初一难题集锦(方程与绝对值)答案-(解题过程)
部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案
专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
绝对值方程详解及答案精编
第九讲绝对值与一元一次方程绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号. 将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解•前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题【例1】方程5x • 6 =6x -5的解是__________ •(重庆市竞赛题)思路点拨没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.【例2】适合2a+7|+|2a-1 =8的整数a的值的个数有()•A• 5 B• 4 C• 3 D. 2(“希望杯;邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.注:形如ax + b=cx + d的绝对值方程可变形为ax+b=±(cx+d)且cx + d^O, 才是原方程的根,否则必须舍去,故解绝对值时应检验.【例3】解方程:x-3x 十4 ;思路点拨从内向外,根据绝对值定义性质简化方程.(天津市竞赛题)【例4】解下列方程:(1)x +3 - x -] =x +1 (北京市“迎春杯”竞赛题)(2)X —1 +|x — 5 = 4 •(“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.【例5】已知关于x的方程X-2十|x-3 = a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键. 运用分类讨它法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.注本例给出了条件,但没有明确的结论,这是一种探索性数学问题,它给我们留有自由思考的余地和充分展示思维的广阔空间,我们应从问题的要求出发,进行分析、收集和挖掘题目提供的各种信息,进行全面研究.学力训练1方程3(x -1^—+1的解是____________ ;方程3x—1 =52•已知3990X 1995 =1995,那么x= ___________ .3. _____________________________________________ 已知,X =X 2,那么19x"+3x+27的值为__________________________________________________ .4. 关于x的方程ax =|a +1 — x的解是x=0 ,则a的值_的解是x=1,则有理数a的取值范围是 ____________ .5•使方程3x + 2| + 2 = 0成立的未知数x的值是().2 十…A . —一2B . 0C .D .不存在36. 方程x-5+x-5=0的解的个数为().A .不确定B .无数个C . 2个D . 3个(“祖冲之杯”邀请赛试题)17. 已知关于x的方程mx+2=2(m-x)的解满足X —,一12 2 2A . 10 或—B . 10 或C . -10 或—D .5 5 5(山东省竞赛题)& 若2000x 2000 =20 2000 ,则x 等于().A . 20 或一21B . 一20 或21 C. —19 或21(重庆市竞赛题)9 .解下列方程:(1)||3x _5 +4 =8 ;(2)4x -3 _2 =3x +4 ;(3)x _2x +1| =3 ;(4)2x T + x -2 + x +1 .10 .讨论方程|x+3 — 2 = k的解的情况.11 .方程x -2 T =2的解是 _______________12•若有理数x 满足方程1 -X =1 +|X ,则化简X-1的结果是 ______________________________________________________________________ .13. __________________________________________________________________ 若a >0,b cO ,则使x —a +|x —b = a —b 成立的x 取值范围是 __________________________ •14. _____________________________________________________ 若0 vx v10,则满足条件 x_3 =a 的整数a 的值共有 _______________________________________ 个,它们的和是 ____ . 15•若m 是方程2000—x =2000+x 的解,则m —2001等于().A . m 一 2001B .一 m 一 2001C . m+2001D .一 m+200116 .若关于x 的方程2x —3+m=0无解,3x —4+ n=0只有一个解,4x —5=k = 0有两个解,则m 、n 、k 的大小关系是(). m>n>k B . n> k>m C . k>m>n D . m>k>n2x 1的解是 ________ ._;关于x 的方程ax=|a + 1—x=0,则m 的值是()2—10或 517 .适合关系式3x-4+3x+2=6的整数x的值有()个.A . 0B . 1C . 2 D.大于2的自然数18 .方程x + 5»7" 的解有().A . 1个B. 2个C . 3个D .无数个19 .设a、b为有理数,且a>0,方程||x-a -b =3有三个不相等的解,求b的值.(“华杯赛”邀请赛试题)20 .当a满足什么条件时,关于x的方程x-2-x-5 = a有一解?有无数多个解?无解?21 .已知x+2+1—x=9 — y—5—1+y,求x+y的最大值与最小值.(江苏省竞赛题)22 . (1)数轴上两点表示的有理数是a、b,求这两点之间的距离;⑵是否存在有理数x,使x+1 +|x—3=x?(3)是否存在整数x,使x-4 + X—3 + x+3+|x+4 =14?如果存在,求出所有的整数x;如果不存在,说明理由.参考答案回鉅对值与一元一次方程【例題求解】ft I jr=^ll提示】原方程5jrH-6=-±(6jr-5)或械5斗斗点玉Q忑丁+亦弋。
初一数学绝对值难点突破(含答案)
绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.第1页(共9页)3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。
2019-2020年七年级上册和绝对值有关的问题典型例题(含答案)
2019-2020年七年级上册和绝对值有关的问题典型例题(含答案)一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A ) A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c|=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:,,且, 那么的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
初一第一章的《绝对值》的几个难题(答案)
初一第一章的《绝对值》的几个难题(答案)解:根据题意,我们可以列出方程组:a-b = 2008kc-a = 2008(1-k)其中k为整数。
将XXX代入原方程可得:a-b + c-a = 2化XXX:c-b = 2008k+1或c-b = 2008(1-k)-1因为a、b、c为整数,所以k只能为0或1.当k=0时,c-b=1,a-b=2008,b-c=-2007,所以c-a+a-b+b-c=2.当k=1时,c-b=-1,a-b=-2008,b-c=2007,所以c-a+a-b+b-c=2.因此,c-a+a-b+b-c的值为2.3、解方程:x-2+2x-1=8.答:将x-2和2x-1括起来,得到(x-2)+(2x-1)=8,化简得3x-3=8,解得x=11/3.4、已知:关于x的方程x-ax=1,同时有一个正根和一个负根,求整数a的值。
答:设正根为x1,负根为x2,则有x1-x2=2|a|。
因为x1和x2都是根,所以x1-ax1=1,x2-ax2=1.将两式相减得到x1-x2=a(x1-x2),因为x1和x2不相等,所以a=1或a=-1.当a=1时,方程化为x-x=1无解;当a=-1时,方程化为x+x=1,解得x=-1/2,符合要求。
因此,a=-1.5、已知:a、b、c是非零有理数,且a+b+c=0,求:abc/(abc)的值。
答:由a+b+c=0可得abc=-(ab+bc+ca),因此abc/(abc)=-1.6、设abcde是一个五位数,其中a、b、c、d、e是阿拉伯数字,且a<b<c<d,试求y=a-b+b-c+c-d+d-e的最大值。
答:因为a<b<c<d,所以b-a≥1,c-b≥1,d-c≥1,e-d≥1,将y拆开得到y=(b-a)+(c-b)+(d-c)+(e-d),因此y≥4.当a=1,b=2,c=3,d=4,e=5时,y=4,所以y的最大值为4.7、求关于x的方程x-2-1=a(0<a<1)所有解的和。
苏科版七年级上学期数学《绝对值》解答题专题练习及答案解析.docx
第2章《绝对值》解答题专练1.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是______,(2)数轴上表示x与2的两点之间的距离可以表示为______.(3)如果|x﹣2|=5,则x=______.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是______.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______.(2)数轴上表示x和﹣1的两点A和B之间的距离是______,如果|AB|=2,那么x为______;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是______.3.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是______,最小值是______”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是______,最小值是______.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.4.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与2______;3与﹣2______;③﹣4与﹣4______;④﹣3与2______;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为______.(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x=______;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值=______③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.5.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为______和______,B,C两点间的距离是______;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为______;如果|AB|=3,那么x为______;(3)若点A表示的整数为x,则当x为______时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是______.6.认真阅读下面的材料,完成有关问题.材料1:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C 的距离之和可表示为______(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是______,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是______;当x的值取在______的范围时,|x|+|x﹣2|的最小值是______.材料2:求|x﹣3|+|x﹣2|+|x+1|的最小值.分析:|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可.问题(3):利用材料2的方法求出|x﹣3|+|x﹣2|+|x|+|x+1|的最小值.7.阅读下面的材料,然后回答问题.点A,B在数轴上分别表示实数a,b,A,B两点之间的距离用|AB|表示.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|.当A,B两点都不在原点时,①如图2所示,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3所示,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4所示,点A,B分别在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上可知,数轴上任意两点A,B之间的距离可表示为:|AB|=|a﹣b|.(1)数轴上表示﹣2和﹣5两点之间的距离是______,数轴上表示2和﹣5两点之间的距离是______.(2)数轴上表示x和2两点A和B之间的距离是______;如果|AB|=3,那么x______.(3)当代数式|x+2|+|x﹣3|取最小值时,x的取值范围是______.8.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为______.(2)不等式|x﹣3|+|x+4|≥9的解集为______.9.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是______,数轴上表示2和﹣10的两点之间的距离是______.(2)数轴上表示x和﹣2的两点之间的距离表示为______.(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.11.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=______.(2)若|x﹣2|=5,则x=______(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是______.12.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是______;数轴上表示数x和3的两点之间的距离表示为______;数轴上表示数______和______的两点之间的距离表示为|x+2|,;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:______.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=______.13.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|=|a﹣b|当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|;综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______;②数轴上表示x和﹣1的两点A和B之间的距离是______,如果|AB|=2,那么x为______;③当代数式|x+4|+|y﹣7|取最小值时,则x﹣y=______.参考答案与解析1.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7 ,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x= 7或﹣3 .(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1 .(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x ﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.2.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是 3 ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 .(2)数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3 ;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2 .【分析】审题可知题中通过探索已经得出数轴上两点之间的距离求值方法:即两数之差的绝对值,(1)求两点距离,我们根据题意代入求值即可.(2)第一个问题只需把字母和数代入即可,第二个问题,根据题意列出方程求解即可.(3)将绝对值理解为两点之间的距离,再根据两点之间线段最短分析即可.【解答】解:(1)数轴上表示2和5的两点之间的距离是:|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是:|﹣2﹣(﹣5)|=3,数轴上表示1和﹣3的两点之间的距离是:|1﹣(﹣3)|=4.故答案为:3,3,4(2)数轴上表示x和﹣1的两点A和B之间的距离是:|x﹣(﹣1)|=|x+1|,由|AB|=2得:|x+1|=2,所以有:x+1=2,或x+1=﹣2,解得x=1,或x=﹣3.故答案为:|x+1|,1或﹣3.(3)|x+1|+|x﹣2|可以看作:表示x的点到表示﹣1的点和到表示2的点的距离的和,根据两点之间线段最短,可知表示x的点在表示﹣1的点和到表示2的点的线段上,所以﹣1≤x≤2.故答案为:﹣1≤x≤2.【点评】此题主要考察数轴上两点之间的距离,准确把握题中距离公式并认真代入计算是解题的关键,解题中要注意:由距离求点时,要分类讨论避免漏解.3.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2 ,最小值是 3 ”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6 ,最小值是8 .(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.【分析】(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【解答】解:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8;(2)当x≥﹣2,时y=﹣2x,当x=﹣2时,y最大=4;当﹣4≤x≤﹣2时,y=6x+16,当x﹣2时,y最大=4;当x≤﹣4,时y=2x,当x=﹣4时,y最大=﹣8,所以x=﹣2时,y有最大值y=4.【点评】本题考查了绝对值,线段上的点与线段的端点的距离最小,(2)分类讨论是解题关键.4.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与2 1 ;3与﹣2 5 ;③﹣4与﹣4;④﹣3与2 6 ;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为|a﹣b| .(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x= 4 ;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值= 2③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.【分析】(1)利用数轴分别得出,进而得出a,b两数所对应的两点之间的距离;(2)根据点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点,结合数轴得出即可;(3)①利用x的取值范围分析得出即可;②利用x=4时,求出原式的最值即可;③可以用数形结合来解题:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣21|表示:点x到数轴上的21个点(1、2、3、…、21)的距离之和,由于原式的绝对值共有21项,最中间的那一项是|x﹣11|,所以只需取x=11,它们的和就可以获得最小值.【解答】解:(1)①1;②5;③;④6;a,b两数所对应的两点之间的距离可表示为|a﹣b|;(2)C、D是与A、B两点的距离之和为5的点;(3)①当x≥﹣1时,|x+1|+|x﹣2|=7为x+1+x﹣2=7或x+1+2﹣x=7(舍去),解得:x=4,当x<﹣1时,|x+1|+|x﹣2|=7为﹣x﹣1﹣x+2=7,解得:x=﹣3,故答案为:4或﹣3;②当|x﹣3|+|x﹣4|+|x﹣5|的和最小,则x=4,∴原式=1+0+1=2;故答案为:2;③当x=11时,|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|=10+9+8+7+…+9+10=10×11=110.【点评】此题主要考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=11时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣21|能够取到最小值是解题关键.5.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为﹣2.5 和 1 ,B,C两点间的距离是 3.5 ;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为﹣4,2 ;(3)若点A表示的整数为x,则当x为﹣1 时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2 .【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;(3)根据到两点距离相等的点是这两个点的中点,可得答案;(4)根据线段上的点到这两点的距离最小,可得范围.【解答】解:(1)B点表示的数﹣2.5,C点表示的数1,BC的距离是1﹣(﹣2.5)=3;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为,如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,故答案为:﹣2.5,1;,﹣4,2;﹣1;﹣5≤x≤2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.6.认真阅读下面的材料,完成有关问题.材料1:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为+(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是﹣2,4 ,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 4 ;当x的值取在0≤x≤2 的范围时,|x|+|x﹣2|的最小值是2 .材料2:求|x﹣3|+|x﹣2|+|x+1|的最小值.分析:|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可.问题(3):利用材料2的方法求出|x﹣3|+|x﹣2|+|x|+|x+1|的最小值.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)|x+2|+;(2)①﹣2、4,②4;不小于0且不大于2,2;(3)|x﹣3|+|x﹣2|+|x|+|x+1|=(|x﹣3|+|x+1|)+(|x﹣2|+|x|)要使|x﹣3|+|x+1|的值最小,x的值取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|+|x1|的值最小,x取0到2之间(包括0、2)的任意一个数,显然当x取0到2之间(包括0、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x|+|x+1|=3+2+0+1=6 方法二:当x取在0到2之间(包括0、2)时,|x﹣3|+|x﹣2|+|x|+|x+1|=﹣(x﹣3)﹣(x﹣2)+x+(x+1)=﹣x+3﹣x+2+x+x+1=6.【点评】本题考查了绝对值,注意到线段两端点距离最小的点在线段上(端点除外).7.阅读下面的材料,然后回答问题.点A,B在数轴上分别表示实数a,b,A,B两点之间的距离用|AB|表示.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|.当A,B两点都不在原点时,①如图2所示,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3所示,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4所示,点A,B分别在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上可知,数轴上任意两点A,B之间的距离可表示为:|AB|=|a﹣b|.(1)数轴上表示﹣2和﹣5两点之间的距离是 3 ,数轴上表示2和﹣5两点之间的距离是7 .(2)数轴上表示x和2两点A和B之间的距离是|x﹣2| ;如果|AB|=3,那么x =5或﹣1 .(3)当代数式|x+2|+|x﹣3|取最小值时,x的取值范围是﹣2<x<3 .【分析】(1)依据两点间的距离公式计算即可;(2)依据两点间的距离公式以及绝对值的定义回答即可;(3)|x+2|+|x﹣3|表示数轴上表示数字x的点到3与﹣2的距离之和.【解答】解:(1)﹣2和﹣5两点之间的距离=|﹣2﹣(﹣5)|=3;2和﹣5两点之间的距离=|﹣5﹣2|=|﹣7|=7;(2)x和2两点A和B之间的距离=|x﹣2|,|x﹣2|=3,则x﹣2=3或x﹣2=﹣3.解得:x=5或x=﹣1.(3)|x+2|+|x﹣3|表示数轴上表示数字x的点到3与﹣2的距离之和,∴当﹣2≤x≤3时,|x+2|+|x﹣3|有最小值.故答案为:(1)3;7;(2)|x﹣2|;5或﹣1;(3)﹣2≤x≤3.【点评】本题主要考查的是数轴、绝对值,掌握绝对值的几何意义是解题的关键.8.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为x=1或x=﹣7 .(2)不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5 .【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x﹣3|+|x+4|≥9表示到3与﹣4两点距离的和,大于或等于9个单位长度的点所表示的数.【解答】解:(1)方程|x+3|=4的解就是在数轴上到﹣3这一点,距离是4个单位长度的点所表示的数,是1和﹣7.故解是x=1或x=﹣7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和﹣4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得:x≥4或x≤﹣5.故答案为:(1)x=1或x=﹣7;(2)x≥4或x≤﹣5.【点评】本题主要考查了绝对值的意义,就是表示距离,正确理解题中叙述的题目的意义是解决本题的关键.9.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【分析】(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.【点评】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8 ,数轴上表示2和﹣10的两点之间的距离是12 .(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| .(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.【分析】(1)(2)依据在数轴上A、B两点之间的距离AB=|a﹣b|求解即可;(3)|x﹣1|+|x+2|表示数轴上x和1的两点之间与x和﹣2的两点之间距离和;(4)依据绝对值的几何意义回答即可.【解答】解:(1)|10﹣2|=8;|2﹣(﹣10)|=12;故答案为:8;12.(2)|x﹣(﹣2)|=|x+2|;故答案为:|x+2|.(3)|x﹣1|+|x+2|表示数轴上x和1的两点之间与x和﹣2的两点之间距离和,利用数轴可以发现当﹣2≤x≤1时有最小值,这个最小值就是1到﹣2的距离,故|x﹣1|+|x+2|最小值是3;(4)当x=1008时有最小值,此时,原式=1007+1006+1005+…+2+1+0+1+2+…1006+1007=1015056.【点评】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.11.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= 6 .(2)若|x﹣2|=5,则x= ﹣3或7(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是﹣2、﹣1、0、1、2、3、4 .【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.12.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是 3 ;数轴上表示数x和3的两点之间的距离表示为|x﹣3| ;数轴上表示数x 和﹣2 的两点之间的距离表示为|x+2|,;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为: 5 .②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x= ﹣3或4 .【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;。
初一难题集锦(方程与绝对值)答案-(解题过程)
答案与评分标准一、解答题(共18小题,满分150分)1、a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a﹣b|=|b﹣a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.考点:绝对值;不等式的性质。
分析:根据绝对值和不等式的性质对每一小题进行分析.解答:解:(1)错误.当a,b同号或其中一个为0时成立.(2)正确.(3)正确.(4)错误.当a≥0时成立.(5)错误.当b>0时成立.(6)错误.当a+b>0时成立.点评:本题主要考查了绝对值和不等式的有关内容.需熟练掌握和运用绝对值和不等式的性质.2、已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|+|a+c|﹣2|c﹣b|.考点:整式的加减;数轴;绝对值。
分析:解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.解答:解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|+|a+c|﹣2|c﹣b|=﹣(b﹣a)+(a+c)﹣2[﹣(c﹣b)]=﹣b+a+a+c+2c﹣2b=2a﹣3b+3c.点评:在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.3、已知x<﹣3,化简:|3+|2﹣|1+x|||.考点:绝对值。
专题:计算题。
分析:这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解答:解:∵x<﹣3,∵1+x<0,3+x<0,∴原式=|3+|2+(1+x)||,=|3+|3+x||,=|3﹣(3+x)|,=|﹣x|,=﹣x.点评:本题考查了绝对值的知识,注意对于含有多层绝对值符号的问题,要从里往外一层一层地去绝对值符号.考点:绝对值。
专题:计算题;分类讨论。
(专题精选)初中数学方程与不等式之分式方程难题汇编附解析
(专题精选)初中数学方程与不等式之分式方程难题汇编附解析一、选择题1.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.2.解分式方程11222x x x -+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x ﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D .考点:解分式方程.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.5.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x个零件,根据题意可列方程为()A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个, ∴60045025x x=+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.6.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.7.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x=+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 【答案】A【解析】 设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .9.方程10020x +=6020x-的解为( ) A .x =10B .x =﹣10C .x =5D .x =﹣5 【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.14.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ). A .3B.CD.【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7, ∵不等式组有解,∴a+7>1,解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.16.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.18.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .300300201.2x x -= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x -= 【答案】D【解析】【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x 小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D .【点睛】 此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.19.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】 此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。
绝对值方程详解及答案
第九讲 绝对值与一元一次方程绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题【例1】方程5665-=+x x 的解是 .(重庆市竞赛题)思路点拨 没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.【例2】 适合81272=-++a a 的整数a 的值的个数有( ).A .5B .4C . 3D .2( “希望杯;邀请赛试题)思路点拨 用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.注:形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx , 才是原方程的根,否则必须舍去,故解绝对值时应检验.【例3】解方程:413=+-x x ;思路点拨 从内向外,根据绝对值定义性质简化方程.(天津市竞赛题)【例4】解下列方程:(1)113+=--+x x x (北京市“迎春杯”竞赛题)(2)451=-+-x x . (“祖冲之杯”邀请赛试题)思路点拨 解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.【例5】已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论.思路点拨 方程解的情况取决于a 的情况,a 与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键.运用分类讨它法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.注 本例给出了条件,但没有明确的结论,这是一种探索性数学问题,它给我们留有自由思考的余地和充分展示思维的广阔空间,我们应从问题的要求出发,进行分析、收集和挖掘题目提供的各种信息,进行全面研究.学力训练1.方程15)1(3+=-xx 的解是 ;方程1213+=-x x 的解是 .2.已知199519953990=+x ,那么x = .3.已知,2+=x x ,那么19x 99+3x+27的值为 .4.关于x 的方程x a x a -+=1的解是x=0,则a 的值 ;关于x 的方程x a x a -+=1的解是x=1,则有理数a 的取值范围是 .5.使方程0223=++x 成立的未知数x 的值是( ).A .一2B .0C .32 D .不存在 6.方程055=-+-x x 的解的个数为( ).A .不确定B .无数个C . 2个D .3个(“祖冲之杯”邀请赛试题)7.已知关于 x 的方程mx+2=2(m-x)的解满足0121=--x ,则m 的值是( ) A .5210或 B .5210-或 C .5210或- D .5210--或 (山东省竞赛题)8.若20002020002000⨯=+x ,则x 等于( ).A .20或一21B .一20或21C .—19或21D .19或一21(重庆市竞赛题)9.解下列方程:(1)8453=+-x ;(2)43234+=--x x ;(3)312=+-x x ;(4)1212++-+-x x x .10.讨论方程k x =-+23的解的情况.11.方程212=--x 的解是 .12.若有理数x 满足方程x x +=-11,则化简1-x 的结果是 .13.若0,0<>b a ,则使b a b x a x -=-+-成立的x 取值范围是 .14.若100<<x ,则满足条件a x =-3的整数a 的值共有 个,它们的和是 .15.若m 是方程x x +=-20002000的解,则2001-m 等于( ).A .m 一2001B .一m 一2001C .m+2001D .一m+200116.若关于x 的方程032=+-m x 无解,043=+-n x 只有一个解,054==-k x 有两个解,则m 、n 、k 的大小关系是( ).m>n>k B .n>k>m C .k>m>n D . m>k>n17.适合关系式62343=++-x x 的整数x 的值有( )个.A .0B .1C .2D .大于2的自然数18.方程1735=--+x x 的解有( ).A .1个B .2个C . 3个D .无数个19.设a 、b 为有理数,且0>a ,方程3=--b a x 有三个不相等的解,求b 的值. (“华杯赛”邀请赛试题)20.当a 满足什么条件时,关于x 的方程a x x =---52有一解?有无数多个解?无解?21.已知y y x x +---=-++15912,求x+y 的最大值与最小值.(江苏省竞赛题)22. (1)数轴上两点表示的有理数是a 、b ,求这两点之间的距离;(2)是否存在有理数x ,使x x x =-++31?(3)是否存在整数x ,使144334=++++-+-x x x x ?如果存在,求出所有的整数x ;如果不存在,说明理由.参考答案。
初一数学绝对值难题解析完整版
初一数学绝对值难题解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初一数学绝对值难题解析绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
即|a|=a(当a≥0),|a|=-a(当a<0)(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤|a+b|≤|a|+|b|;(5)|a|-|b|≤|a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立?|a-b|=|a|-|b|,在什么条件下成立?常用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0∴a-b<0c<0,b>0∴c-b<0故,原式=(b-a)-(b-c)=c-a(2)|a-c|-|a+c|解:∵a<0,c<0∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2||。
解:∵x<-1∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6|。
绝对值与一元一次方程(含问题详解)-
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、•12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
七年级数学思维探究(9)绝对值与方程(含答案)
七年级数学思维探究(9)绝对值与方程(含答案)商高是公元前11世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为3和4时,直角三角形的斜边就是5,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前6世纪发现的. 9.绝对值与方程 解读课标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有: 1.最简绝对值方程形如()0ax b c c +=≥是最简单的绝对值方程,可化为两个一元一次方程ax b c +=与ax b c +=-. 2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解. 问题解决例1 方程525x x -+=-的解是________.试一试 原方程变形为552x x -=--,再把此方程化为一般方程求解.例2 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m ,n ,k 的大小关系为( ).A . m n k >>B .n k m >>C .k m n >>D .m k n >> 试一试 从方程ax b c +=有解的条件入手. 例3 解下列方程: (1)314x x -+=; (2)311x x x +--=+;(3)134x x ++-=.试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例4 如图,数轴上有A 、B 两点,分别对应的数为a 、b ,已知()21a +与3b -互为相反数.点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,说明理由;(3)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问几分钟时点P 到点A 、点B 的距离相等? 试一试 由绝对值的几何意义建立关于x 的绝对值方程. 例5 讨论关于x 的方程25x x a -+-=的解的情况.分析与解 a 与方程中常数2、5有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具. 数轴上表示数x 的点到数轴上表示数2和5的点的距离和的最小值为3,由此可得原方程的解的情况是:(1)当3a >时,原方程有两解;(2)当3a =时,原方程有无数解()25x ≤≤;-2-13(3)当3a <时,原方程无解. 数学冲浪 知识技能广场1.若9x =是方程123x m -=的解,则m =_______;又若当1n =时,则方程123x n -=的解是_____.2.方程3121x x -=+的解是_______;x =_______是方程()3115xx -=+的解;解方程399019951995x +=,得x =_______.3.如果()2230x x y -+-+=,那么()2x y +的值为________. 4.已知关于x 的方程()22ax a x +=-的解满足1102x --=,则a 的值为( ). A .10或25 B .10或25- C .10-或25 D .10-或25-5.若20042004202004x +=⨯,则x 等于( ).A .20或21-B .20-或21C .19-或21D .19或21- 6.方程880m m +++=的解的个数为( )A .2个B .3个C .无数个D .不确定 7.解下列方程(1)142132x -+=; (2)221x x -=-;(3)3548x -+=; (4)213x x -+=. 8.求关于x 的方程()21001x a a ---=<<的所有解的和. 9.解方程32x k +-=.10.已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d +=_______. 11.若1x 、2x 都满足条件21234x x -++=,且12x x <,则12x x -的取值范围是_______. 12.满足方程2006182006x --+=的所有x 的和为________. 13.若关于x 的方程21x a --=有三个整数解,则a 的值为( ) A .0 B .2 C .1 D .314.方程27218a a ++-=的整数解的个数有( ) A .5 B .4 C .3 D .215.若a 是方程20042004a a -=+的解,则2005a -等于( ) A .2005a - B .2005a -- C .2005a + D .2005a -+ 16.解下列方程(1)200520052006x x -+-=;(2)154x x -+-=.17.当a 满足什么条件时,关于x 的方程25x x a ---=有一解?有无数多个解?无解? 应用探究乐园18.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足()2210a b ++-=.(l )求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程12122x x -=+的解,在数轴上是否存在点P ,使得PA PB PC +=?若存在,求出点P 对应的数;若不存在,说明理由;(3)在(1)、(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度ABO向左运动,同时,点B 和点C 分剐以每秒4个单位长度和9个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其常数值.19.已知()()()12213136x x y y z z ++--++-++=,求23x y z ++的最大值和最小值. 微探究从三阶幻方谈起相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出来,就是一个3阶幻方,也就是在33⨯的方阵中填入1~9,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在33⨯的方阵图中,每行、每列、每条对角线上3个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在33⨯的方格中填入9个不同的数,使得各行各列及两条对角线上3个数的和都相等,且为S ,若最中间数为m ,则3S m =.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方. (3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1 如图①,有9个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试 虽然问题要求的只是左上角的数,但是问题的条件还与其他的数相关.故为充分运用已知条件,需引入不同的字母表示数(如图②).例2 如图,在33⨯的方格表中填入九个不同的正整数:1,2,3,4,5,6,7,8和x .使得各行、各列所填的三个数的和都相等,请确定x 的值,并给出一种填数法.试一试 如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即123456781233x x ++++++++=+为正整数,又2121233x xa b c d x +=+=+-=-,从估计a b +和c d+的最小值入手.图①1319?图②1913x 4x 3x 2x 1x整体核算法整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,a 、b 、c 、d 、e 、f 、g 、h 、i 分别代表1,2,3,4,5,6,7,8,9中某一个数,不同字母代表不同的数,使每个小圆内3个数的和都相等,那么a d g ++的值是多少?分析与解 设这个相等的和是S ,现将这9个小圆中()3927⨯=个数求和,可得:()()()912923129345135S a b c d e f g h i =++++⨯++++++++=⨯+++=⨯= ,故15S =. 先从9所在的小圆看,h 至少是1,i 最多只能是5,再从1所在的小圆看,a 最多只能是9,由于115i a ++=,所以必须5i =,9a =,由此可以求得图②.对照图①与图②中各数的位置,可看到93618a d g ++=++=. 当然也可以有另一解法.将含1、含2、含4、含5、含7与含8的6个小圆内()3618⨯=个数求和,可得:()615124578a b c d e f g h i a d g ⨯=+++++++++++++++++,即 9072a d g =+++,所以907218a d g ++=-=. 练一练1.将2到10这9个自然数填入图中的9个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的3个数的和是_______.dcbax 123456789i h g f edc b a图①987654321987654321图②2.请构造“幻角”,将1~10这10个整数填入图中的小三角形内(2和4已填好),使图中每个大三角形内四数之和都等于25.3.请将4-,3-,2-,1-,0,1,2,3,4,这9个数分别填入图中方阵的9个空格,使3行、3列、2条对角线上的3个数的和都是0.4.如图,a 、b 、c 、d 、e 、f 均为有理数,图中各行各列及两条对角线上的和都相等,求a b c d e f +++++的值.5.如图是一个33⨯的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求k 的值.6.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.42-134 fedc b a 1211k7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中3行、3列以及2条对角线上的点数之和都等于15,是一种“3阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从3阶到10阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用了对称思想.例如,用1,2,3,…,16构造4阶幻方的方法是:先将1,2,3,…,16依次排成图③,然后以外四角对换,即1与16对换,4与13对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的4阶幻方.8.把数字1,2,3,…,9分别填入图中的9个圈内,要求三角形ABC 和三角形DEF 的每条边上三个圈内数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究 商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础.(1)100%=⨯利润利润率进价; (2)利润=售价-进价;(3)售价=进价+利润=进价×(1+利润率).例1 一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润_______元.64x32图①图②98765321416151413121110987654321图③图④FE DCBA试一试 从求出成本价切入.例2 某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( ). A .25% B .20% C .16% D .12.5% 试一试 利用获利不变建立方程.例3 某房地产开发商开发一套房子的成本随着物价上涨比原来增加了10%,为了赚钱,开发商把售价提高了0.5倍,利润率比原来增加了60%,求开发商原来的利润率. 试一试 因售价=成本×(1+利润率),故还需设出成本. 例4 某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予8折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?分析与解 第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当198元为购物不打折付的钱时,所购物品的原价为198元,又554450104=+,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,1040.8130÷=(元).因此,554元所购物品的原价为130500630+=(元),于是购买小明花198630828+=(元)所购的全部物品,小亮一次性购买应付()5000.98285000.8712.4⨯+-⨯=(元).情形2 当198元为购物打九折付的钱时,所购物品的原价为1980.9220÷=(元).仿情形1的讨论,购220630850+=(元)物品一次性付款应为()5000.98505000.8730⨯+-⨯=(元).练一练1.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为_______.2.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润为 _______元.3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共带省2800元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为________.5.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原销售价的八折销售,售价为120元,则这款羊毛衫每件的原销售价为_______元.6.甲用1000元购买了一些股票,随即他将这些股票转卖给乙,获利10%.而后乙又将这些股票反卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲( ).A .盈亏平衡B .盈利1元C .盈利9元D .亏损1.1元7.2008年爆发的世界金融危机,是自20世纪30年代以来世界最严重的一场金融危机,受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下列所列方程正确的是( ). A .()22001%148a += B .()22001%148a -= C .()20012%148a -= D . ()22001% 148a -= 8.某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( ). A .25% B .20% C .16% D .12.5%9.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( ). A .6新 B .7折 C .8折 D .9折 10.某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元,按标价给予九折优惠;③如一次购物超过500元,则其中500元按第②条给予优惠,超过500元的部分则给予八折优惠. 某人两次去购物,分别付款168元和423元,如果他只去一次购买同样的商品,则应付款是( ). A .522.8元 B .510.4元 C .560.4元 D .472.8元B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?12.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品C的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物全额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元?微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离.例1 (1)在公路上,汽车A、B、C分别以80km/h、70km/h、50km/h的速度匀速行驶,A从甲站开往乙站,同时,B、C从乙站开往甲站.A在与B相遇2小时后又与C相遇,则甲、乙两站相距_____ km.(2)小王沿街匀速行走,他发现每隔6min从背后驶过一辆18路公交车;每隔3min迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______min.试一试对于(2),“背后驶过与迎面驶来”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例2 (1)一艘轮船从A港到B港顺水航行,需6小时,从B港到A港逆水需8小时,若在静水条件下,从A港到B港需()小时.A.7B.172C.667D.162(2)甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边().A.AB上B.BC上C.CD上D.DA上试一试对于(2),设正方形边长为a,甲的速度为x,相遇时甲行的路程为y,利用“相遇时甲、乙两动点运动时间相等”建立方程,把y用a的代数式表示.甲例3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔113分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了多少分钟?试一试 当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比. 例4 甲、乙二人分别从A 、B 两地同时出发,在距离B 地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A 地后,又在距A 地4千米处相遇,求A 、B 两地相距多少千米? 解法一 第一次相遇时,甲、乙两人所走的路程之和,正是A 、B 两地相距的路程,即当甲、乙合走完A 、B 间的全部路程时,乙走了6千米,第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为6318⨯=(千米).考虑到乙从B 地走到A 后又返回了4千米,所以A 、B 两地间的距离为18414-=(千米).解法二 甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例. 到第一次相遇,甲走了(全程6-)千米,乙走了6千米;到第二次相遇,甲走了(2⨯全程4-)千米,乙走了(全程4+)千米.设全程为s ,易得到下列方程62464s s s --=+, 解得114s =,20s =(舍去), 所以A 、B 两地相距14千米.解法三 设全程为s 千米,甲、乙两人速度分别为1v ,2v .则 121266244s v v s s v v -⎧=⎪⎪⎨-+⎪=⎪⎩①②,①÷②得66244s s s -=-+, 解得14s =或0s =(舍去). 乘车方案例5 老师带着两名学生到离学校33千米远的博物馆参观,老师乘一辆摩托车,速度为25千米/时,这辆摩托车后座可带乘一名学生,带人速度为20千米/时,学生步行的速度为5千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过3个小时.分析 若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键. 解 要使师生三人都到达博物馆的时间尽可能短,可设计如下方案:设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆.如图,设老师带甲乘摩托车行驶了x 千米,用了20x 小时,比乙多行了()3205204x x ⨯-=(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了()3255440xx ÷+=(小时).乙遇到老师时,已经步行了3520408xx x ⎛⎫+⨯= ⎪⎝⎭(千米),离博物馆还有3338x -(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有3338x x =-,解得24x =.即甲先乘摩托车24千米,用时1.2小时,再步行9千米,用时1.8小时,共计3小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过3个小时.B (乙)(甲)A①②另解:设乙先步行的时间为x 小时,步行的路程为2s ,则25s x =(千米),此时老师带甲走的路程为233335s x -=-(千米),老师返回接乙走的路程为23323310s x -=-.故有33533102025x xx --+=,解得 1.8x =,甲乘车的时间为335 1.220x-=(小时),故甲从学校到博物馆共用1.8 1.23+=(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为150m 和200m ,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为10秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______. 4.甲、乙分别自A 、B 两地同时相向步行,2小时后中途相遇,相遇后,甲、乙步行速度都提高了1千米/时,当甲到达B 地后立刻按原路向A 地返行,当乙到达A 地后也立刻按原路向B 地返行.甲、乙两人在第一次相遇后3小时36分又再次相遇,则A 、B 两地的距离是_______千米.5.甲、乙两人沿同一路线骑车(匀速)从A 到B ,甲需要30分钟,乙需要40分钟.如果乙比甲早出发6分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有5米,丙距终点还有10米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A 、B 两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;y (元)的计算方法为:5y ax b =++,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费,若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .学校博物馆乙乙9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/时,骑车人的速度为10.8千米/时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在A 、B 两地同时相向而行,于E 处相遇后,甲继续向B 地行走,乙则休息了14分钟,再继续向A 地行走.甲和乙到达B 和A 后立即折返,仍在E 处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A 和B 两地相距多少米?11.某单位有135人要到50千米外的某地参观,因为步行时速只有5千米,为了使他们上午到达,配备了一辆最多载人50名、时速25千米的大客车.于是早晨6时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图.12.A 、B 、C 三辆车在同一条直路上同向行驶,某一时刻,A 在前,C 在后,B 在A 、C 正中间.10分钟后,C 追上B ;又过了5分钟,C 追上A .问再过多少分钟,B 追上A ?乙E B A9.绝对值与方程问题解决例1 由552x x -=--,得552x x -=--或()552x x -=---,所以0x =或10x =-.经检验知0x =时,方程左右两边不等,故舍去.从而原方程的解为10x =-.例2 A 23x m -=-,34x n -=-,45x k -=-,由题意得0m -<,0n -=,0k ->,从而0m >,0k <.例3 (1)54x =-或32x =.原方程化为314x x -+=或314x x -+=-,即314x x +=-或314x x +=+. (2)当3x <-时,原方程化为()()311x x x -++-=+,得5x =-.当31x -<≤时,原方程化为311x x x ++-=+,得1x =-.当1x ≥时,原方程化为()311x x x +--=+,得3x =.综上知原方程的解为5x =-,1-,3.(3)由绝对值的几何意义得原方程的解为13x -≤≤.例4 (1)1x =;(2)存在,32x =-或72(3)223或415数学冲浪1.1;9或3 2.2或0;107±;0或1- 3.49 4.A 5.D 6.C7.(1)1x =-或3x =-;(2)1x =;(3)3x =或13x =;(4)43x =-或2x =. 8.()2101x a a -=±<<,()21x a -=±±,()21x a =±±,得13x a =+,23x a =-,31x a =+,41x a =-,故12348x x x x +++=.9.当0k <,原方程无解;当0k =时,原方程有两解:1x =-或5x =-;当02k <<时,原方程化为32x k +=±,此时原方程有四解:()32x k =-±±;当2k =时,原方程化为322x +=±,此时原方程有三解:1x =或7x =-或3x =-;当2k >时,原方程有两解:()32x k =-±+.10.0或12d a +≤,又a 、d 都是整数,得2d a +=,1,0. 当2d a +=,则a b c d =-==-,即0d a +=矛盾;若1d a +=,令1a =,0b c d ===满足题意;若0d a +=,令1b =,0a c d ===满足题意.11.1220x x --<≤ 12.4012 13.C14.B 由数轴知72a -≤≤1,且2a 为偶数 15.D 0a ≤16.(1)1002或3008 可以得到220052006x -=;(2)15x ≤≤.17.由绝对值几何意义知:当33a -<<时,方程有一解;当3a =±时,方程有无穷多个解,当3a >或3a <-时,方程无解.18.(1)2a =-,1b =,3AB =;(2)存在点P ,点P 对应的数为1-或3-;(3)()()''''53512A B B C t t -=+-+=,为常数.19.()12123x x x x ++-=--+-≥,同理213y y -++≥,314z z -++≥,得()()()12213136x x y y z z ++--++-++≥.当且仅当12x -≤≤,12y -≤≤,13x -≤≤时,上面各式等号成立. 又()()()12213136x x y y z z ++--++-++=,由12123x y z -⎧⎪-⎨⎪⎩①②-1③≤≤≤≤≤≤ 得①+②2⨯+③3⨯,62315x y z -++≤≤,因此,23x y z ++的最大值为15,最小值为6-.从三阶幻方谈起(微探究)例l 由已知条件得:123413241319x x x x x x x x x x ++=++=++=++,这样前面两个式子之和等于后面的两个式子之和,即1234123421319x x x x x x x x x ++++=+++++,21319x =+∴,得16x =.例2 a b +与c d +的最小值是123452+++=,所以21253x -≥,即212x ≤.而2123x a b +=-为整数,且x 是不同于1,2,3,4,5,6,7,8的正整数,故9x =.练一练1.2,6,10;15,18,21设中间的圆圈中的数是x ,同一直线上的3个数的和是y ,则43231054y x -=+++= ,4183x y =-. 2.如图3.如图:4.由条件得:41 9a -+=,39b c ++=,9d e f ++=.上述三式相加有627a b c d e f ++++++=,故21a b c d e f +++++=.5.如图,由121a k b a c ++=++及11121c d b d ++=++,得121k b c +=+,110c b =+,从而110121231k =+=(注:这个幻方是可以完成的,如第1行为6,231,111;第2行为221,116,11;第3行为121,1,226).6.这9个数的积为31112481632646442⨯⨯⨯⨯⨯⨯⨯⨯=,所以每行、每列、每条对角线上三个数字积为64,得1ac =,1ef =,2ax =,a 、c 、e 、f 分别为14、12、2、4中的某个数,推得8x =. 7.略8.(1)略(2)显然有12945x y z ++=+++= ①图中六条边,每条边上三个圈中之数的和为18,得32618108z y x ++=⨯=. ②②-①,得21084563x y +=-=. ③把AB 、BC 、CA 每一边上三圈中之数的和相加,得231854x y +=⨯=. ④联立③、④解得15x =,24y =,进而6z =.在1~9中三个数之和为24的仅有7,8,9,所以在D 、E 、F 三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中之数一旦确定,根据题目要求,其余六个圈内之数也隧之确56379181024-1-2340-4-321d cb k a11121。
数学练习题解绝对值方程
数学练习题解绝对值方程绝对值方程是数学中常见的一类方程,通过练习解这类方程,可以加深对绝对值的理解,提高解方程的能力。
本文将通过举例和详细解析的方式,帮助读者掌握解绝对值方程的方法和技巧。
一、一元一次绝对值方程一元一次绝对值方程是指只有一个未知数,并且该未知数的次数为1。
下面通过一个例题来演示解一元一次绝对值方程的步骤。
例题1:解方程 |3x-6| = 2x+1解答:首先,我们可以根据绝对值的定义来进行拆分,得到两个方程:1. 3x-6 = 2x+12. 3x-6 = -(2x+1)解第一个方程:将2x移到等号左边,将常数1移到等号右边,得到:3x - 2x = 1 + 6x = 7解第二个方程:将2x移到等号左边,将常数1移到等号右边,并且将等号两边同时取相反数,得到:3x + 2x = -1 - 65x = -7x = -7/5所以方程的解为 x = 7 或 x = -7/5。
二、一元二次绝对值方程一元二次绝对值方程是指只有一个未知数,并且该未知数的次数为2。
下面通过一个例题来演示解一元二次绝对值方程的步骤。
例题2:解方程 |x^2-5x+6| = 5解答:同样地,我们可以根据绝对值的定义来进行拆分,得到两个方程:1. x^2-5x+6 = 52. x^2-5x+6 = -5解第一个方程:将常数5移到等号左边,得到:x^2 - 5x + 6 - 5 = 0x^2 - 5x + 1 = 0通过求根公式或配方法可以求解这个方程,得到:x = (5 ± √(5^2-4*1*1))/(2*1)x = (5 ± √(25-4))/2x = (5 ± √21)/2解第二个方程:将常数5移到等号左边,并且将等号两边同时取相反数,得到:x^2 - 5x + 6 + 5 = 0x^2 - 5x + 11 = 0同样地,通过求根公式或配方法可以求解这个方程,但我们可以发现这个方程无实数解。
七年级绝对值问题易错题总结(含答案)
七年级绝对值问题易错题总结(含答案)一、选择题(本大题共6小题,共18.0分)1.若ax=ay,那么下列等式一定成立的是()A. x=yB. x=|y|C. (a−1)x=(a−1)yD. 3−ax=3−ay【答案】D【解析】解:A、当a=0时,x与y不一定相等,故本选项错误;B、当a=0时,x与|y|不一定相等,故本选项错误;C、当a=0时,x与y不一定相等,故本选项错误;D、等式ax=ay的两边同时乘−1,再同时加上3,该等式仍然成立,故本选项正确.故选:D.利用等式的性质对每个式子进行变形即可找出答案.本题主要考查等式的性质.运用等式性质2时,必须注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果仍是等式.2.数轴上A,B,C三点所表示的数分别是a,b,c,且满足|c−b|−|a−b|=|a−c|,则A,B,C三点的位置可能是()A. B.C. D.【答案】C【解析】【分析】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.由A、B、C在数轴上的位置判断出a、b、c的大小关系,根据绝对值的性质去绝对值符号,判断左右两边是否相等即可.【解答】解:A.当a<c<b时,|c−b|−|a−b|=b−c+a−b=a−c,|a−c|=c−a,此选项错误;B.当a<b<c时,|c−b|−|a−b|=c−b+a−b=c+a−2b,|a−c|=c−a,此选项错误;C.当c<a<b时,|c−b|−|a−b|=b−c+a−b=a−c,|a−c|=a−c,故此选项正确;D.当c<b<a时,|c−b|−|a−b|=b−c−a+b=−c−a+2b,|a−c|=a−c,此选项错误.故选C.3.如果|x+y−3|=2x+2y,那么(x+y)3的值为()A. 1B. −27C. 1或−27D. 1或27【答案】A【解析】【分析】先根据|x+y−3|=2x+2y=2(x+y)≥0,得到x+y≥0,再根据绝对值的性质,分类讨论即可得出x+y的值.本题主要考查了绝对值的性质以及乘方的运用,解题时注意:任意一个有理数的绝对值是非负数.【解答】解:∵|x+y−3|=2x+2y=2(x+y),∴x+y≥0,当x+y−3=2(x+y)时,x+y=−3(舍去),当x+y−3=−2(x+y)时,x+y=1,(符合题意),∴(x+y)3的值为1.故选:A.4.下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的自然数是1.A. ①②B. ①②③C. ②③D. ②③④【答案】C【解析】解:∵一个数的绝对值是正数或0,∴选项①不符合题意;∵绝对值是同一个正数的数有两个,它们互为相反数,∴选项②符合题意;∵任何有理数小于或等于它的绝对值,∴选项③符合题意;∵绝对值最小的自然数是0,∴选项④不符合题意.故选:C.根据有理数的定义和分类,以及相反数、绝对值的含义和求法,逐项判断即可.此题主要考查了有理数的定义和分类,以及相反数、绝对值的含义和求法,要熟练掌握.5.数轴上A,B,C三点所表示的数分别是a,b,c,且满足|c−b|=|a−b|+|a−c|,则A,B,C三点的位置可能是()A. B.C. D.【答案】A【解析】略6.符号语言“|a|=−a(a≤0)”所表达的意思是()A. 正数的绝对值等于它本身B. 负数的绝对值等于它的相反数C. 非正数的绝对值等于它的相反数D. 负数的绝对值是正数【答案】C【解析】【分析】此题主要考查了绝对值和相反数,关键是掌握绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.根据a的取值范围可得a为非正数,再根据等式|a|=−a可得非正数的绝对值等于它的相反数.【解答】解:“|a|=−a(a≤0)”所表达的意思非正数的绝对值等于它的相反数,故选C.二、填空题(本大题共4小题,共12.0分)7.数a,b在数轴上的位置如图所示,化简:|2a−b|−|b−a|+|b|=_______.【答案】a−b【解析】【分析】此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.【解答】解:∵−2<b<−1<0<a<1,∴2a−b>0,b−a<0,b<0,∴|2a−b|−|b−a|+|b|=2a−b+b−a−b=a−b.故答案为:a−b.8.有理数a、b、c在数轴上的位置如图,则|a+c|+|c−b|−|a+b|=.【答案】0【解析】略9.若实数m,n,p满足m<n<p(mp<0)且|p|<|n|<|m|,则|x−m|+|x+n|+|x+p|的最小值是______.【答案】−m−n【解析】解:∵mp<0,∴m、p异号,∵m<p,∴p>0,m<0,∵m<n<p且|p|<|n|<|m|,∴n<0,如图所示:∴当x=−p时,|x−m|+|x+n|+|x+p|有最小值,其最小值是:|x−m|+|x+n|+ |x+p|=|−p−m|+|−p+n|+|−p+p|=−p−m−n+p=−m−n,则|x−m|+|x+n|+|x+p|的最小值是−m−n,故答案为:−m−n.先根据mp<0,确认p>0,m<0,再根据已知可得:n<0,并画数轴标三个实数的位置及−n和−p的位置,根据图形可知:当x=−p时,|x−m|+|x+n|+|x+p|有最小值,代入可得最小值.本题考查绝对值的几何意义,即这个数表示的点到原点的距离.10.数a,b在数轴上的位置如图所示,化简:|2a−b|−|b−a|+|b|=______.【答案】a−b【解析】解:∵−2<b<−1<0<a<1,∴2a−b>0,b−a<0,b<0,∴|2a−b|−|b−a|+|b|=2a−b+b−a−b=a−b.故答案为:a−b.先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.三、解答题(本大题共2小题,共16.0分)11.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“申花式”.例如,式子3x+4与4x+3互为“申花式”.(1)判断式子−5x+2与−2x+5______(填“是”或“不是”)互为“申花式”;(2)已知式子ax+b的“申花式”是3x−4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是______;②数轴上有一点P到A、B两点的距离的和PA+PB=11,求点P在数轴上所对应的数.【答案】解:(1)∵−5x+2与−2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“申花式”,故答案为:不是;(2)①∵式子ax+b的“申花式”是3x−4,∴a=−4,b=3,∵|x+a|+|x+b|=7,∴|x−4|+|x+3|=7,当x<−3时,4−x−x−3=7,解得x=−3(舍去);当−3≤x≤4时,4−x+x+3=7,解得,x为−3≤x≤4中任意一个数;当x>4时,x−4+x+3=7,解得x=4(舍去).综上,−3≤x≤4.故答案为:−3≤x≤4.②∵PA+PB=11,∴当P点在A作左边时,有PA+PA+AB=11,即2PA+7=11,则PA=2,于是P为−4−2=−6;当P点在A、B之间时,有PA+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是−6或5【解析】(1)根据定义的特征:任意一个式子的一次项系数都是另一个式子的常数项,(2)①把a、b的值代入|x+a|+|x+b|=7,解绝对值方程便可;②分三种情况:当P点在A作左边时,当P点在A、B之间时,当P点在B点右边时,由线段和差关系求得PA或PB的值,进而得P点表示的数;本题主要考查了新定义,数轴,两点间的距离,一元一次方程的应用,关键是正确理解新定义,把新的知识转化为常规知识进行解答.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和1的两点之间的距离是________;表示−3和4两点之间的距离是_______;所以,一般地数轴上表示数m和数n的两点之间的距离是________.(2)若数轴上一点表示为数a,化简|a+4|+|a−2|.(3)已知数轴上点B,C所表示的数分别是−4,5.在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位长度/秒,点P,Q分别从点B,C 同时出发相向而行,在数轴上运动,则经过多少时间后P,Q两点相距4个单位长度?【答案】解:(1)2;7;|m−n|;(2)当a<−4时,原式=−a−4+2−a=−2a−2;当−4⩽a<2时,原式=4+a+2−a=6;当a⩾2时,原式=a+4+a−2=2a+2;(3)设经过t秒后P,Q两点相距4个单位长度,则P:−4+t,Q:5−2t,|PQ|=|−4+t−5+2t|=|3t−9|=4,解得:t=133或t=53.【解析】【分析】本题考查了数轴,绝对值,一元一次方程的应用,两点间的距离.(1)根据数轴的概念,即可求得答案;(2)分不同情况,结合两点之间的距离,即可求得答案;(3)设经过t秒后P,Q两点相距4个单位长度,则P:−4+t,Q:5−2t,利用两点之间的距离可得方程,解方程即可求得答案.【解答】解:(1)数轴上表示3和1的两点之间的距离是2;表示−3和4两点之间的距离是7;所以,一般地数轴上表示数m和数n的两点之间的距离是|m−n|.故答案为2;7;|m−n|;。
七年级绝对值习题附答案
七年级绝对值习题附答案七年级绝对值习题附答案在数学学习中,绝对值是一个非常重要的概念。
它可以帮助我们理解数轴上的正数和负数之间的距离,并解决一些实际问题。
在七年级数学课程中,我们通常会遇到一些关于绝对值的习题。
本文将为大家提供一些七年级绝对值习题,并附上答案,希望能帮助大家更好地理解和掌握这个概念。
1. 求下列各式的值:a) |-3| = 3b) |5| = 5c) |-7| = 72. 求下列各式的值:a) |2 + 3| = |5| = 5b) |-4 - 6| = |-10| = 10c) |-8 + 12| = |-4| = 43. 求下列各式的值:a) |6 - 9| = |-3| = 3b) |-2 - 7| = |-9| = 9c) |-5 + 4| = |-1| = 14. 求下列各式的值:a) |2 × (-3)| = |-6| = 6b) |-4 × 5| = |-20| = 20c) |(-8) × (-2)| = |16| = 165. 求下列各式的值:a) |-2 ÷ 4| = |-0.5| = 0.5b) |-6 ÷ (-3)| = |2| = 2c) |8 ÷ (-4)| = |-2| = 2通过以上习题的解答,我们可以总结出一些规律和性质:1. 对于任意的实数a,有|a| ≥ 0,即绝对值的值一定是非负数。
2. 当a ≥ 0时,有|a| = a;当a < 0时,有|a| = -a。
3. 对于任意的实数a和b,有|a + b| ≤ |a| + |b|,即绝对值的加法不等式。
4. 对于任意的实数a和b,有|a - b| ≥ ||a| - |b||,即绝对值的减法不等式。
5. 对于任意的实数a和b,有|ab| = |a| × |b|,即绝对值的乘法性质。
6. 对于任意的实数a和b(b ≠ 0),有|a ÷ b| = |a| ÷ |b|,即绝对值的除法性质。
七年级数学思维探究:绝对值与方程(有答案)(数学竞赛)
七年级数学思维探究:绝对值与方程(有答案)(数学竞赛)商高是公元前11世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为3和4时,直角三角形的斜边就是5,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前6世纪发现的. 9.绝对值与方程 解读课标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有: 1.最简绝对值方程形如()0ax b c c +=≥是最简单的绝对值方程,可化为两个一元一次方程ax b c +=与ax b c +=-. 2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解. 问题解决例1 方程525x x -+=-的解是________.试一试原方程变形为552x x -=--,再把此方程化为一般方程求解.例2若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m ,n ,k 的大小关系为().A .m n k >>B .n k m >>C .k m n >>D .m k n >> 试一试从方程ax b c +=有解的条件入手. 例3解下列方程: (1)314x x -+=; (2)311x x x +--=+; (3)134x x ++-=.试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例4 如图,数轴上有A 、B 两点,分别对应的数为a 、b ,已知()21a +与3b -互为相反数.点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,说明理由;(3)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问几分钟时点P 到点A 、点B 的距离相等?试一试由绝对值的几何意义建立关于x 的绝对值方程. 例5讨论关于x 的方程25x x a -+-=的解的情况.分析与解a 与方程中常数2、5有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具. 数轴上表示数x 的点到数轴上表示数2和5的点的距离和的最小值为3,由此可得原方程的解的情况是: (1)当3a >时,原方程有两解;(2)当3a =时,原方程有无数解()25x ≤≤; (3)当3a <时,原方程无解. 数学冲浪 知识技能广场 1.若9x =是方程123x m -=的解,则m =_______;又若当1n =时,则方程123x n -=的解是_____. 2.方程3121x x -=+的解是_______;x =_______是方程()3115xx -=+的解;解方程399019951995x +=,得x =_______.3.如果()2230x x y -+-+=,那么()2x y +的值为________. 4.已知关于x 的方程()22ax a x +=-的解满足1102x --=,则a 的值为(). A .10或25B .10或25- C .10-或25 D .10-或25-5.若20042004202004x +=⨯,则x 等于().A .20或21-B .20-或21C .19-或21D .19或21- 6.方程880m m +++=的解的个数为() A .2个 B .3个C .无数个 D .不确定 7.解下列方程 (1)142132x -+=;(2)221x x -=-; -2-13(3)3548x -+=;(4)213x x -+=.8.求关于x 的方程()21001x a a ---=<<的所有解的和. 9.解方程32x k +-=.10.已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d +=_______. 11.若1x 、2x 都满足条件21234x x -++=,且12x x <,则12x x -的取值范围是_______. 12.满足方程2006182006x --+=的所有x 的和为________. 13.若关于x 的方程21x a --=有三个整数解,则a 的值为() A .0 B .2 C .1 D .314.方程27218a a ++-=的整数解的个数有() A .5 B .4 C .3D .215.若a 是方程20042004a a -=+的解,则2005a -等于() A .2005a - B .2005a -- C .2005a + D .2005a -+ 16.解下列方程(1)200520052006x x -+-=; (2)154x x -+-=.17.当a 满足什么条件时,关于x 的方程25x x a ---=有一解?有无数多个解?无解? 应用探究乐园18.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足()2210a b ++-=.(l )求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程12122x x -=+的解,在数轴上是否存在点P ,使得PA PB PC +=?若存在,求出点P 对应的数;若不存在,说明理由;(3)在(1)、(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分剐以每秒4个单位长度和9个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其常数值.19.已知()()()12213136x x y y z z ++--++-++=,求23x y z ++的最大值和最小值. 微探究 从三阶幻方谈起ABO相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出来,就是一个3阶幻方,也就是在33⨯的方阵中填入1~9,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在33⨯的方阵图中,每行、每列、每条对角线上3个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在33⨯的方格中填入9个不同的数,使得各行各列及两条对角线上3个数的和都相等,且为S ,若最中间数为m ,则3S m =.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方. (3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1如图①,有9个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试虽然问题要求的只是左上角的数,但是问题的条件还与其他的数相关.故为充分运用已知条件,需引入不同的字母表示数(如图②).例2 如图,在33⨯的方格表中填入九个不同的正整数:1,2,3,4,5,6,7,8和x .使得各行、各列所填的三个数的和都相等,请确定x 的值,并给出一种填数法.试一试如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即123456781233x x ++++++++=+为正整数,又2121233x xa b c d x +=+=+-=-,从估计a b +和c d +的最小值入手.图①1319?图②1913x 4x 3x 2x 1x整体核算法整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,a 、b 、c 、d 、e 、f 、g 、h 、i 分别代表1,2,3,4,5,6,7,8,9中某一个数,不同字母代表不同的数,使每个小圆内3个数的和都相等,那么a d g ++的值是多少?分析与解设这个相等的和是S ,现将这9个小圆中()3927⨯=个数求和,可得:()()()912923129345135S a b c d e f g h i =++++⨯++++++++=⨯+++=⨯=,故15S =.先从9所在的小圆看,h 至少是1,i 最多只能是5,再从1所在的小圆看,a 最多只能是9,由于115i a ++=,所以必须5i =,9a =,由此可以求得图②.对照图①与图②中各数的位置,可看到93618a d g ++=++=. 当然也可以有另一解法.dcbax 123456789i h g f edc b a图①987654321987654321图②将含1、含2、含4、含5、含7与含8的6个小圆内()3618⨯=个数求和,可得:()615124578a b c d e f g h i a d g ⨯=+++++++++++++++++,即 9072a d g =+++,所以907218a d g ++=-=.练一练1.将2到10这9个自然数填入图中的9个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的3个数的和是_______.2.请构造“幻角”,将1~10这10个整数填入图中的小三角形内(2和4已填好),使图中每个大三角形内四数之和都等于25.3.请将4-,3-,2-,1-,0,1,2,3,4,这9个数分别填入图中方阵的9个空格,使3行、3列、2条对角线上的3个数的和都是0.4.如图,a 、b 、c 、d 、e 、f 均为有理数,图中各行各列及两条对角线上的和都相等,求a b c d e f +++++的值.425.如图是一个33 的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求k 的值.6.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中3行、3列以及2条对角线上的点数之和都等于15,是一种“3阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从3阶到10阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用了对称思想.例如,用1,2,3,…,16构造4阶幻方的方法是:先将1,2,3,…,16依次排成图③,然后以外四角对换,即1与16对换,4与13对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的4阶幻方.-134 fedc b a 1211k64x32图①图②98765321416151413121110987654321图③图④8.把数字1,2,3,…,9分别填入图中的9个圈内,要求三角形ABC 和三角形DEF 的每条边上三个圈内数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究 商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础. (1)100%=⨯利润利润率进价; (2)利润=售价-进价;(3)售价=进价+利润=进价×(1+利润率).例1 一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润_______元.试一试从求出成本价切入.例2 某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为(). A .25% B .20% C .16% D .12.5% 试一试利用获利不变建立方程.例3 某房地产开发商开发一套房子的成本随着物价上涨比原来增加了10%,为了赚钱,开发商把售价提高了0.5倍,利润率比原来增加了60%,求开发商原来的利润率.试一试因售价=成本×(1+利润率),故还需设出成本. 例4 某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予8折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,FE DCBA他需付款多少?分析与解第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当198元为购物不打折付的钱时,所购物品的原价为198元,又554450104=+,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,1040.8130÷=(元).因此,554元所购物品的原价为130500630+=(元),于是购买小明花198630828+=(元)所购的全部物品,小亮一次性购买应付()5000.98285000.8712.4⨯+-⨯=(元).情形2 当198元为购物打九折付的钱时,所购物品的原价为1980.9220÷=(元).仿情形1的讨论,购220630850+=(元)物品一次性付款应为()5000.98505000.8730⨯+-⨯=(元). 练一练1.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为_______.2.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润为_______元. 3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共带省2800元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为________.5.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原销售价的八折销售,售价为120元,则这款羊毛衫每件的原销售价为_______元.6.甲用1000元购买了一些股票,随即他将这些股票转卖给乙,获利10%.而后乙又将这些股票反卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲().A .盈亏平衡B .盈利1元C .盈利9元D .亏损1.1元7.2008年爆发的世界金融危机,是自20世纪30年代以来世界最严重的一场金融危机,受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下列所列方程正确的是().A .()22001%148a += B .()22001%148a -= C .()20012%148a -= D .()22001% 148a -=8.某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为(). A .25% B .20% C .16% D .12.5%9.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打().A .6新B .7折C .8折D .9折 10.某商场对顾客实行优惠,规定: ①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元,按标价给予九折优惠;③如一次购物超过500元,则其中500元按第②条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元和423元,如果他只去一次购买同样的商品,则应付款是().A.522.8元B.510.4元C.560.4元D.472.8元11.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?12.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品C的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物全额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元?微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离.例1 (1)在公路上,汽车A、B、C分别以80km/h、70km/h、50km/h的速度匀速行驶,A从甲站开往乙站,同时,B、C从乙站开往甲站.A在与B相遇2小时后又与C相遇,则甲、乙两站相距_____km.(2)小王沿街匀速行走,他发现每隔6min从背后驶过一辆18路公交车;每隔3min迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______min.试一试对于(2),“背后驶过与迎面驶来”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例2 (1)一艘轮船从A 港到B 港顺水航行,需6小时,从B 港到A 港逆水需8小时,若在静水条件下,从A 港到B 港需()小时.A .7B .172C .667D .162(2)甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边(). A . AB 上 B .BC 上 C .CD 上 D .DA 上试一试对于(2),设正方形边长为a ,甲的速度为x ,相遇时甲行的路程为y ,利用“相遇时甲、乙两动点运动时间相等”建立方程,把y 用a 的代数式表示.例3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔113分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了多少分钟?试一试当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比.例4 甲、乙二人分别从A 、B 两地同时出发,在距离B 地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A 地后,又在距A 地4千米处相遇,求A 、B 两地相距多少千米?解法一第一次相遇时,甲、乙两人所走的路程之和,正是A 、B 两地相距的路程,即当甲、乙合走完A 、B 间的全部路程时,乙走了6千米,第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为6318⨯=(千米).考虑到乙从B 地走到A 后又返回了4千米,所以A 、B 两地间的距离为18414-=(千米).解法二甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例. 到第一次相遇,甲走了(全程6-)千米,乙走了6千米;到第二次相遇,甲走了(2⨯全程4-)千米,乙走了(全程4+)千米.B (乙)(甲)A①②设全程为s ,易得到下列方程62464s s s --=+, 解得114s =,20s =(舍去), 所以A 、B 两地相距14千米.解法三设全程为s 千米,甲、乙两人速度分别为1v ,2v .则 121266244s v v s s v v -⎧=⎪⎪⎨-+⎪=⎪⎩①②,①÷②得66244s s s -=-+, 解得14s =或0s =(舍去). 乘车方案例5 老师带着两名学生到离学校33千米远的博物馆参观,老师乘一辆摩托车,速度为25千米/时,这辆摩托车后座可带乘一名学生,带人速度为20千米/时,学生步行的速度为5千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过3个小时.分析若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键. 解要使师生三人都到达博物馆的时间尽可能短,可设计如下方案:设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆. 如图,设老师带甲乘摩托车行驶了x 千米,用了20x 小时,比乙多行了()3205204x x ⨯-=(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了()3255440xx ÷+=(小时).乙遇到老师时,已经步行了3520408xx x ⎛⎫+⨯= ⎪⎝⎭(千米),离博物馆还有3338x -(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有3338x x =-,解得24x =.即甲先乘摩托车24千米,用时1.2小时,再步行9千米,用时1.8小时,共计3小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过3个小时.另解:设乙先步行的时间为x 小时,步行的路程为2s ,则25s x =(千米),此时老师带甲走的路程为学校博物馆乙233335s x -=-(千米),老师返回接乙走的路程为23323310s x -=-.故有33533102025x xx --+=,解得 1.8x =,甲乘车的时间为335 1.220x-=(小时),故甲从学校到博物馆共用1.8 1.23+=(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为150m 和200m ,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为10秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______.4.甲、乙分别自A 、B 两地同时相向步行,2小时后中途相遇,相遇后,甲、乙步行速度都提高了1千米/时,当甲到达B 地后立刻按原路向A 地返行,当乙到达A 地后也立刻按原路向B 地返行.甲、乙两人在第一次相遇后3小时36分又再次相遇,则A 、B 两地的距离是_______千米.5.甲、乙两人沿同一路线骑车(匀速)从A 到B ,甲需要30分钟,乙需要40分钟.如果乙比甲早出发6分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有5米,丙距终点还有10米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A 、B 两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表:y (元)的计算方法为:5y ax b =++,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费,若林老师乙从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/时,骑车人的速度为10.8千米/时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在A 、B 两地同时相向而行,于E 处相遇后,甲继续向B 地行走,乙则休息了14分钟,再继续向A 地行走.甲和乙到达B 和A 后立即折返,仍在E 处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A 和B 两地相距多少米?11.某单位有135人要到50千米外的某地参观,因为步行时速只有5千米,为了使他们上午到达,配备了一辆最多载人50名、时速25千米的大客车.于是早晨6时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图. 12.A 、B 、C 三辆车在同一条直路上同向行驶,某一时刻,A 在前,C 在后,B 在A 、C 正中间.10分钟后,C 追上B ;又过了5分钟,C 追上A .问再过多少分钟,B 追上A ?乙EBA9.绝对值与方程 问题解决例1 由552x x -=--,得552x x -=--或()552x x -=---,所以0x =或10x =-.经检验知0x =时, 方程左右两边不等,故舍去.从而原方程的解为10x =-.例2 A 23x m -=-,34x n -=-,45x k -=-,由题意得0m -<,0n -=,0k ->,从而0m >,0k <.例3 (1)54x =-或32x =.原方程化为314x x -+=或314x x -+=-,即314x x +=-或314x x +=+.(2)当3x <-时,原方程化为()()311x x x -++-=+,得5x =-. 当31x -<≤时,原方程化为311x x x ++-=+,得1x =-. 当1x ≥时,原方程化为()311x x x +--=+,得3x =. 综上知原方程的解为5x =-,1-,3.(3)由绝对值的几何意义得原方程的解为13x -≤≤.例4 (1)1x =;(2)存在,32x =-或72(3)223或415数学冲浪1.1;9或3 2.2或0;107±;0或1- 3.49 4.A 5.D 6.C7.(1)1x =-或3x =-;(2)1x =;(3)3x =或13x =;(4)43x =-或2x =. 8.()2101x a a -=±<<,()21x a -=±±,()21x a =±±,得13x a =+,23x a =-,31x a =+,41x a =-,故12348x x x x +++=.9.当0k <,原方程无解;当0k =时,原方程有两解:1x =-或5x =-;当02k <<时,原方程化为32x k +=±,此时原方程有四解:()32x k =-±±;当2k =时,原方程化为322x +=±,此时原方程有三解:1x =或7x =-或3x =-;当2k >时,原方程有两解:()32x k =-±+.10.0或12d a +≤,又a 、d 都是整数,得2d a +=,1,0.当2d a +=,则a b c d =-==-,即0d a +=矛盾;若1d a +=,令1a =,0b c d ===满足题意;若0d a +=,令1b =,0a c d ===满足题意.11.1220x x --<≤ 12.4012 13.C14.B 由数轴知72a -≤≤1,且2a 为偶数 15.D 0a ≤ 16.(1)1002或3008可以得到220052006x -=; (2)15x ≤≤.17.由绝对值几何意义知:当33a -<<时,方程有一解;当3a =±时,方程有无穷多个解,当3a >或3a <-时,方程无解.18.(1)2a =-,1b =,3AB =;(2)存在点P ,点P 对应的数为1-或3-;(3)()()''''53512A B B C t t -=+-+=,为常数.19.()12123x x x x ++-=--+-≥,同理213y y -++≥,314z z -++≥,得()()()12213136x x y y z z ++--++-++≥.当且仅当12x -≤≤,12y -≤≤,13x -≤≤时,上面各式等号成立. 又()()()12213136x x y y z z ++--++-++=,由12123x y z -⎧⎪-⎨⎪⎩①②-1③≤≤≤≤≤≤得①+②2⨯+③3⨯,62315x y z -++≤≤,因此,23x y z ++的最大值为15,最小值为6-. 从三阶幻方谈起(微探究)例l 由已知条件得:123413241319x x x x x x x x x x ++=++=++=++,这样前面两个式子之和等于后面的两个式子之和,即1234123421319x x x x x x x x x ++++=+++++,21319x =+∴,得16x =. 例2 a b +与c d +的最小值是123452+++=,所以21253x -≥,即212x ≤.而2123xa b +=-为整数,且x 是不同于1,2,3,4,5,6,7,8的正整数,故9x =. 练一练1.2,6,10;15,18,21设中间的圆圈中的数是x ,同一直线上的3个数的和是y ,则43231054y x -=+++=,4183x y =-. 2.如图3.如图:56379181024-1-2340-4-3214.由条件得:41 9a -+=,39b c ++=,9d e f ++=.上述三式相加有627a b c d e f ++++++=,故21a b c d e f +++++=.5.如图,由121a k b a c ++=++及11121c d b d ++=++,得121k b c +=+,110c b =+,从而110121231k =+=(注:这个幻方是可以完成的,如第1行为6,231,111;第2行为221,116,11;第3行为121,1,226).6.这9个数的积为31112481632646442⨯⨯⨯⨯⨯⨯⨯⨯=,所以每行、每列、每条对角线上三个数字积为64,得1ac =,1ef =,2ax =,a 、c 、e 、f 分别为14、12、2、4中的某个数,推得8x =. 7.略 8.(1)略(2)显然有12945x y z ++=+++=①图中六条边,每条边上三个圈中之数的和为18,得32618108z y x ++=⨯=.② ②-①,得21084563x y +=-=.③把AB 、BC 、CA 每一边上三圈中之数的和相加,得231854x y +=⨯=.④ 联立③、④解得15x =,24y =,进而6z =.在1~9中三个数之和为24的仅有7,8,9,所以在D 、E 、F 三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中之数一旦确定,根据题目要求,其余六个圈内之数也隧之确定,从而得到结论,共有6种不同的填法. 商品的利润(微探究)例l 设成本为a ,则()150%450a +=,得300a =,所求利润为4500.830060⨯-=(元).例2 C 设原进价为a 元,提价后的利润率为%x ,则()20%125%%m a a x =⋅=+⋅,解得%16%x =. 例3 设原来的利润率是%x ,原来的成本是a ,则()()()1.510.0110.110.0160a x a x +=+++⎡⎤⎣⎦,解 得65x =,即原来的利润率是65%. 练一练 1.120xx- 2.160 3.九 4.120 5.150 6.B 7.B8.C 设提价后的利润率为%x ,则()()()125%1%125%20%20%m m x m ++=++,解得16x =. dc b k a 11121。
初一数学绝对值难题解析
初一数学绝对值难题解析考验它的概念本身不难,但却经常拿来出一些难题,绝对值是初一数学的一个重要知识点,的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
(0)(当a<0), |a|=-a 即|a|=a(当a≥2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
(灵活应用绝对值的基本性质:0)≠|a/b|=|a|/|b|(b=|a|·|b|;(3)(1)|a|≥0;(2)|ab| ;|a|+|b|≤|a-b|≤b|≤|a|+|b|;(5)|a|-|b|+(4)|a|-|b|≤|a ,在什么条件下成立?|a|+|b|思考:|a+b|=,在什么条件下成立?-|b||a-b|=|a| 常用解题方法:)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(1 )运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(2 )零点分段法:求零点、分段、区段内化简、综合。
(3 例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用的点在原点左侧,请化简下cb两个数的点如图所示,并且已知表示1、在数轴上表示a、列式子:(1)|a-b|-|c-b|解:∵a<0,b>0 ∴a-b<0c<0,b>0 ∴c-b<0故,原式=(b-a)-(b-c) =c-a(2)|a-c|-|a+c|解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2|| 。
解:∵x<-1 ∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6| 。
解:∵3<a<4 ∴a-3>0,a-6<0原式=(a-3)-(a-6) =34、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的?答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时a≥0;1,+bb-a=aa,由已知|a-b|=a+b,得-当ab<0时,a<b,|a-b|=b-;>0a=0,这时b解得)是正确的。
初一数学绝对值计算题及答案过程
初一数学绝对值计算题及答案过程例1求下列各数的绝对值:(1)-38; (2)0.15; (3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.例2判断下列各式是否正确(正确入“T”,错误入“F”):(1)|-a|=|a|; ( )(2)-|a|=|-a|; ( )(4)若|a|=|b|,则a=b; ( )(5)若a=b,则|a|=|b|; ( )(6)若|a|>|b|,则a>b; ( )(7)若a>b,则|a|>|b|; ( )(8)若a>b,则|b-a|=a-b. ( )例3判断对错.(对的入“T”,错的入“F”)(1)如果一个数的相反数是它本身,那么这个数是0. ( )(2)如果一个数的倒数是它本身,那么这个数是1和0. ( )(3)如果一个数的绝对值是它本身,那么这个数是0或1. ( )(4)如果说“一个数的绝对值是负数”,那么这句话是错的. ( )(5)如果一个数的绝对值是它的相反数,那么这个数是负数. ( )例4 已知(a-1)2+|b+3|=0,求a、b.例5填空:(1)若|a|=6,则a=______; (2)若|-b|=0.87,则b=______; (4)若x+|x|=0,则x是______数.例6 判断对错:(对的入“T”,错的入“F”)(1)没有最大的自然数. ( )(2)有最小的偶数0. ( )(3)没有最小的正有理数. ( )(4)没有最小的正整数. ( )(5)有最大的负有理数. ( )(6)有最大的负整数-1. ( )(7)没有最小的有理数. ( )(8)有绝对值最小的有理数. ( )例7 比较下列每组数的大小,在横线上填上适当的关系符号 (“<”“=”“>”) (1)|-0.01|______-|100|; (2)-(-3)______-|-3|;(3)-[-(-90)]_______0; (4)当a<3时,a-3______0;|3-a|______a-3.例8在数轴上画出下列各题中x的范围: (1)|x|≥4;(2)|x|<3;(3)2<|x|≤5.例9 (1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x.例10解方程:(1) 已知|14-x|=6,求x;*(2)已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a<0,∴|a|=-a; (4)∵b>0,∴3b>0,|3b|=3b; (5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第(6)小题中取a=-1,b=0,在第(4)、(7)小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第(1)、(5)、(8)小题要注意字母取零的情况.2,解:其中第(2)、(4)、(6)、(7)小题不正确,(1)、(3)、(5)、(8)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.3,解:(1)T. (2)F.-1的倒数也是它本身,0没有倒数.(3)F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0. (4)T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的. (5)F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点: (1)必须“紧扣”概念进行判断; (2)要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中(a-1)2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵(a-1)2≥0,|b+3|≥0,又(a-1)2+|b+3|=0 ∴a-1=0且b+3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数. 5,解:(1)∵|a|=6,∴a=±6; (2)∵|-b|=0.87,∴b=±0.87;(4)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:6,解:(1)T.(2)F.数的范围扩展后,偶数的范围也随之扩展.偶数包含正偶数,0,负偶数(-2,-4,…),所以0不是最小的偶数,偶数没有最小的. (3)T. (4)F.有最小的正整数1. (5)F.没有最大的负有理数. (6)T. (7)T. (8)T.绝对值最小的有理数是0.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较. 7,解:(1)|-0.01|>-|100|; (2)-(-3)>-|-3|; (3)-[-(-90)]<0; (4)当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案与评分标准一、解答题(共18小题,满分150分)1、a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a﹣b|=|b﹣a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.考点:绝对值;不等式的性质。
分析:根据绝对值和不等式的性质对每一小题进行分析.解答:解:(1)错误.当a,b同号或其中一个为0时成立.(2)正确.(3)正确.(4)错误.当a≥0时成立.(5)错误.当b>0时成立.(6)错误.当a+b>0时成立.点评:本题主要考查了绝对值和不等式的有关内容.需熟练掌握和运用绝对值和不等式的性质.2、已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|+|a+c|﹣2|c﹣b|.考点:整式的加减;数轴;绝对值。
分析:解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.解答:解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|+|a+c|﹣2|c﹣b|=﹣(b﹣a)+(a+c)﹣2[﹣(c﹣b)]=﹣b+a+a+c+2c﹣2b=2a﹣3b+3c.点评:在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.3、已知x<﹣3,化简:|3+|2﹣|1+x|||.考点:绝对值。
专题:计算题。
分析:这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解答:解:∵x<﹣3,∵1+x<0,3+x<0,∴原式=|3+|2+(1+x)||,=|3+|3+x||,=|3﹣(3+x)|,=|﹣x|,=﹣x.点评:本题考查了绝对值的知识,注意对于含有多层绝对值符号的问题,要从里往外一层一层地去绝对值符号.4、若abc≠0,则++的所有可能值是什么?考点:绝对值。
专题:计算题;分类讨论。
分析:由已知可得,a,b,c均不为零,因为题中没有指明a,b,c的正负,故应该分四种情况:(1)当a,b,c 均大于零时;(2)当a,b,c均小于零时;(3)当a,b,c中有两个大于零,一个小于零时;(4)当a,b,c中有两个小于零,一个大于零时,从而确定答案.解答:解:∵abc≠0,∴a≠0,b≠0,c≠0.∵(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=﹣3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=﹣1.∴++的所有可能值是:±3,±1.点评:此题主要考查了绝对值的性质,采用分类讨论思想是解答此题的关键.5、若|x|=3,|y|=2,且|x﹣y|=y﹣x,求x+y的值.考点:非负数的性质:绝对值;绝对值。
专题:分类讨论。
分析:根据|x﹣y|=y﹣x,即可得到y≥x,再根据|x|=3,|y|=2即可确定x,y的值,从而求解.解答:解:因为|x﹣y|≥0,所以y﹣x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=﹣3.(1)当y=2时,x+y=﹣1;(2)当y=﹣2时,x+y=﹣5.所以x+y的值为﹣1或﹣5.点评:本题主要考查了绝对值的性质,若x≠0,且|x|=a,则x=±a,根据任何数的绝对值一定是非负数,正确确定x,y的大小关系,确定x,y的值,是解决本题的关键.6、若a,b,c为整数,且|a﹣b|19+|c﹣a|99=1,试计算|c﹣a|+|a﹣b|+|b﹣c|的值.考点:绝对值。
专题:探究型。
分析:根据绝对值的定义和已知条件a,b,c为整数,且|a﹣b|19+|c﹣a|99=1确定出a、b、c的取值及相互关系,进而在分情况讨论的过程中确定|c﹣a|、|a﹣b|、|b﹣c|,从而问题解决.解答:解:a,b,c均为整数,则a﹣b,c﹣a也应为整数,且|a﹣b|19,|c﹣a|99为两个非负整数,和为1,所以只能是|a﹣b|19=0且|c﹣a|99=1,①或|a﹣b|19=1且|c﹣a|99=0.②由①知a﹣b=0且|c﹣a|=1,所以a=b,于是|b﹣c|=|a﹣c|=|c﹣a|=1;由②知|a﹣b|=1且c﹣a=0,所以c=a,于是|b﹣c|=|b﹣a|=|a﹣b|=1.无论①或②都有|b﹣c|=1且|a﹣b|+|c﹣a|=1,所以|c﹣a|+|a﹣b|+|b﹣c|=2.点评:根据绝对值的定义和已知条件确定出a、b、c的取值及关系是解决本题的关键,同时注意讨论过程的全面性.7、若|x﹣y+3|与|x+y﹣1999|互为相反数,求的值考点:解二元一次方程组;非负数的性质:绝对值;代数式求值。
专题:计算题。
分析:先根据相反数的定义得到|x﹣y+3|与|x+y﹣1999|的关系,再根据绝对值的性质列出关于x、y的方程组,求出x、y的值,再把x、y的值代入所求代数式进行计算即可.解答:解:依相反数的意义有|x﹣y+3|=﹣|x+y﹣1999|.因为任何一个实数的绝对值是非负数,所以必有|x﹣y+3|=0且|x+y﹣1999|=0.即,由①有x﹣y=﹣3,由②有x+y=1999.②﹣①得2y=2002,y=1001,所以===﹣1000.点评:本题考查的是相反数的定义、非负数的性质及解二元一次方程组,能根据非负数的性质得到关于x、y的二元一次方程组是解答此题的关键.8、化简:|3x+1|+|2x﹣1|.考点:绝对值。
分析:本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.分x<﹣,﹣≤x<,x≥三种情况讨论解答:解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.点评:本题考查了绝对值的知识,属于基础题,解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.9、已知y=|2x+6|+|x﹣1|﹣4|x+1|,求y的最大值.考点:绝对值。
专题:分类讨论。
分析:首先使用“零点分段法”将y化简,有三个分界点:﹣3,1,﹣1.则x的范围即可分为x≤﹣3,﹣3≤x≤﹣1,﹣1≤x≤1,x≥1四部分,即可确定绝对值内式子的符号,从而确定y的值.解答:解:分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.有三个分界点:﹣3,1,﹣1.(1)当x≤﹣3时,y=﹣(2x+6)﹣(x﹣1)+4(x+1)=x﹣1,由于x≤﹣3,所以y=x﹣1≤﹣4,y的最大值是﹣4.(2)当﹣3≤x≤﹣1时,y=(2x+6)﹣(x﹣1)+4(x+1)=5x+11,由于﹣3≤x≤﹣1,所以﹣4≤5x+11≤6,y的最大值是6.(3)当﹣1≤x≤1时,y=(2x+6)﹣(x﹣1)﹣4(x+1)=﹣3x+3,由于﹣1≤x≤1,所以0≤﹣3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x﹣1)﹣4(x+1)=﹣x+1,由于x≥1,所以1﹣x≤0,y的最大值是0.综上可知,当x=﹣1时,y取得最大值为6.点评:本题主要考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.对x的分为正确进行分类是解决本题的关键.10、设a<b<c<d,求|x﹣a|+|x﹣b|+|x﹣c|+|x﹣d|的最小值.考点:绝对值;数轴。
专题:数形结合。
分析:分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x﹣a|,|x﹣b|,|x﹣c|,|x﹣d|的几何意义来解题,将显得更加简捷便利.解答:解:设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x﹣a|表示线段AX之长,同理,|x﹣b|,|x﹣c|,|x﹣d|分别表示线段BX,CX,DX之长.现要求|x﹣a|,|x﹣b|,|x﹣c|,|x﹣d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d﹣a)+(c﹣b).点评:以上分别用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.11、若2x+|4﹣5x|+|1﹣3x|+4的值恒为常数,求x该满足的条件及此常数的值.考点:一元一次不等式组的应用。
专题:计算题。
分析:要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x﹣5x+3x=0一种情况.因此必须有|4﹣5x|=4﹣5x且|1﹣3x|=3x﹣1.让4﹣5x≥0,3x﹣1≥0列式计算即可求得x该满足的条件,进而化简代数式即可.解答:解:x应满足的条件是:,解得≤x≤,∴原式=2x+(4﹣5x)+(3x﹣1)+4=7.点评:考查代数式的化简及一元一次不等式组的应用;判断出绝对值内的代数式的符号是解决本题的关键;用到的知识点为:一个数的绝对值是非负数.12、x是什么实数时,下列等式成立:(1)|(x﹣2)+(x﹣4)|=|x﹣2|+|x﹣4|;(2)|(7x+6)(3x﹣5)|=(7x+6)(3x﹣5).考点:含绝对值符号的一元一次方程。
专题:计算题。
分析:(1)根据等式的形式可判断出(x﹣2)及(x﹣4)同号,由此可得出答案;(2)等式的形式可判断出(x﹣2)及(x﹣4)同号,由此可得出答案;解答:解:由题意得:①(x﹣2)≥0,(x﹣4)≥0,解得:x≥4;②(x﹣2)≤0,(x﹣4)≤0,解得:x≤2,故x≥4或x≤2时成立;(2)由题意得:(7x+6)(3x﹣5)≥0,解得:x≤﹣或x≥.点评:本题考查含绝对值的一元一次方程,难度不大,解决此题的关键是掌握绝对值的性质.13、化简下列各式:(1)(2)|x+5|+|x﹣7|+|x+10|.考点:绝对值。
专题:计算题;分类讨论。
分析:此题要分类讨论,在x取不同值的情况下,去掉绝对值后结果不同.特别注意(1)中dex不能取0,题(2)要讨论全面.解答:解:(1)当x>0时,=0;当x<0时,=﹣2;(2)当x≥7时,|x+5|+|x﹣7|+|x+10|=3x+8;当﹣5≤x≤7 时,|x+5|+|x﹣7|+|x+10|=x+5﹣(x﹣7)+x+10=x+22;当﹣10≤x≤﹣5时,|x+5|+|x﹣7|+|x+10|=﹣(x+5)﹣(x﹣7)+x+10=12﹣x;当x≤﹣10 时,|x+5|+|x﹣7|+|x+10|=﹣3x﹣8.点评:本题主要考查了绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;绝对值是非负数≥0;0的绝对值还是零.14、若a+b<0,化简|a+b﹣1|﹣|3﹣a﹣b|.考点:绝对值。