总减收的现缩 种类象,称(为收%缩)。收缩是温铸度件产生缩收孔缩、缩松、收裂缩纹、变形收的根缩源。 (%)
• 液态收缩
铸造• 碳钢•
(1)这是由于薄壁铸件的铸型冷却作用强,薄壁断面温 度梯度大,倾向于逐层凝固。因此收缩小的灰铸铁可消除 缩孔,获得致密铸件;而收缩较大的薄壁铸钢、有色合金 铸件会出现轴线缩松,但其表层组织致密。
第34页/共47页
(2)锡青铜,铝硅合金等凝固温度范围较宽的合金,倾 向于糊状凝固,用顺序凝固也难以消除缩松,采用 冷铁(或金属型铸造)及同时凝固原则,可保证其 表层组织致密。
1、合金的收缩 液态合金从浇注温度至凝固冷却到室温的过程中,体
积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松, 裂纹,变形,残余应力)产生的基本原因.
收缩的几个阶段 1) 液态收缩(T浇 — T液) : 从金属液浇入铸型到开始 凝固之前. 液态收缩减少的体积与浇注温度至开始凝 固的温度的温差成正比. 2) 凝固收缩(T液 — T固): 从凝固开始到凝固完毕. 同一类合金,凝固温度范围大者,凝固体积收缩率大.如 : 35钢,体积收缩率3.0%, 45钢 4.3%。 3) 固态收缩(T固 — T室) : 凝固以后到常温. 固态 体积收缩直观表现为铸件各方向线尺寸的缩小,影响 铸件尺寸精度及形状的准确性,故用线收缩率表示.
铸件内部就发生内应力,即铸造应力。内应力是铸 件
产生变形和裂纹的基本原因。
按阻碍收缩的原因分为:
1)热应力

金属材料成型基础PPT课件

金属材料成型基础PPT课件

切削加工方 法
机械零件 结构工艺性
机械加工 工艺过程
车削加工;钻、扩、铰、镗削加工; 刨、拉削加工;铣削加工;磨削加 工;特种加工方法;零件加工表面 方法的选择 。
零件结构设计的基本原则、切削加 工对零件结构工艺性的要求。
机械加工工艺过程的基本概念、工 件的安装与夹具的基本知识;机械 加工工艺规程的制定,典型零件工 艺过程。
课程教学 改革思路
结合地方工科高校培养应用型高级 专门人才目标和社会需求,紧紧抓 住课程内容广、实践性强、授课学 生多的课程特征,以拓宽基础知识、 优化教学内容为核心,以教学方法、 教学手段改革为抓手,“产学研” 合作强化学生工程实践和创新精神 培养,构建完备的课程教学体系, 形成覆盖面广、灵活的教学模式, 积极开展教育教学改革与实践,全 面提高课程教学质量。
初期建设阶段(1959~1977年) 恢复建设阶段(1978~1988年) 稳定发展阶段(1989~1999年) 高速发展阶段(2000年至今)
2.课程建设
教学内容
金属冷、热加工方法 金属冷、热加工方法+工程材料 金属冷、热加工方法+工程材料 +金属成形的新技术、新工艺
教学手段
黑板+粉笔+挂图 黑板+粉笔+幻灯片 黑板+粉笔+多媒体 多媒体+网络课堂
建造了内容丰富、形象生动的课 程陈列室。
以省级实验教学示范中心、工程 训练中心为基础搭建了学生工程 实践平台,强化学生基础工程实 践能力培养
以省部级重点实验室为依托,与 大型企业、科研院所密切合作建 立学生创新基地,搭建学生创新 实践平台,以课外科技制作竞赛 为途径进行创新精神培养。
四、教学设计

金属液态成形

金属液态成形

材料成形技术基础第一章 金属液态成形金属液态成形(铸造):将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。

液态成形的优点:(1)适应性广,工艺灵活性大(材料、大小、形状几乎不受限制)(2)最适合形状复杂的箱体、机架、阀体、泵体、缸体等(3)成本较低(铸件与最终零件的形状相似、尺寸相近)主要问题:组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。

分类:铸造从造型方法来分,可分为砂型铸造和特种铸造两大类。

其中砂型铸造工艺如图1-1所示。

图1-1 砂型铸造工艺流程图第一节金属液态成形工艺基础一、熔融合金的流动性及充型液态合金充满型腔是获得形状完整、轮廓清晰合格铸件的保证,铸件的很多缺陷都是在此阶段形成的。

(一)熔融合金的流动性1.流动性 液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力,称为液态合金的流动性。

流动性差:铸件易产生浇不到、冷隔、气孔和夹杂等缺陷。

流动性好:易于充满型腔,有利于气体和非金属夹杂物上浮和对铸件进行补缩。

螺旋形流动性试样衡量合金流动性,如图1-2所示。

在常用铸造合金中,灰铸铁、硅黄铜的流动性最好,铸钢的流动性最差。

常用合金的流动性数值见表1-1。

表1-1 常用合金的流动性(砂型,试样截面8㎜×8㎜)2. 影响合金流动性的因素(1) 化学成份 纯金属和共晶成分的合金,由于是在恒温下进行结晶,液态合金从表层逐渐向中心凝固,固液界面比较光滑,对液态合金的流动阻力较小,同时,共晶成分合金的凝固温度最低,可获得较大的过热度,推迟了合金的凝固,故流动性最好;其它成分的合金是在一定温度范围内结晶的,由于初生树枝状晶体与液体金属两相共存,粗糙的固液界面使合金的流动阻力加大,合金的流动性大大下降,合金的结晶温度区间越宽,流动性越差。

Fe-C合金的流动性与含碳量之间的关系如图1-3所示。

金属的液态成形技术研究.最全PPT

金属的液态成形技术研究.最全PPT

a——共晶成分合金 b——过共晶成分合金
ab
温度
铸件 铸件
液相线 固相线
成分



表层 中心
表层 中心
合金成分对流动性的影响
1.1 金属液态成形的基本原理
结晶区间越大,流动性越差,共晶成分合金的流动性最好。 过共晶成分合金在结晶时因有液固两相存在,流动性较差。
P可提高流动性,S可使流动性下降。
1.1 金属液态成形的基本原理
• 合金充型能力的影响因素:
1. 流动性
2.浇铸条件 (1)浇注温度: 对合金流动性的影响很显著。 灰铸铁1200~1380℃、铸造碳钢1520~1620℃、 铝合金680~780℃。“高温出炉,低温浇注” (2)充型压力
充型压力 充型能力
1.1 金属液态成形的基本原理
▲ 低温阶段(T2~T3之间)杆Ⅱ受压、杆Ⅰ受拉
缩孔(shrinkage cavity)形状不规则,孔壁粗糙,一般位于铸件厚 大部位和热节处 。
1.1 金属液态成形的基本原理
当合金结晶温度较宽时,铸件表面结壳后,内部有较宽的液、固 两相共存的凝固区域。凝固后期,树枝晶相互接触,将合金液分割成 多个小的封闭区域,当封闭区域内合金液凝固收缩得不到补充时,就 形成了缩松。
合金:由两种或两种以上的金属元素,或金属
元素和非金属元素组成的具有金属性质的物质。
第1章 金属的液态成形技术
传统砂型铸造流程简图
第1章 金属的液态成形技术
铸造特点:
优点: 1.复杂零件(外形、内腔); 2. 成本低; 2.尺寸和重量不受限制。
缺点: 1.废品率较高,生产过程难以控制; 2.铸件力学性能较差; 3.砂型铸造铸件精度较差。

四金属的液态成形与半固态成形PPT课件

四金属的液态成形与半固态成形PPT课件

1)熔化合格合金液体: 成分合格,温度合适;
2)制作合理的铸型: 造型材料,造型方法,
铸造工艺,尺寸,型板,
砂箱,分型面,浇注系
统;
3)浇注成型以及清理: 浇注方法(重力,加
压),清理;
4)凝固成合格的铸件 : 内部质量,尺寸。
液态成形基本工艺流程
11
3、铸造金属的熔炼
熔炼是液态金属铸造成形技术过程中的一个重 要环节,与铸件的品质、生产成本、产量、能 源消耗以及环境保护等密切相关。 在熔炼中,多种固态金属的炉料(废钢、生铁 、回炉料、铁合金、有色金属等)按比例搭配 装入相应的熔炉中加热熔化,通过冶金反应, 转变成具有一定化学成分和温度的符合铸造成 形要求的液态金属。
31
(2) 合金的收缩 铸造合金从液态冷却到室温的过程中, 其体积和尺寸缩减的现象称为收缩。
32
收缩包括以下三个阶段: Ⅰ 液态收缩 (浇注温度-液相线) 特点:体积收缩; 浇注温度升高,液态收缩增加。 Ⅱ 凝固收缩 (液相线-固相线) 特点:体积收缩;结晶温度范围增大,凝固收缩增加。 Ⅲ 固态收缩 (固相线-室温 ) 特点:引起铸件外部尺寸变化。
分到另一部分逐渐凝固的过程。冒口和冷铁的合理 使用,可造成铸件的顺序凝固,有效地消除缩孔、 缩松。
43
顺序凝固,就是在铸件上可能出现缩孔的厚大部 位通过安放冒口等工艺措施,使铸件上远离冒口 的部位先凝固(如图Ⅲ ),而后是靠近冒口部位 凝固(图中Ⅱ、І),最后才是冒口本身的凝固。
按照这样的凝固顺序,先凝 固部位的收缩,由后凝固部 位的金属液来补充;后凝固 部位的收缩,由冒口中的金 属液来补充,从而使铸件各 个部位的收缩均能得到补充, 而将缩孔转移到冒口之中。 冒口为铸件的多余部分,在 铸件清理时将其去除。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1-2 液态金属的凝固与收缩
一、铸件的凝固方式
温度 温度
1. 逐层凝固 2. 糊状凝固 3. 中间凝固
a bc
液相线
S
液相线 固相线
影响铸件凝固方 成分 式的主要因素 :

表层

中心
(1)合金的结晶温度范围

表层

中心 表层 中心
凝固区
合金的结晶温度范围愈小,凝固区域愈窄, 愈倾向于逐层凝固 。
浇口杯
出气口
流动性(cm)
温度(℃)
30 0 20 0 10 00
80
60
40
20
0
Pb
20
40
60
80 Sb
合金流动性主要取决于合金化学成分所决定的结晶特点
温度(℃)
流动性(cm)
300 200 100
0 80 60 40 20 0
Pb 20 40 60 80 Sb
a)在恒温下凝固 b)在一定温度范围内凝固
上型
合金的线收缩受到铸型、 型芯、浇冒系统的机械阻 碍而形成的内应力。
机械应力是暂时应力。
下型
2.热应力
热应力是由于铸件壁厚不均匀,各部分冷却速度不同, 以致在同一时期内铸件各部分收缩不一致而引起的应力。
T
1
TH
1
Hale Waihona Puke 2塑性状态++-
t0~t1: t1~t2: t2~t3:
11
T临
22
2
T室
弹性状态
t
二、浇注条件
(1)浇注温度 一般T浇越高,液态金属的充型能力越强。 (2)充型压力 液态金属在流动方向上所受的压力越大,
充型能力越强。 (3)浇注系统的的结构 浇注系统的结构越复杂,流动阻力
越大,充型能力越差。
三、铸型充填条件
(1)铸型的蓄热系数 铸型的蓄热系数表示铸型从其中的 金属吸取热量并储存在本身的能力。
(2) 凝固收缩 从凝固开始到凝固终止温度间的收缩。 T液 — T固
(3) 固态收缩 从凝固终止温度到室温间的收缩。 T固 — T室
体收缩率:V
V铸型 V铸件 V铸件
100%
体收缩率是铸件产生缩 孔或缩松的根本原因。
线收缩率: L
L铸型 L铸件 L铸件
100%
线收缩率是铸件产生应 力、变形、裂纹的根本
② 应提高铸型和型芯的退让性,以减小机械应力。 ③ 对于铸钢件和铸铁件,必须严格控制硫的含量,
防止热脆性。
2 .冷裂 冷裂的特征是:裂纹细小,呈连续直线状,缝内有金属 光泽或轻微氧化色。
冷裂的防止: 1)使铸件壁厚尽可能均匀; 2)采用同时凝固的原则; 3)对于铸钢件和铸铁件,必须严格控制磷的 含量,防止冷脆性。
(2)铸型温度 铸型温度越高,液态金属与铸型的温差 越小,充型能力越强。
(3)铸型中的气体
四、铸件结构
(1)折算厚度 折算厚度也叫当量厚度或模数,为铸件体积 与表面积之比。折算厚度大,热量散失慢,充型能力就 好。铸件壁厚相同时,垂直壁比水平壁更容易充填。
(2)铸件复杂程度 铸件结构复杂,流动阻力大,铸型的 充填就困难。
t0 t1 t2
t3
热应力使铸件的厚壁或心部受拉伸,薄壁或表层受压缩。 热应力是永久应力。
二、铸件的变形与防止
+ -
反变形法
防止变形的方法: 1)使铸件壁厚尽可能均匀; 2)采用同时凝固的原则; 3)采用反变形法。
三、铸件的裂纹与防止
1 .热裂
热裂的形状特征是:裂纹短、缝隙宽、形状曲折、缝内 呈氧化色。 热裂的防止:① 应尽量选择凝固温度范围小,热裂倾向小的合金。
(2)铸件的温度梯度
在合金结晶温度范围已定的前 提下,凝固区域的宽窄取决与铸 件内外层之间的温度差。若铸件 内外层之间的温度差由小变大, 则其对应的凝固区由宽变窄 。
二、合金的收缩
T浇 T液
T固
T室 成分
温度 温度
T2
S1
T1
S
表层 中心
1. 收缩的概念
合金的收缩经历如下三个阶段: (1)液态收缩 从浇注温度到凝固开始温度 之间的收缩。T浇 — T液
冒口— 储存补缩用金属 液的空腔。 顺序凝固— 铸件按照一定 的次序逐渐凝固。
热节
冷铁
寻找热节的方法
等温线法 内切圆法
冷铁
同时凝固— 整个铸件几乎同时凝固。
§1-3 液态成形内应力、变形与裂纹
一、液态成形内应力
铸件在凝固以后的继续冷却过程中,其固态收缩受到阻 碍,铸件内部即将产生内应力。
1.机械应力(收缩应力)
原因。
2. 缩孔与缩松
液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩 减的容积得不到补充,则在铸件最后凝固的部位形成一些
孔洞 。大而集中的称为缩孔,细小而分散的称为缩松。
1)缩孔和缩松的形成
2)缩孔和缩松的防止 防止缩孔和缩松常用的工艺措施就是控制铸件的凝固 次序,使铸件实现“顺序凝固”。
暗冒口
金属材料成型基础之金属液态成型(ppt 101页)
第二篇 金属液态成型
一、什么是液态成型(铸造生产)
将液态金属浇注到与零件形状相适应的铸型型腔中,
待其冷却凝固,以获得毛坯或零件的生产方法。
二、砂型铸造的工艺过程
铸件
检验 落砂、清理
合箱
铸造工艺图 零件图
型砂

模型

熔化 浇注
芯盒

芯砂

冷却 凝固
三、铸造生产的特点
1.可生产形状任意复杂的制件,特别是内腔形状复杂的 制件。如汽缸体、汽缸盖、蜗轮叶片、床身件等。
2.适应性强:(1)合金种类不受限制; (2)铸件大小几乎不受限制。
3.成本低:(1)材料来源广; (2)废品可 重熔; (3)设备投资低。
4.废品率高、表面质量较低、劳动条件差。
第一章 金属液态成型工艺基础
§1-1 液态金属的充型能力与流动性
充型—— 液态合金填充铸型的过程。
充型能力——液体金属充满铸型型腔,获得尺寸精确、 轮廓清晰的成形件的能力。
充型能力不足时,会产生浇不足、冷隔、夹渣、气孔等缺陷。
一、液态合金的流动性
合金的流动性是: 液态合金本身的流动能力。
浇口杯
出气口
0.45%C 铸钢:200 4.3%C 铸铁:1800
§1-4 液态成形件的质量与控制
常见铸件缺陷及特征
名 称
特征
名称
特征
气 孔
主要为梨形、圆形、椭圆形的孔洞,表面较 光滑,一般不在铸件表面露出,大孔独立存 在,小孔则成群出现。
缩孔 缩松
1.缩孔:形状为不规则的封闭或敞露的空洞,孔 壁粗糙并带有枝状晶,常出现在铸件最后凝固部位。
2.所松:铸件断面上出现的分散而细小的缩孔。
粘 砂
铸件的部分或整个表面粘附着一层金属和砂 粒的机械混和物,多发生在铸件厚壁和热节 处。
裂纹
1.热裂:断面严重氧化,无金属光泽,断口沿晶 界产生和发展,外形曲折而不规则的裂纹。
2.冷裂:穿过晶体而不沿晶界断裂,断口有金属 光泽或有轻微氧化色。
相关文档
最新文档