2020高考数学函数与导数综合题型分类总结

合集下载

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020年高考数学(理)函数和导数知识点归纳汇总目录基本初等函数性质及应用 (3)三角函数图象与性质三角恒等变换 (17)函数的图象与性质、函数与方程 (43)导数的简单应用与定积分 (60)利用导数解决不等式问题 (81)利用导数解决函数零点问题 (105)基本初等函数性质及应用题型一 求函数值 【题型要点解析】已知函数的解析式,求函数值,常用代入法,代入时,一定要注意函数的对应法则与自变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化.例1.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【解析】 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=4231-⎪⎭⎫⎝⎛x 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.【答案】 B例2.已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln 1+x 2+x ,x ≥0,3x 2+ln 1+x 2-x ,x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.【解析】 若x >0,则-x <0,f (-x )=3(-x )2+ln (1+(-x )2+x )=3x 2+ln (1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.【答案】 (-∞,-2)∪(0,+∞)例3.已知a >b >1,若log a b +log b a =52,a b=b a ,则a =________,b =________.【解析】 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2.∴2b=b 2,∴b =2,a =4.【答案】 4;2 题组训练一 求函数值1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的最小值是( )A.32 B .1C.12D .2【解析】 log 12a =-log 2a ,f (log 2 a )+f (log 12a )≤2f (1),所以2f (log 2a )≤2f (1),所以|log 2 a |≤1,解得12≤a ≤2,所以a 的最小值是12,故选C.【答案】 C2.若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎪⎭⎫⎝⎛31,0x ,则函数f (x )在[0,3]上的最小值等于________.【解析】令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =13,于是f (x )=⎝ ⎛⎭⎪⎫13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13.【答案】 -13题型二 比较函数值大小 【题型要点解析】三招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.例1.已知a =3421-⎪⎭⎫ ⎝⎛,b =5241-⎪⎭⎫ ⎝⎛,c =31251-⎪⎭⎫⎝⎛,则( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c【解析】 因为a =3421-⎪⎭⎫ ⎝⎛=243,b =5241-⎪⎭⎫ ⎝⎛=245,c =31251-⎪⎭⎫⎝⎛=523,显然有b <a ,又a =423<523=c ,故b <a <c .【答案】 D例2.已知a =π3,b =3π,c =e π,则a 、b 、c 的大小关系为( ) A .a >b >c B .a >c >b C .b >c >aD .b >a >c【解析】 ∵a =π3,b =3π,c =e π,∴函数y =x π是R 上的增函数,且3>e>1,∴3π>e π,即b >c >1;设f (x )=x 3-3x ,则f (3)=0,∴x =3是f (x )的零点,∵f ′(x )=3x 2-3x ·ln 3,∴f ′(3)=27-27ln 3<0,f ′(4)=48-81ln 3<0,∴函数f (x )在(3,4)上是单调减函数,∴f (π)<f (3)=0,∴π3-3π<0,即π3<3π,∴a <b ;又∵e π<πe <π3,∴c <a ;综上b >a >c .故选D.【答案】 D题组训练二 比较函数值大小 1.若a >b >1,0<c <1,则( ) A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c【解析】 对A :由于0<c <1,∴函数y =x c 在R 上单调递增,则a >b >1⇔a c >bc ,A 错误;对B :由于-1<c -1<0,∴函数y =x c -1在(1,+∞)上单调递减,又∴a >b >1,∴a c -1<b c -1⇔ba c <ab c ,B 错误;对C :要比较a log b c 和b log a c ,只需比较a ln c lnb 和b lnc ln a ,只需比较ln c b ln b 和ln ca ln a,只需b ln b 和a ln a ;构造函数f (x )=x ln x (x >1),则f ′(x )=ln x +1>1>0,f (x )在(1,+∞)上单调递增,因此f (a )>f (b )>0⇔a ln a >b ln b >0⇔1a ln a <1b ln b ,又由0<c <1得ln c <0,∴ln c a ln a >ln cb ln b⇔b log a c >a log b c ,C 正确;对D :要比较log a c 和log b c ,只需比较ln c ln a 和ln cln b,而函数y =ln x 在(1,+∞)上单调递增,故a >b >1⇔ln a >ln b >0⇔1ln a <1ln b ,又由0<c <1得ln c <0,∴ln c ln a >ln c ln b ⇔log a c >log b c ,D 错误.故选C.【答案】 C2.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0【解析】 依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0,g (a )<0<f (b ),选A.【答案】 A题型三 求参数的取值范围 【题型要点解析】利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(3)注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.例1.已知f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B.⎪⎭⎫ ⎝⎛-21,1C.⎪⎭⎫⎢⎣⎡-21,1D.⎪⎭⎫⎝⎛21,0【解析】 要使函数f (x )的值域为R ,需使⎩⎨⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎨⎧a <12,a ≥-1,∴-1≤a <12.故选C.【答案】 C例2.设函数f (x )=⎩⎨⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎪⎭⎫ ⎝⎛-21x >1的x 的取值范围是________.【解析】 由题意,当x >12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +2x -12>1恒成立,即x >12满足题意;当0<x ≤12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +x -12+1>1恒成立,即0<x ≤12满足题意;当x ≤0时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =x +1+x -12+1>1,解得x >-14,即-14<x ≤0.综上,x 的取值范围是⎪⎭⎫ ⎝⎛+∞,41 【答案】⎪⎭⎫⎝⎛+∞,41题组训练三 求参数的取值范围例1.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【解析】 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显示不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.【答案】 (1,2]例2.设函数f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x <12,4x-3,x ≥12的最小值为-1,则实数a 的取值范围是________.【解析】 当x ≥12时,4x -3为增函数,最小值为f ⎪⎭⎫⎝⎛21=-1,故当x <12时,x 2-2x +a ≥-1.分离参数得a ≥-x 2+2x -1=-(x -1)2,函数y =-(x -1)2开口向下,且对称轴为x =1,故在⎪⎭⎫ ⎝⎛∞-21,上单调递增,所以函数在x =12处有最大值,最大值为-221⎪⎭⎫⎝⎛-=-14,即a ≥-14.【答案】⎪⎭⎫⎢⎣⎡+∞-,41【专题训练】 一、选择题1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)等于( )A .1B.45 C .-1D .-45【解析】 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 2 45)=-(2log 245+15)=-1.【答案】C2.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0,则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【解析】 ∵对任意的x 1,x 2∈(-∞,0), 且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数. ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 【答案】 A3.已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈[2,3]时,f (x )=log 2(x-1),则f ⎪⎭⎫⎝⎛31等于( )A .2-log 23B .log 23-log 27C .log 27-log 23D .log 23-2【解析】 因为f (x )是奇函数,且f (2-x )=f (x ),所以f (x -2)=-f (x ),所以f (x -4)=f (x ),所以f ⎪⎭⎫ ⎝⎛31=f ⎪⎭⎫ ⎝⎛-312=f ⎪⎭⎫ ⎝⎛35=-f ⎪⎭⎫ ⎝⎛-354=-f ⎪⎭⎫⎝⎛37.又当x ∈[2,3]时,f (x )=log 2(x -1), 所以f ⎪⎭⎫ ⎝⎛37=log 2⎪⎭⎫⎝⎛-137=log 243=2-log 23,所以f ⎪⎭⎫⎝⎛31=log 23-2,故选D.【答案】 D4.已知函数y =f (x )是R 上的偶函数,设a =ln1π,b =(ln π)2,c =ln π,当对任意的x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )【解析】 由(x 1-x 2)[f (x 1)-f (x 2)]<0可知,f (x 1)-f (x 2)(x 1-x 2)<0,所以y =f (x )在(0,+∞)上单调递减.又因为函数y =f (x )是R 上的偶函数,所以y =f (x )在(-∞,0)上单调递增,由于a =ln 1π=-lnπ<-1,b =(ln π)2,c =ln π=12ln π,所以|b |>|a |>|c |,因此f (c )>f (a )>f (b ),故选D.【答案】 D5.已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b【解析】 因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减;因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减.因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π3<20.2<log 39,所以b >a >c ,选A.【答案】 A6.设a =0.23,b =log 0.30.2,c =log 30.2,则a ,b ,c 大小关系正确的是( )A .a >b >cB .b >a >cC .b >c >aD .c >b >a【解析】 根据指数函数和对数函数的增减性知,因为0<a =0.23<0.20=1,b =log 0.30.2>log 0.30.3=1,c =log 30.2<log 31=0,所以b >a >c ,故选B.【答案】B7.对任意实数a ,b 定义运算“Δ”:a Δb =⎩⎨⎧a ,a -b ≤2,b ,a -b >2,设f (x )=3x+1Δ(1-x ),若函数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( )A .[-1,2]B .(0,3]C .[0,2]D .[1,3]【解析】 由题意得f (x )=⎩⎨⎧-x +1,x >0,3x +1,x ≤0,∴函数f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减,若函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则⎩⎨⎧m ≥0,m +1≤3,得0≤m ≤2,故选C.【答案】 C8.已知函数f (x )=a |log 2 x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,给出下列命题:①F (x )=|f (x )|;②函数F (x )是偶函数;③当a <0时,若0<m <n <1,则有F (m )-F (n )<0成立;④当a >0时,函数y =F (x )-2有4个零点.其中正确命题的个数为( )A .0B .1C .2D .3【解析】 ①∵函数f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0f (-x ),x <0,∴|f (x )|=|a |log 2x |+1|,∴F (x )≠|f (x )|,①不对;②∵F (-x )=⎩⎨⎧f (-x ),x <0f (x ),x >0=F (x ),∴函数F (x )是偶函数,故②正确;③∵当a <0时,若0<m <n <1,∴|log 2m |>|log 2n |,∴a |log 2m |+1<a |log 2n |+1,即F (m )<F (n )成立,故F (m )-F (n )<0成立,所以③正确;④∵f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,∴x >0时,(0,1)单调递减,(1,+∞)单调递增, ∴x >0时,F (x )的最小值为F (1)=1, 故x >0时,F (x )与y =-2有2个交点,∵函数F (x )是偶函数,∴x <0时,F (x )与y =-2有2个交点,故当a >0时,函数y =F (x )-2有4个零点,所以④正确.【答案】D 二、填空题1.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.【解析】 依题意a =g (-log 25.1) =(-log 25.1)·f (-log 25.1) =log 25.1f (log 25.1)=g (log 25.1).因为f (x )在R 上是增函数,可设0<x 1<x 2,则f (x 1)<f (x 2). 从而x 1f (x 2)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数.又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .【答案】 b <a <c2.已知函数f (x )=⎩⎨⎧2x,x ≤1ln (x -1),1<x ≤2若不等式f (x )≤5-mx 恒成立,则实数m 的取值范围是________.【解析】 设g (x )=5-mx ,则函数g (x )的图象是过点(0,5)的直线.在同一坐标系内画出函数y =f (x )和g (x )=5-mx 的图象,如图所示.∵不等式f (x )≤5-mx 恒成立,∴函数y =f (x )图象不在函数g (x )=5-mx 的图象的上方.结合图象可得,①当m <0时不成立;②当m =0时成立;③当m >0时,需满足当x =2时,g (2)=5-2m ≥0,解得0<m ≤52.综上可得0≤m ≤52.∴实数m 的取值范围是⎣⎢⎡⎦⎥⎤0,52.3.已知函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]【解析】 函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,将x 换为-x ,函数值不变,即有f (x )图象关于y 轴对称,即f (x )为偶函数,有f (-x )=f (x ),当x ≥0时,f (x )=x ln(1+x )+x 2的导数为f ′(x )=ln (1+x )+x 1+x+2x ≥0,则f (x )在[0,+∞)递增,f (-a )+f (a )≤2f (1),即为2f (a )≤2f (1),可得f (|a |))≤f (1),可得|a |≤1,解得-1≤a ≤1.【答案】 D4.已知函数f (x )=⎩⎨⎧(3a -1)x -4a ,(x <1),log a x , (x ≥1)在R 上不是单调函数,则实数a 的取值范围是________.【解析】 当函数f (x )在R 上为减函数时,有3a -1<0且0<a <1且(3a -1)·1+4a ≥log a 1,解得17≤a <13,当函数f (x )在R 上为增函数时,有3a -1>0且a >1且(3a -1)·1+4a ≤log a 1,a 无解.∴当函数f (x )在R 上为单调函数时,有17≤a <13,∴当函数f (x )在R 上不是单调函数时,有a >0且a ≠1且a <17或a ≥13即0<a <17或13≤a <1或a >1.5.定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,已知f (x )=log 2x ,x ∈[1,22 016],则函数f (x )=log 2x 在[1,22 016]上的“均值”为 ________.【解析】 根据定义,函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,令x 1x 2=1·22 016=22 016,当x 1∈[1,22 016]时,选定x 2=22 016x 1∈[1,22 016],可得M =12log 2(x 1x 2)=1 008.【答案】 1 008三角函数图象与性质三角恒等变换题型一 函数y =A sin(ωx +φ)的解析式与图象 【题型要点解析】解决三角函数图象问题的方法及注意事项(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.【例1】函数f (x )=A sin(ωx +φ)+b 的部分图象如图,则S =f (1)+…+f (2017)等于( )A .0 B.4 0312C.4 0352 D.4 0392【解析】由题设中提供的图象信息可知⎩⎪⎨⎪⎧A +b =32,-A +b =12,解得A =12,b =1,T =4⇒ω=2π4=π2,所以f(x)=12sin⎪⎭⎫⎝⎛+ϕπx2+1,又f(0)=12sin⎪⎭⎫⎝⎛+⨯ϕπ2+1=12sinφ+1=1⇒sinφ=0,可得φ=kπ,所以f(x)=12sin⎪⎭⎫⎝⎛+ππkx2+1,由于周期T=4,2017=504×4+1,且f(1)+f(2)+f(3)+f(4)=4,所以S=f(1)+…+f(2016)+f(2017)=2016+f(2017)=2016+f(1)=2016+32=4 0352,故选C.【答案】 C【例2】.已知函数f(x)=sin2ωx-12(ω>0)的周期为π2,若将其图象沿x轴向右平移a个单位(a>1),所得图象关于原点对称,则实数a的最小值为( )A.π4B.3π4C.π2D.π8【解析】∵f(x)=1-cos 2ωx2-12=-12cos 2ωx,2π2ω=π2,解得ω=2,从而f(x)=-12cos 4x.函数f(x)向右平移a个单位后,得到新函数为g(x)=-12cos(4x-4a).∴cos 4a=0,4a=π2+kπ,k∈Z,当k=0时,a的最小值为π8.选D.【答案】 D题组训练一函数y=A sin(ωx+φ)的解析式与图象1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,且f (α)=1,α∈⎪⎭⎫ ⎝⎛3,0π,则cos ⎪⎭⎫ ⎝⎛+652πα等于( )A.13 B .±223C.223D .-223【解析】由题图可知A =3,易知ω=2,φ=5π6,即f (x )=3sin ⎪⎭⎫ ⎝⎛+652πx . 因为f (α)=3sin ⎪⎭⎫ ⎝⎛+652πα=1,所以sin ⎪⎭⎫⎝⎛+652πα=13, 因为α∈⎪⎭⎫⎝⎛3,0π,所以2α+5π6∈⎪⎭⎫ ⎝⎛+652πα, 所以cos ⎪⎭⎫⎝⎛+652πα=-223,故选D. 【答案】 D2.已知曲线C 1:y =cos x ,C 2:y =sin ⎪⎭⎫⎝⎛+322πx ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为C 1,C 2函数名不同,所以将C 2利用诱导公式转化成与C 1相同的函数名,则C 2:y =sin ⎪⎭⎫ ⎝⎛+322πx =cos ⎪⎭⎫ ⎝⎛-+2322ππx =cos ⎪⎭⎫ ⎝⎛+62πx ,则由C 1上各点的横坐标缩短到原来的12倍变为y =cos 2x ,再将曲线向左平移π12个单位得到C 2,故选D.【答案】 D3.设函数y =sin ωx (ω>0)的最小正周期是T ,将其图象向左平移14T 后,得到的图象如图所示,则函数y =sin ωx (ω>0)的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24737,24737ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12737,12737ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++242167,24767ππππ 【解析】 方法一 由已知图象知,y =sin ωx (ω>0)的最小正周期是2×7π12=7π6,所以2πω=7π6,解得ω=127,所以y =sin 127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ 方法二 因为T =2πω,所以将y =sin ωx (ω>0)的图象向左平移14T 后,所对应的解析式为y =sin ω⎪⎭⎫ ⎝⎛+ωπ2x .由图象知,ω⎪⎭⎫ ⎝⎛+ωππ2127=3π2,所以ω=127, 所以y =sin127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是 ()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ(k ∈Z ). 【答案】 A题型二 三角函数的性质 【题型要点】(1)奇偶性的三个规律:①函数y =A sin(ωx +φ)是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z ); ②函数y =A cos(ωx +φ)是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );③函数y =A tan(ωx +φ)是奇函数⇔φ=k π(k ∈Z ).(2)对称性的三个规律①函数y =A sin(ωx +φ)的图象的对称轴由ωx +φ=k π+π2(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π(k ∈Z )解得; ②函数y =A cos(ωx +φ)的图象的对称轴由ωx +φ=k π(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π+π2(k ∈Z )解得; ③函数y =A tan(ωx +φ)的图象的对称中心的横坐标由ωx +φ=k π2(k ∈Z )解得.(3)三角函数单调性:求形如y=A sin(ωx+φ)(或y=A cos(ωx+φ))(A、ω、φ为常数,A≠0,ω>0)的单调区间的一段思路是令ωx+φ=z,则y=A sin z(或y=A cos z),然后由复合函数的单调性求得.(4)三角函数周期性:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π|ω|.应特别注意y=|A sin(ωx+φ)|的周期为T=π|ω|.【例3】设函数f(x)=sinωx·cosωx-3cos2ωx+32(ω>0)的图象上相邻最高点与最低点的距离为π2+4.(1)求ω的值;(2)若函数y=f(x+φ)(0<φ<π2)是奇函数,求函数g(x)=cos(2x-φ)在[0,2π]上的单调递减区间.【解】(1)f(x)=sinωx·cosωx-3cos2ωx+3 2=12sin2ωx-3(1+cos 2ωx)2+32=12sin2ωx-32cos2ωx=sin⎪⎭⎫⎝⎛-32πωx,设T为f(x)的最小正周期,由f(x)的图象上相邻最高点与最低点的距离为π2+4,得∴22⎪⎭⎫⎝⎛T+[2f(x)max]2=π2+4,∵f(x)max=1,∴22⎪⎭⎫⎝⎛T+4=π2+4,整理得T=2π.又ω>0,T=2π2ω=2π,∴ω=12.(2)由(1)可知f (x )=sin ⎪⎭⎫ ⎝⎛-3πx ,∴f (x +φ)=sin ⎪⎭⎫ ⎝⎛-+3πϕx .∵y =f (x +φ)是奇函数,则sin ⎪⎭⎫ ⎝⎛-3πϕ=0,又0<φ<π2,∴φ=π3, ∴g (x )=cos(2x -φ)=cos ⎪⎭⎫ ⎝⎛-32πx .令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z , ∴单调递减区间是⎥⎦⎤⎢⎣⎡++32,6ππππk k k ∈Z . 又∵x ∈[0,2π],∴当k =0时,递减区间是⎥⎦⎤⎢⎣⎡32,6ππ;当k =1时,递减区间是⎥⎦⎤⎢⎣⎡35,67ππ∴函数g (x )在[0,2π]上的单调递减区间是⎥⎦⎤⎢⎣⎡32,6ππ,⎥⎦⎤⎢⎣⎡35,67ππ.【例4】.已知函数f (x )=sin(ωx +π6)(ω>0)的最小正周期为4π,则( )A .函数f (x )的图象关于原点对称B .函数f (x )的图象关于直线x =π3对称C .函数f (x )图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称D .函数f (x )在区间(0,π)上单调递增【解析】2πω=4π⇒ω=12,所以f (x )=sin ⎪⎭⎫⎝⎛+62πx 不是奇函数,图象不关于原点对称;x =π3时f (x )=32不是最值,图象不关于直线x =π3对称; 所有点向右平移π3个单位长度后得y =sin ⎥⎦⎤⎢⎣⎡+-6)3(21ππx =sin 12x 为奇函数,图象关于原点对称;因为x ∈(0,π)⇒12x +π6∈⎪⎭⎫⎝⎛32,6ππ,所以函数f (x )在区间(0,π)上有增有减,综上选C.【答案】 C【例5】.已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈⎥⎦⎤⎢⎣⎡-32,12ππ的图象如图所示,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)等于( )A .1 B. 2 C. 3D .2【解析】 根据函数f (x )=2sin(ωx +φ),x ∈[-π12,2π3]的图象知,3T 4=2π3-⎪⎭⎫ ⎝⎛-12π=3π4,∴T =π,∴ω=2πT =2; 又x =-π12时,2×⎪⎭⎫⎝⎛-12π+φ=0,解得φ=π12, ∴f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx ;又f (x 1)=f (x 2),且x 1≠x 2,不妨令x 1=0,则x 2=π3, ∴x 1+x 2=π3,∴f (x 1+x 2)=2sin ⎪⎭⎫⎝⎛+⨯632ππ=1.故选A. 【答案】 A题组训练二 三角函数的性质1.如图是函数y =A sin(ωx +φ)⎪⎭⎫ ⎝⎛≤>>2,0,0πϕωA 图象的一部分.为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解析】 观察图象知,A =1,T =2⎪⎭⎫⎝⎛-365ππ=π,ω=2πT =2,即y =sin(2x +φ);将点⎪⎭⎫ ⎝⎛0,3π代入得⎪⎭⎫⎝⎛+⨯ϕπ32sin =0,结合|φ|≤π2,得φ=π3,所以y =sin ⎪⎭⎫ ⎝⎛+32πx .故选A. 【答案】 A2.已知函数f (x )=cos 2ωx 2+32sin ωx -12(ω>0),x ∈R ,若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎥⎦⎤⎝⎛125,0π B.⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65 C.⎥⎦⎤ ⎝⎛65,0π D.⎥⎦⎤ ⎝⎛125,0π∪⎥⎦⎤⎢⎣⎡1211,65 【解析】 函数f (x )=cos 2ωx 2+32sin ωx -12=12cos ωx +32sin ωx =sin ⎪⎭⎫ ⎝⎛+6πωx ,可得T =2πω≥π,0<ω≤2,f (x )在区间(π,2π)内没有零点,函数的图象如图两种类型,结合三角函数可得:⎩⎪⎨⎪⎧ωπ+π6≥02ωπ+π6≤π或⎩⎪⎨⎪⎧πω+π6≥π2ωπ+π6≤2π,解得ω∈⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65.故选B.【答案】 B题型三 三角恒等变换 【题型要点解析】三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等; (2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.【例6】如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C位于第一象限,点B 的坐标为⎪⎭⎫⎝⎛-135,1312,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2·cos α2-32的值为________.【解析】由题意得|OC |=|OB |=|BC |=1, 从而△OBC 为等边三角形,所以sin ∠AOB =sin ⎪⎭⎫ ⎝⎛-απ3=513,又因为3cos 2α2-sinα2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎪⎭⎫ ⎝⎛-απ3=513.【答案】513【例7】.已知sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫ ⎝⎛+83πα等于( ) A .-45B.45 C .-35D.35【解析】 ∵sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫⎝⎛+83πα=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+82παπ=-sin ⎪⎭⎫ ⎝⎛-8πα=-45,故选A.【答案】 A【例8】.已知cos α=35,cos(α-β)=7210,且0<β<α<π2,那么β等于( )A.π12B.π6C.π4D.π3【解析】 cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β),由已知cos α=35,cos(α-β)=7210,0<β<α<π2,可知sinα=45,sin(α-β)=210 ,代入上式得cos β=35×7210+45×210=25250=22,所以β=π4,故选C.【答案】 C题组训练三 三角恒等变换1.若sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则cos 2α的值为( )A .-35B.35 C .-45D.45【解析】 由sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则sin α+3cos α=0,可得:tan α=sin αcos α=-3; 则cos 2α=cos 2α-sin 2α=1-tan 2αtan 2α+1=1-91+9=-45.故选C. 【答案】 C2.已知cos ⎪⎭⎫ ⎝⎛-3πx =13,则cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π的值为( ) A .-19B.19 C.53D .-53【解析】 cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π =-cos ⎪⎭⎫ ⎝⎛-322πx +sin 2⎪⎭⎫ ⎝⎛-3πx =1-2cos 2⎪⎭⎫ ⎝⎛-3πx +1-cos 2⎪⎭⎫ ⎝⎛-3πx=2-3cos 2⎪⎭⎫ ⎝⎛-3πx =53. 【答案】 C3.已知cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫ ⎝⎛-απ3=-14,α∈⎪⎭⎫⎝⎛2,3ππ.则sin 2α=________.【解析】 cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫⎝⎛-απ3=cos ⎪⎭⎫ ⎝⎛+απ6·sin ⎪⎭⎫ ⎝⎛+απ6=12sin ⎪⎭⎫ ⎝⎛+32πα=-14,即sin ⎪⎭⎫ ⎝⎛+32πα=-12.∵α∈⎪⎭⎫⎝⎛2,3ππ,∴2α+π3∈⎪⎭⎫ ⎝⎛34,ππ, ∴cos ⎪⎭⎫ ⎝⎛+32πα=-32,∴sin 2α=sin ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+332ππα=sin ⎪⎭⎫ ⎝⎛+32παcos π3-cos ⎪⎭⎫ ⎝⎛+32παsin π3=12.【答案】12题型四 三角函数性质的综合应用 【题型要点】研究三角函数的性质的两个步骤第一步:先借助三角恒等变换及相应三角函数公式把待求函数转化为y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【例9】设函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,其中0<ω<3.已知f⎪⎭⎫⎝⎛6π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎥⎦⎤⎢⎣⎡-43,4ππ上的最小值. 【解析】 (1)因为f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎪⎪⎭⎫ ⎝⎛-x x ωωcos 23sin 21 =3⎪⎭⎫ ⎝⎛-3sin πωx由题设知f ⎪⎭⎫⎝⎛6π=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z ,又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎪⎭⎫ ⎝⎛-32πx所以g (x )=3sin ⎪⎭⎫ ⎝⎛-+34ππx =3sin ⎪⎭⎫ ⎝⎛-12πx因为x ∈⎥⎦⎤⎢⎣⎡-43,4ππ,所以x -π12∈⎥⎦⎤⎢⎣⎡-32,3ππ,当x -π12=-π3, 即x =-π4时,g (x )取得最小值-32.【答案】 -32题组训练四 三角函数性质的综合应用已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎪⎭⎫⎝⎛32π的值.(2)求f (x )的最小正周期及单调递增区间. 【解析】 (1)由sin 2π3=32,cos 2π3=-12,f ⎪⎭⎫⎝⎛32π=223⎪⎪⎭⎫ ⎝⎛-221⎪⎭⎫ ⎝⎛--23×32×⎪⎭⎫ ⎝⎛-21得f ⎪⎭⎫⎝⎛32π=2. (2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2si ⎪⎭⎫⎝⎛+62πx 所以f (x )的最小正周期是π 由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z . 解得π6+k π≤x ≤2π3+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k πk ∈Z .【专题训练】一、选择题1.已知α满足sin α=13,则cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫⎝⎛-απ4=( )A.718B.2518 C .-718D .-2518【解析】 cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫ ⎝⎛-απ4=22()cos α-sin α·22()cos α+sin α=12()cos 2α-sin 2α=12(1-2sin 2α)=12⎪⎭⎫ ⎝⎛⨯-9121=718,选A. 【答案】 A2.若函数f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1(ω>0)在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,则ω的取值范围是( )A .[0,1)B.⎪⎭⎫⎢⎣⎡+∞,43 C .[1,+∞)D.⎥⎦⎤ ⎝⎛43,0 【解析】 由题意,因为f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1=4sin ωx ·1-cos ⎝⎛⎭⎪⎫ωx +π22+cos2ωx -1=2sin ωx (1+sin ωx )+cos2ωx-1=2sin ωx 所以⎥⎦⎤⎢⎣⎡-ωπωπ2,2表示函数含原点的递增区间,又因为函数在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,所以⎥⎦⎤⎢⎣⎡-32,2ππ⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,即⎩⎪⎨⎪⎧-π2ω≤-π2π2ω≥2π3⇒⎩⎨⎧ω≤1ω≤34,又ω>0,所以0<ω≤34,故选D.【答案】 D3.函数f (x )=A sin(ωx +φ)(A >0,ω>0)在x =1和x =-1处分别取得最大值和最小值,且对于∀x 1,x 2∈[-1,1](x 1≠x 2)都有f (x 1)-f (x 2)x 1-x 2>0,则函数f (x +1)一定是( )A .周期为2的偶函数B .周期为2的奇函数C .周期为4的奇函数D .周期为4的偶函数【解析】 由题意可得,[-1,1]是f (x )的一个增区间,函数f (x )的周期为2×2=4,∴2πω=4,ω=π2, ∴f (x )=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x .再根据f (1)=A sin ⎪⎭⎫ ⎝⎛+ϕπ2=A ,可得sin ⎪⎭⎫⎝⎛+ϕπ2=cos φ=1,故φ=2k π,k ∈Z ,∴f (x +1)=A sin ⎥⎦⎤⎢⎣⎡++ππk x 2)1(2=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x =A cos π2x ,∴f (x +1)是周期为4的偶函数,故选D. 【答案】D4.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向左平移π3个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎪⎭⎫⎝⎛0,12π对称B .关于直线x =π12对称C .关于点⎪⎭⎫⎝⎛0,6π对称D .关于直线x =π6对称【解析】 由于函数最小正周期为π,所以ω=2,即f (x )=sin(2x +φ).向左平移π3得到sin ⎪⎭⎫⎝⎛++ϕπ322x 为奇函数,故2π3+φ=π,φ=π3,所以f (x )=sin ⎪⎭⎫ ⎝⎛+322πx .f ⎪⎭⎫⎝⎛12π=sin π2=1,故x =π12为函数的对称轴,选B. 【答案】 B5.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图,f ⎪⎭⎫⎝⎛-2413π=( )A .-62 B .-32C .-22D .-1【解析】 根据函数f (x )=A sin(ωx +φ)的部分图象知,A =2,T 4=7π12-π3=π4,∴T =2πω=π,解得ω=2; ∴f (x )=2sin(2x +φ). 由五点法画图知,ω×π3+φ=2π3+φ=π,解得φ=π3,∴f (x )= 2 sin(2x +π3),∴f ⎪⎭⎫ ⎝⎛-2413π=2sin(-13π12+π3)=2sin(-3π4)=-1,故选D. 【答案】 D6.函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,若f (0)=-3,且函数f (x )的图象关于直线x =-π12对称,则以下结论正确的是( )A .函数f (x )的最小正周期为π3B .函数f (x )的图象关于点⎪⎭⎫⎝⎛0,97π对称 C .函数f (x )在区间⎪⎭⎫⎝⎛2411,4ππ上是增函数D .由y =2cos 2x 的图象向右平移5π12个单位长度可以得到函数f (x )的图象 【解析】 函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,∵f (0)=-3,即2sin φ=-3,∵-π2<φ<π2, ∴φ=-π3又∵函数f (x )的图象关于直线x =-π12对称,∴-ω×π12-π3=π2+k π,k ∈Z . 可得ω=12k -10,∵0<ω<12.∴ω=2.∴f (x )的解析式为:f (x )=2sin ⎪⎭⎫ ⎝⎛-32πx .最小正周期T =2π2=π,∴A 不对. 当x =7π9时,可得y ≠0,∴B 不对. 令-π2≤2x -π3≤π2,可得-π12≤x ≤5π12,∴C 不对.函数y =2cos 2x 的图象向右平移5π12个单位, 可得2cos 2⎪⎭⎫ ⎝⎛-125πx =2cos ⎪⎭⎫ ⎝⎛-652πx=2sin ⎪⎭⎫ ⎝⎛+-2652ππx =2sin ⎪⎭⎫ ⎝⎛-32πx . ∴D 项正确.故选D. 【答案】 D 二、填空题7.已知函数f (x )=A sin(ωx +φ)⎪⎭⎫ ⎝⎛<><2,0,0πϕωA 的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2),则f (x )=________.【解析】 由题意可得A =2,T 2=2π,T =4π,∴ω=2πT =2π4π=12,∴f (x )=2sin ⎪⎭⎫⎝⎛+ϕ2x ,∴f (0)=2sin φ=1.由|φ|<π2,∴φ=π6,∴f (x )=2sin ⎪⎭⎫⎝⎛+62πx . 【答案】 2sin ⎪⎭⎫⎝⎛+62πx8.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.【解析】 f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,则ω2=π4,所以ω=π2.【答案】π29.已知sin ⎪⎭⎫ ⎝⎛-απ3=13⎪⎭⎫ ⎝⎛<<20πα,则sin ⎪⎭⎫⎝⎛+απ6=________.【解析】 ∵sin ⎪⎭⎫ ⎝⎛-απ3=13,∴cos ⎪⎭⎫ ⎝⎛+απ6=cos ⎥⎦⎤⎢⎣⎡--)3(2αππ=sin ⎪⎭⎫ ⎝⎛-απ3=13;又0<α<π2,∴π6<π6+α<2π3, ∴sin ⎪⎭⎫ ⎝⎛+απ6=223.【答案】22310.已知π2<β<α<34π,cos(α-β)=1213,sin(α+β)=-35,则sin2α=__________A.5665 B .-5665 C.6556D .-6556【解析】由题意得π2<β<α<3π4,则0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213⇒sin(α-β)=513,sin(α+β)=-35⇒cos(α+β)=-45,则sin2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)=513×(-45)+1213×(-35)=-5665,故选B.【答案】 B 三、解答题11.已知函数f (x )=sin ωx cos ωx -3cos 2ωx +32(ω>0)图象的两条相邻对称轴为π2.(1)求函数y =f (x )的对称轴方程;(2)若函数y =f (x )-13在(0,π)上的零点为x 1,x 2,求cos(x 1-x 2)的值.【解析】 (1)函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32.化简可得f (x )=12sin 2ωx -32cos 2ωx =sin ⎪⎭⎫ ⎝⎛-32πωx ,由题意可得周期T =π,∴π=2π2ω∴w =1∴f (x )=sin ⎪⎭⎫ ⎝⎛-32πx故函数y =f (x )的对称轴方程为2x -π3=k π+π2(k ∈Z ),即x =k π2+5π12(k ∈Z )(2)由函数y =f (x )-13在(0,π)上的零点为x 1,x 2,可知sin ⎪⎭⎫ ⎝⎛-321πx =sin ⎪⎭⎫ ⎝⎛-322πx =13>0,且0<x 1<5π12<x 2<2π3. 易知(x 1,f (x 1))与(x 2,f (x 2))关于x =5π12对称, 则x 1+x 2=5π6,∴cos(x 1-x 2)=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--1165x x π=cos ⎪⎭⎫ ⎝⎛-6521πx =cos ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-2321ππx=sin ⎪⎭⎫ ⎝⎛-321πx =13.12.已知函数f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx (0<ω<2),且f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π(1)求ω的值及函数f (x )的最小正周期; (2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎪⎭⎫ ⎝⎛2α=536,求cos ⎪⎭⎫ ⎝⎛-32πα的值.【解】 (1)f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin2ωx +32cos2ωx +32=3sin ⎪⎭⎫ ⎝⎛+62πωx +32, 因为函数y =f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π,。

2020高考导数压轴题型归类总结

2020高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

导数题型总结

导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。

题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。

例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。

题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。

求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。

高考数学试卷板块知识总结

高考数学试卷板块知识总结

一、函数与导数1. 函数概念:函数的定义、性质、图像及性质;反函数、复合函数、分段函数等。

2. 函数图像:函数图像的绘制方法、性质;函数图像与方程的关系。

3. 函数性质:函数的单调性、奇偶性、周期性、有界性等;函数的极限、连续性。

4. 导数:导数的定义、计算方法;导数的几何意义、物理意义;导数的应用:函数的极值、最值、凹凸性、拐点等。

5. 高阶导数:高阶导数的计算方法;高阶导数的应用。

二、三角函数与解三角形1. 三角函数:正弦、余弦、正切、余切、正割、余割函数的定义、性质、图像;三角函数的周期性、奇偶性、有界性。

2. 解三角形:正弦定理、余弦定理;解三角形的应用:求角度、边长、面积等。

3. 三角函数的应用:三角函数在物理、几何、经济等领域的应用。

三、数列与不等式1. 数列:数列的定义、性质、通项公式;数列的极限;数列的求和。

2. 不等式:不等式的性质、解法;不等式的应用:最值、比较大小等。

3. 概率与统计:概率的定义、性质;随机变量、分布函数;期望、方差;大数定律、中心极限定理等。

四、立体几何与解析几何1. 立体几何:点、线、面、体的概念、性质;线面关系、面面关系;空间角、距离、面积等。

2. 解析几何:解析几何的基本概念、方程;解析几何的应用:求点、线、面、体的位置关系;解析几何在几何证明中的应用。

五、概率与统计1. 概率:概率的定义、性质;条件概率、独立事件;随机变量、分布函数;期望、方差等。

2. 统计:数据的收集、整理、分析;描述性统计、推断性统计;相关分析、回归分析等。

六、复数与复平面1. 复数:复数的概念、性质;复数的运算;复数的几何意义。

2. 复平面:复平面的概念、性质;复数在复平面上的表示;复数的乘除运算等。

七、数学文化与应用1. 数学文化:数学史、数学家故事、数学趣味知识等。

2. 数学应用:数学在日常生活、科技、经济、管理等领域的应用。

以上是对高考数学试卷板块知识的总结,希望对考生在备考过程中有所帮助。

高中数学导数题型归纳总结

高中数学导数题型归纳总结

高中数学导数题型归纳总结高中数学中,导数是一个重要的概念,它是微积分的基础。

在考试中,导数题型往往是必考的内容。

为了帮助同学们更好地复习导数,下面对高中数学导数题型进行归纳总结。

1. 求函数的导数:这是最基本的导数题型,要求根据函数的定义求出其导数。

常见的函数包括多项式函数、指数函数、对数函数、三角函数等。

2. 导数的四则运算:利用导数的基本性质,可以进行导数的四则运算。

例如,两个函数的和、差、积或商的导数可以通过分别求出函数的导数,然后利用四则运算的性质计算得到。

3. 链式法则:当函数是复合函数时,可以使用链式法则进行求导。

链式法则的基本思想是将复合函数分解为内层函数和外层函数,并利用导数的链式法则求出导数。

4. 隐函数求导:当一个函数的表达式中包含未知数的隐式关系时,可以利用隐函数求导的方法求出导数。

常见的隐函数求导题型包括求曲线的切线斜率、求极值等。

5. 参数方程求导:当函数由参数表示时,可以通过对参数方程进行求导,然后用参数方程的导数表达式消去参数,得到函数的导数。

6. 反函数求导:如果函数存在反函数,可以利用反函数求导的方法求出导数。

反函数求导的基本思想是将函数的自变量和因变量互换,然后求出反函数的导数。

7. 极限与导数:导数的定义中包含了极限的概念,所以在求导过程中经常需要应用极限的性质。

例如,使用极限的性质求出函数导数的极限,或者利用导数的定义证明极限存在等。

除了上述的题型,还有一些常见的应用题型,如最值问题、曲线的凹凸性、切线和法线方程等。

这些题型往往需要综合运用导数的概念和性质进行解答。

总之,高中数学导数题型的归纳总结包括基本的导数求法、导数的四则运算、链式法则、隐函数求导、参数方程求导、反函数求导以及与极限的关系等。

通过对这些题型的理解和熟练掌握,可以帮助同学们更好地应对高中数学考试中的导数题目。

2020年高考数学解答题压轴题考法深度揭秘 - 专题10 导数及其综合应用

2020年高考数学解答题压轴题考法深度揭秘 - 专题10 导数及其综合应用

2020年高考数学解答题压轴题考法深度揭秘专题十、函数与导数的综合问题函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有三个:一是围绕函数的性质考查函数的单调性、极值、最值、曲线的切线等问题展开;二是围绕函数与方程、探索方程根的个数、不等式的证明、不等式成立等问题展开,此类压轴试题难度较大,逻辑推理能力较强,不可小视;三是围绕函数、数列与不等式交汇问题展开,在考查利用导数研究函数单调性、最值等问题的同时,考查不等式的证明及数列求和等.考法01 利用导数确定或应用函数的单调性、极值与最值(2013·广东理,21,14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .【知识揭秘】 揭秘1:作差法证明k ∈⎝ ⎛⎦⎥⎤12,1时,ln 2k <k ;揭秘2:作差法比较f (k )与f (0)的大小,通过构造函数,求最值和0比较大小.【思维揭秘】 (1)利用导数的运算法则即可得出f ′(x ),令f ′(x )=0,即可得出实数根,通过列表即可得出其单调区间;(2)利用导数的运算法则求出f ′(x ),令f ′(x )=0得出极值点,得出单调区间,比较区间端点与极值点即可得到最大值.【解析揭秘】 (1)当k =1时,f (x )=(x -1)e x -x 2,则f ′(x )=x e x -2x =x (e x -2).令f ′(x )=0可得x =0或x =ln 2.当x <0时,f ′(x )>0;当0<x <ln 2时,f ′(x )<0;当x >ln 2时,f ′(x )>0,所以函数f (x )的单调递增区间是(-∞,0),(ln 2,+∞);单调递减区间是(0,ln 2).(2)对f (x )=(x -1)e x -kx 2求导可得f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ).因为k ∈⎝ ⎛⎦⎥⎤12,1,所以2k ∈(1,2].令f ′(x )=0可得x =0或x =ln 2k ,显然0<ln 2k ≤ln 2,而ln 2<1.则当0<x <ln 2k 时,f ′(x )<0;当x >ln 2k 时,f ′(x )>0,所以函数f (x )的单调递增区间是(ln 2k ,+∞),单调递减区间是(0,ln 2k ).令g (k )=ln 2k -k ,则g ′(k )=1k -1=1-k k ≥0, 又当k =1时,g ′(k )=0,所以g (k )在⎝ ⎛⎦⎥⎤12,1上递增,所以g (k )≤ln 2-1=ln 2-ln e<0, 从而ln 2k <k ,所以ln 2k ∈[0,k ]. 所以当x ∈(0,ln 2k )时,f ′(x )<0; 当x ∈(ln 2k ,k )时,f ′(x )>0,所以M =max{f (0),f (k )}=max{-1,(k -1)e k -k 3}. 令h (k )=(k -1)e k -k 3+1,则h ′(k )=k (e k -3k ), 令φ(k )=e k -3k ,则φ′(k )=e k -3≤e -3<0, 所以φ(k )在⎝ ⎛⎦⎥⎤12,1上递减.而φ⎝ ⎛⎭⎪⎫12·φ(1)=⎝ ⎛⎭⎪⎫e -32(e -3)<0,所以存在k 0∈⎝ ⎛⎦⎥⎤12,1使得φ(k 0)=0,且当k ∈⎝ ⎛⎭⎪⎫12,k 0时,φ(k )>0;当k ∈(k 0,1)时,φ(k )<0,所以h (k )在⎝ ⎛⎭⎪⎫12,k 0上单调递增,在(k 0,1)上单调递减.因为h ⎝ ⎛⎭⎪⎫12=-12e +78>0,h (1)=0,所以h (k )≥0在⎝ ⎛⎦⎥⎤12,1上恒成立,当且仅当k =1时取等号.综上,函数f (x )在[0,k ]上的最大值M =(k -1)e k -k 3.1.(2016·“江淮十校”联考,21,12分)已知函数f (x )=ln x +x 2-ax (a∈R ).(1)若a =3,求函数f (x )的极值;(2)若f (x )是增函数,求实数a 的取值范围. 1.解:(1)当a =3时,f (x )=ln x +x 2-3x (x >0),令f ′(x )=1x +2x -3=(x -1)(2x -1)x =0,则x 1=12,x 2=1.极大值为f ⎝ ⎛⎭⎪⎫12=ln 12-54,极小值为f (1)=-2.(2)f ′(x )=1x +2x -a =2x 2-ax +1x≥0在(0,+∞)上恒成立,即2x 2-ax +1≥0,即a ≤2x 2+1x =2x +1x .因为2x +1x ≥22,当且仅当2x =1x ,即x =22时等号成立,∴a ≤2 2.2.(2016·四川成都一模,21,12分)已知函数f (x )=-12ax 2+(1+a )x -ln x (a ∈R ).(1)当a >0时,求函数f (x )的单调递减区间;(2)当a =0时,设函数g (x )=xf (x ).若存在区间[m ,n ]⊆⎣⎢⎡⎭⎪⎫12,+∞,使得函数g (x )在[m ,n ]上的值域为[k (m +2)-2,k (n +2)-2],求实数k 的取值范围.2.解:(1)f ′(x )=-ax +1+a -1x =-(x -1)(ax -1)x (x >0).当a =1时,f ′(x )≤0,f (x )单调递减;当a >1时,1>1a ,由f ′(x )<0,可得x >1或0<x <1a ;当0<a <1时,1<1a ,由f ′(x )<0,可得0<x <1或x >1a .综上可得,当a =1时,f (x )的减区间为(0,+∞);当a >1时,f (x )的减区间为(1,+∞),⎝ ⎛⎭⎪⎫0,1a ;当0<a <1时,f (x )的减区间为⎝ ⎛⎭⎪⎫1a ,+∞,(0,1).(2)当a =0时,设函数g (x )=xf (x )=x 2-x ln x , 则g ′(x )=2x -ln x -1(x >0), 则g ″(x )=2-1x =2x -1x (x >0),当x ≥12时,g ″(x )≥0,g ′(x )为增函数,因此g ′(x )≥g ′⎝ ⎛⎭⎪⎫12=ln 2>0,g (x )为增函数,g (x )在区间[m ,n ]⊆⎣⎢⎡⎭⎪⎫12,+∞上递增.因为g (x )在[m ,n ]上的值域是[k (m +2)-2,k (n +2)-2], 所以g (m )=k (m +2)-2, g (n )=k (n +2)-2,12≤m <n ,则g (x )=k (x +2)-2在⎣⎢⎡⎭⎪⎫12,+∞上至少有两个不同的正根. k =g (x )+2x +2, 令F (x )=g (x )+2x +2=x 2-x ln x +2x +2,求导得,F ′(x )=x 2+3x -2ln x -4(x +2)2⎝ ⎛⎭⎪⎫x ≥12. 令G (x )=x 2+3x -2ln x -4⎝ ⎛⎭⎪⎫x ≥12,则G ′(x )=2x +3-2x =(2x -1)(x +2)x ,所以G (x )在⎣⎢⎡⎭⎪⎫12,+∞上递增,G ⎝ ⎛⎭⎪⎫12<0,G (1)=0,当x ∈⎣⎢⎡⎭⎪⎫12,1时,G (x )<0,所以F ′(x )<0;当x ∈(1,+∞)时,G (x )>0,所以F ′(x )>0,所以F (x )在⎣⎢⎡⎭⎪⎫12,1上递减,在(1,+∞)上递增,所以F (1)<k ≤F ⎝ ⎛⎭⎪⎫12,所以k ∈⎝⎛⎦⎥⎤1,9+2ln 210.考法02 利用导数确定或应用方程根的个数(2016·甘肃兰州模拟,21,12分)已知函数f(x)=a(x-1)-2ln x(a ∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(0,1)上无零点,求a的取值范围.【知识揭秘】揭秘1:a=1时,f(x)=x-1-2ln x,定义域为(0,+∞),由f(x)的单调区间,进而得出使f′(x)>0,f′(x)<0的x的取值范围.揭秘2:由f(x)=a(x-1)-2ln x知f(1)=0,f(x)在(0,1)上无零点⇒方程f(x)=0在(0,1)上无解,而f(x)在(0,1)上有定义.因此,只需求f(x)在(0,1)上f(x)>0或f(x)<0恒成立的a的取值范围,亦即f(x)>f(1)或f(x)<f(1).【思维揭秘】(1)先求定义域,再求f′(x),解不等式f′(x)>0,f′(x)<0即可.(2)x→0时,f(x)→+∞,f(1)=0,分a≤0,a>0两种情况讨论,求解f(x)在(0,1)使f(x)>0且f(x)<0的a的取值范围.【解析揭秘】(1)当a=1时,函数f(x)=x-1-2ln x,其定义域为(0,+∞),f′(x)=1-2x=x-2x.由f′(x)>0得x>2;由f′(x)<0得0<x<2,故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由f(x)=a(x-1)-2ln x,则f(1)=0.(1)当a≤0时,x∈(0,1)得x-1<0,-2ln x>0,得f(x)=a(x-1)-2ln x>0恒成立,即a≤0符合题意.(2)当a>0时,f′(x)=a-2x=ax-2x=ax⎝⎛⎭⎪⎫x-2a.①当a≤2时,即2a≥1时,由f′(x)<0得0<x<2a,即f(x)在(0,1)上单调递减,故f(x)>f(1)=0,满足对∀x∈(0,1),f(x)>0恒成立.故此时f(x)在(0,1)上无零点,符合题意.②当a >2时,即0<2a <1时,由f ′(x )>0得x >2a ,由f ′(x )<0得0<x <2a ,即f (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减,在⎝ ⎛⎭⎪⎫2a ,1上单调递增,此时f ⎝ ⎛⎭⎪⎫2a <f (1)=0,而x →0时,f (x )→+∞,函数f (x )图象如图所示.故在⎝ ⎛⎭⎪⎫0,2a 上存在x 0使f (x 0)=0.令g (a )=e a -a ,当a >2时,g ′(a )=e a -1>e 2-1>0恒成立. 故函数g (a )=e a -a 在(2,+∞)上单调递增, ∴g (a )>g (2)=e 2-2>0, 即e a>a >2,∴0<1e a <1a <2a <1,而f ⎝ ⎛⎭⎪⎫1e a =a ⎝ ⎛⎭⎪⎫1e a -1-2ln 1e a =a e a +a >0,故当a >2时,f ⎝ ⎛⎭⎪⎫1e a ·f ⎝ ⎛⎭⎪⎫2a <0,即∃x 0∈⎝ ⎛⎭⎪⎫1e a ,2a ,使得f (x 0)=0成立,所以a >2时,f (x )在(0,1)上有零点,不符合题意. 综上,a 的取值范围是{a |a ≤2}.1.(2016·江苏南通一模,20,16分)已知函数f (x )=a +x ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)试求函数f (x )的零点个数,并证明你的结论. 1.解:(1)由函数f (x )=a +x ln x (a ∈R ),得f ′(x )=12x(ln x +2).令f ′(x )=0,得 x =e -2.列表如下:e -2). (2)由(1)可知,f (x )min =f (e -2)=a -2e -1.①当a >2e -1时,由f (x )≥f (e -2)=a -2e -1>0,得函数f (x )的零点个数为0. ②当a =2e -1时,f (x )>f (e -2)=0. 此时,函数f (x )的零点个数为1.③当a <2e -1时,f (x )min =f (e -2)=a -2e -1<0.a .a ≤0时,因为当x ∈(0,e -2]时,f (x )=a +x ln x <a ≤0,所以,函数f (x )在区间(0,e -2]上无零点;另一方面,因为f (x )在[e -2,+∞)单调递增,且f (e -2)=a -2e -1<0,又e -2a ∈(e -2,+∞),且f (e -2a )=a (1-2e -a )>0,此时,函数f (x )在(e -2,+∞)上有且只有一个零点.所以,当a ≤0时,函数f (x )零点个数为1.b .0<a <2e -1时,因为f (x )在[e -2,+∞)上单调递增,且f (1)=a >0,f (e -2)=a -2e -1<0,所以,函数f (x )在区间(e -2,+∞)有且只有1个零点;另一方面,因为f (x )在(0,e -2]上是单调递减,且f (e -2)=a -2e -1<0,又e­4a ∈(0,e -2),且f (e -4a )=a -4a e 2a >a -4a ⎝ ⎛⎭⎪⎫2a 2=0(当x >0时,e x >x 2成立).此时,函数f (x )在(0,e -2)上有且只有1个零点.所以,当0<a <2e -1时,函数f (x )零点个数为2.综上所述,当a >2e -1时,f (x )的零点个数为0;当a =2e -1或a ≤0时,f (x )的零点个数为1;当0<a <2e -1时,f (x )的零点个数为2.2.(2016·河南普通高中适应性联考,21,12分)已知函数f (x )=a -1x -ln x ,其中a 为常数.(1)若f (x )=0恰有一个解,求a 的值;(2)若函数g (x )=a -1x -2(x -p )x +p-f (x )-ln p ,其中p 为常数,试判断函数g (x )的单调性;(3)若f (x )恰有两个零点,x 1<x 2,求证:x 1+x 2<3e a -1-1. 2.解:(1)令f ′(x )=1-xx 2=0,解得x =1.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞)且f (1)=a -1为最大值.当f (1)=0时,即a =1时,f (x )=0恰有一个解x =1;当f (1)<0时,即a <1时,f (x )=0无解;当f (1)>0时,即a >1时,e -a <1<e a ,f (e -a )<0,f (e a )<0,故f (x )=0有两个解.综上,若f (x )=0恰有一个解,则a =1. (2)g (x )=ln x -2(x -p )x +p-ln p ,定义域x >0且常数p >0.求导得g ′(x )=(x -p )2x (x +p )2≥0,且只有有限个零点,因此g (x )在定义域(0,+∞)上单调递增.(3)证明:由(1)知,若f (x )=0恰有两个零点,则a >1且等价于xf (x )=0有两个零点.令h (x )=ax -1-x ln x (x >0), h ′(x )=a -1-ln x ,令h ′(x )=0, 则x =e a -1,记p =e a -1,函数h (x )两个零点满足x 1<p <x 2.当0<x <p 时,h (x )<h (p )=0,即ax 1-1=x 1ln x 1<2x 1(x 1-p )x 1+p+x 1ln p ,整理得x 21-(3p -1)x 1+p >0.当x >p 时,h (x )>h (p )=0,同理可得x 22-(3p -1)x 2+p <0,因此x 22-(3p -1)x 2+p <x 21-(3p -1)·x 1+p , 所以x 22-x 21<(3p -1)(x 2-x 1),即x 1+x 2<3e a -1-1.考法03 利用导数证明不等式考查角度1 利用导数证明不等式(2016·河北衡水模拟,21,12分)已知函数f(x)=2(a+1)ln x-ax,g(x)=12x2-x.(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;(2)证明:若-1<a<7,则对于任意x1,x2∈(1,+∞),x1≠x2,有f(x1)-f(x2)g(x1)-g(x2)>-1.【知识揭秘】揭秘1:f(x)在定义域内为单调函数⇒f′(x)≥0或f′(x)≤0在定义域内恒成立.揭秘2:先判断g(x)在(1,+∞)上的单调性,再将待证不等式转化为简单的不等式证明问题,进而构造辅助函数利用导数研究其单调性最终获得证明.【思维揭秘】(1)先求出函数定义域,再求f′(x)≥0或f′(x)≤0在定义域上恒成立的解.(2)g(x)=12x2-x⇒g(x)=12(x-1)2-12在(1,+∞)上单调递增⇒设x1>x2>1时,g(x1)>g(x2)⇒g(x1)-g(x2)>0,f(x1)-f(x2)g(x1)-g(x2) >-1⇔f(x1)-f(x2)>-(g(x1)-g(x2))⇔f(x1)+g(x1)>f(x2)+g(x2)⇒只要证明函数f(x)+g(x)在(1,+∞)上单调递增即可.【解析揭秘】(1)函数f(x)=2(a+1)ln x-ax的定义域为(0,+∞),f′(x)=2(a+1)x-a=-ax+2(a+1)x,令m(x)=-ax+2(a+1).因为函数y=f(x)在定义域内为单调函数,所以f′(x)≥0或f′(x)≤0恒成立,即m(x)=-ax+2(a+1)≥0或≤0恒成立,当a=0时,m(x)=2>0,f′(x)>0,y=f(x)在定义域内为单调递增函数;当a>0时,m(x)=-ax+2(a+1)为减函数,只需m(0)=2(a+1)≤0,即a≤-1,不符合要求;当a<0时,m(x)=-ax+2(a+1)为增函数,只需m(0)=2(a+1)≥0即可,即a≥-1,解得-1≤a<0,此时y=f(x)在定义域内为单调递增函数.综上所述,a∈[-1,0].(2)证明:g(x)=12x2-x=12(x-1)2-12在(1,+∞)上单调递增,不妨设x1>x2>1,则g(x1)>g(x2),则f(x1)-f(x2)g(x1)-g(x2)>-1等价于f(x1)-f(x2)>-(g(x1)-g(x2))等价于f(x1)+g(x1)>f(x2)+g(x2).设h(x)=f(x)+g(x)=12x2+2(a+1)ln x-(a+1)x,则h′(x)=x+2(a+1)x-(a+1)≥2x·2(a+1)x-(a+1)=2-(a+1-2)2.由于-1<a<7,故h′(x)>0,即h(x)在(1,+∞)上单调递增,从而当1<x2<x1时,有f(x1)+g(x1)>f(x2)+g(x2)成立,所以f(x1)-f(x2)g(x1)-g(x2)>-1.考查角度2 利用导数比较大小(2013·陕西理,21,14分)已知函数f(x)=e x,x∈R.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数;(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小,并说明理由.【知识揭秘】 揭秘1:根据反函数的定义f (x )=e x ,x ∈R 的反函数为y =ln x ;揭秘2:对t (x )=x +2+(x -2)e x 进行二次求导,得出t (x )>0,进而得出结论. 【思维揭秘】 (1)利用导数的几何意义,可求解;(2)分析清楚函数的单调性及极值,讨论确定曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数;(3)作差后对式子变形后构造新函数,利用函数的单调性进行大小比较.【解析揭秘】 (1)f (x )的反函数为g (x )=ln x . 设直线y =kx +1与g (x )=ln x 相切于点P (x 0,y 0), 则⎩⎪⎨⎪⎧kx 0+1=ln x 0,k =g ′(x 0)=1x 0⇒x 0=e 2,k =e -2. (2)当x >0,m >0时,曲线y =f (x )与曲线y =mx 2(m >0)的公共点个数即方程f (x )=mx 2根的个数.由f (x )=mx 2⇒m =e x x 2,令h (x )=e x x 2⇒h ′(x )=e x(x -2)x 3,则h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增,所以h (2)=e 24是y =h (x )的极小值且是最小值.所以对曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数,讨论如下:当m ∈⎝ ⎛⎭⎪⎫0,e 24时,无公共点;当m =e 24时,有1个公共点;当m ∈⎝ ⎛⎭⎪⎫e 24,+∞时,有2个公共点.(3)f (a )+f (b )2-f (b )-f (a )b -a =(b -a +2)·f (a )+(b -a -2)·f (b )2(b -a )=(b -a +2)·e a +(b -a -2)·e b 2(b -a )=(b -a +2)+(b -a -2)·e b -a 2(b -a )·e a .令t (x )=x +2+(x -2)·e x ,x >0,则t′(x)=1+(1+x-2)·e x=1+(x-1)·e x.t′(x)的导函数t″(x)=(1+x-1)·e x=x·e x>0,所以t′(x)在(0,+∞)上单调递增,且t′(0)=0.因此t′(x)>0,t(x)在(0,+∞)上单调递增,而t(0)=0,所以在(0,+∞)上,t(x)>0.因为当x>0时,t(x)=x+2+(x-2)·e x>0且a<b,所以(b-a+2)+(b-a-2)·e b-a2·(b-a)·ea>0,所以当a<b时,f(a)+f(b)2>f(b)-f(a)b-a.1.(2016·河南中原名校一模,21,12分)已知函数f(x)=ax+ln x.(1)若函数f(x)在区间[1,e]上的最小值是32,求a的值;(2)当a=1时,设F(x)=f(x)+1+ln xx,求证:当x>1时,F(x)2e x-1>e+1x e x+1.1.解:(1)因为f′(x)=x-ax2,且x∈[1,e],则①当a≤1时,f′(x)≥0,函数f(x)在[1,e]上单调递增,其最小值为f(1)=a≤1,这与函数在[1,e]上的最小值是3 2相矛盾;②当1<a<e时,函数f(x)在[1,a)上有f′(x)<0,单调递减;在(a,e]上有f′(x)>0,单调递增,∴函数f(x)的最小值为f(a)=ln a+1=32,解得a= e.③当a≥e时,f′(x)≤0,函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+a e≥2,与最小值是32相矛盾.综上所述,a的值为 e.(2)证明:要证F(x)2e x-1>e+1x e x+1,即证F(x)e+1>2e x-1x e x+1.当a=1时,F(x)=1+1x+ln x+ln xx,F′(x)=-1x2+1x+1-ln xx2=x-ln xx2,令φ(x)=x-ln x,则φ′(x)=1-1x=x-1x.当x>1时,φ′(x)>0,φ(x)单调递增;当0<x<1时,φ′(x)<0,φ(x)单调递减,∴φ(x)在x=1处取得唯一的极小值,即为最小值,即φ(x)≥φ(1)=1>0,∴F′(x)>0,∴F(x)在(0,+∞)上是增函数,∴当x>1时,F(x)为增函数,故F(x)>F(1)=2,故F(x)e+1>2e+1.令h(x)=2e x-1x e x+1,则h′(x)=2·e x-1(x e x+1)-(x e x+1)′e x-1(x e x+1)2=2e x-1(1-e x)(x e x+1)2.∵x>1,∴1-e x<0,∴h′(x)<0,即h(x)在(1,+∞)上是减函数,∴x>1时,h(x)<h(1)=2e+1,∴F(x)e+1>2e+1>h(x),即F(x)e+1>2e x-1x e x+1,∴F(x)2e x-1>e+1x e x+1.2.(2016·山东日照模拟,21,12分)已知函数f(x)=(ax2+2x-a)e x,g(x)=1 2f(ln x),其中a∈R,e=2.718 28…为自然对数的底数.(1)若函数y=f(x)的图象在点M(2,f(2))处的切线过坐标原点,求实数a的值;(2)若f(x)在[-1,1]上为单调递增函数,求实数a的取值范围;(3)当a =0时,对于满足0<x 1<x 2的两个实数x 1,x 2,若存在x 0>0,使得g ′(x 0)=g (x 1)-g (x 2)x 1-x 2成立,试比较x 0与x 1的大小.2.解:(1)∵f (x )=(ax 2+2x -a )e x , f ′(x )=[ax 2+2(a +1)x +2-a ]e x , 则f ′(2)=(7a +6)e 2,f (2)=(3a +4)e 2.∴函数y =f (x )的图象在点M (2,f (2))处的切线为y -f (2)=(7a +6)e 2(x -2). ∵切线过坐标原点, ∴0-f (2)=(7a +6)e 2(0-2), 即(3a +4)e 2=2(7a +6)e 2,∴a =-811. (2)f ′(x )=[ax 2+2(a +1)x +2-a ]e x ,要使f (x )在[-1,1]上为单调递增函数,只要ax 2+2(a +1)x +2-a ≥0. 令Γ(x )=ax 2+2(a +1)x +2-a ,①当a =0时,Γ(x )=2x +2,在[-1,1]内Γ(x )≥Γ(-1)=0, ∴f ′(x )≥0,∴函数f (x )在[-1,1]上为单调递增函数.②当a >0时,Γ(x )=ax 2+2(a +1)x +2-a 是开口向上的二次函数,其对称轴为x =-⎝ ⎛⎭⎪⎫1+1a <-1,∴Γ(x )在[-1,1]上单调递增.为使f (x )在[-1,1]上单调递增,必须Γ(x )min = Γ(-1)=-2a ≥0,∴a ≤0,而此时a >0,产生矛盾. ∴此种情况不符合题意.③当a <0时,Γ(x )=ax 2+2(a +1)x +2-a 是开口向下的二次函数,为使f (x )在 [-1,1]上单调递增,必须f ′(x )≥0,即Γ(x )≥0在[-1,1]上恒成立, ∴Γ(1)≥0,∴2a +4≥0, 又a <0,∴-2≤a <0.综合①②③,得实数a 的取值范围为[-2,0]. (3)g (x )=12f (ln x )=x ln x , g ′(x )=ln x +1.∵对于满足0<x 1<x 2的实数x 1,x 2,存在x 0>0,使得g ′(x 0)=g (x 1)-g (x 2)x 1-x 2成立,∴ln x 0+1=g (x 1)-g (x 2)x 1-x 2,即ln x 0+1=x 1ln x 1-x 2ln x 2x 1-x 2,∴ln x 0-ln x 1=x 1ln x 1-x 2ln x 2x 1-x 2-1-ln x 1=x 2ln x 1-x 2ln x 2+x 2-x 1x 1-x 2=ln x 1x 2+1-x 1x2x 1x 2-1.设φ(t )=ln t +1-t ,其中0<t <1, 则φ′(t )=1t -1>0,∴φ(t )在区间(0,1)上单调递增, φ(t )<φ(1)=0. ∵0<x 1<x 2, ∴0<x 1x 2<1,∴φ⎝ ⎛⎭⎪⎫x 1x 2=ln x 1x 2+1-x 1x 2<0.又x 1x 2-1<0,∴ln x 0-ln x 1>0,即x 0>x 1.考法04 根据不等式的成立情况求参数的取值范围(2013·课标Ⅰ理,21,12分)已知函数f (x )=x 2+ax +b ,g (x )=e x (cx+d ),若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.【知识揭秘】 揭秘1:由已知及导数的几何意义,f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4,解四元一次方程组;揭秘2:ln k 与-2的大小比较需要解对数不等式,然后分类讨论. 【思维揭秘】 (1)根据曲线y =f (x )和曲线y =g (x )都过点P (0,2),可将P (0,2)分别代入到y =f (x )和曲线y =g (x )上,再利用在点P 处有相同的切线y =4x +2,对曲线y =f (x )和曲线y =g (x )进行求导,列出关于a ,b ,c ,d 的方程组求解;(2)构造函数F (x )=kg (x )-f (x ),然后求导,判断函数F (x )的单调性,通过分类讨论确定k 的取值范围.【解析揭秘】 (1)由已知得f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ).而⎩⎨⎧f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知f (x )=x 2+4x +2,g (x )=2e x (x +1). 设F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0,即2(x +2)(k e x -1)=0,得 x 1=-ln k ,x 2=-2. ①若-1≤k <e 2,则-2<x 1≤0, 从而当x ∈(-2,x 1)时,F ′(x )<0; 当x ∈(x 1,+∞)时,F ′(x )>0,即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增, 故F (x )在[-2,+∞)上有最小值为F (x 1). 而F (x 1)=2x 1+2-x 21-4x 1-2=-x 1(x 1+2)≥0,故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(e x-e-2).当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].1.(2016·广西南宁模拟,21,12分)已知函数f(x)=1x+a ln x(a≠0,a∈R).(1)若a=1,求函数f(x)的极值和单调区间;(2)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.1.解:(1)因为f′(x)=-1x2+ax=ax-1x2.当a=1时,f′(x)=x-1 x2.令f′(x)=0,得x=1,又f(x)的定义域为(0,+∞),f′(x),f(x)随x的变化情况如下表:x(0,1)1(1,+∞) f′(x)—0+f(x)↘极小值↗所以x=1f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)因为f′(x)=-1x2+ax=ax-1x2,且a≠0,令f′(x)=0,得x=1a,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.①当a<0时,f′(x)<0对x∈(0,+∞)成立,所以f(x)在区间[1,e]上单调递减,故f (x )在区间[1,e]上的最小值为f (e)=1e +a ln e =1e +a . 由1e +a <0,得a <-1e , 即a ∈⎝ ⎛⎭⎪⎫-∞,-1e . ②当a >0时,若e≤1a ,则f ′(x )≤0对x ∈[1,e]成立,所以f (x )在区间[1,e]上单调递减, 所以f (x )在区间[1,e]上的最小值为f (e)=1e +a ln e =1e +a >0, 显然,f (x )在区间[1,e]上的最小值小于0不成立; 若1<1a <e ,即1>a >1e 时,则有所以f (x )在区间[1,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a ,由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a =a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞)舍去;若0<1a <1,即a >1,即有f (x )在[1,e]递增,可得f (1)取得最小值,且为1,f (1)>0,不成立.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-1e .2.(2016·辽宁沈阳一模,21,12分)已知函数f (x )=x ln x -a2x 2-x +a (a ∈R )在其定义域内有两个不同的极值点.(1)求a 的取值范围;(2)记两个极值点分别为x 1,x 2,且x 1<x 2.已知λ>0,若不等式e 1+λ<x 1·x λ2恒成立,求λ的取值范围.2.解:(1)f ′(x )=ln x -ax ,由题意得,函数f (x )的定义域为(0,+∞),所以方程f ′(x )=0在(0,+∞)有两个不同根,即方程ln x -ax =0在(0,+∞)有两个不同根.令g (x )=ln x -ax ,从而转化为函数g (x )有两个不同零点, 而g ′(x )=1x -a =1-ax x (x >0).若a ≤0,可见g ′(x )>0在(0,+∞)上恒成立,所以g (x )在(0,+∞)上单调增, 此时g (x )不可能有两个不同零点.若a >0,在0<x <1a 时,g ′(x )>0,在x >1a 时,g ′(x )<0,所以g (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,从而g (x )极大值=g ⎝ ⎛⎭⎪⎫1a =ln 1a -1.又因为在x →0时,g (x )→-∞,在x →+∞时,g (x )→-∞,于是只须g (x )极大值>0,即ln 1a -1>0,所以0<a <1e .综上所述,0<a <1e . (2)因为e 1+λ<x 1·x λ2等价于1+λ<ln x 1+λln x 2.由(1)可知x 1,x 2分别是方程ln x -ax =0的两个根,即ln x 1=ax 1,ln x 2=ax 2. 所以原式等价于1+λ<ax 1+λax 2=a (x 1+λx 2). 因为λ>0,0<x 1<x 2, 所以原式等价于a >1+λx 1+λx 2.又由ln x 1=ax 1,ln x 2=ax 2作差得, ln x 1x 2=a (x 1-x 2),即a =ln x 1x2x 1-x 2, 所以原式等价于ln x 1x 2x 1-x 2>1+λx 1+λx 2.因为0<x 1<x 2,原式恒成立, 即ln x 1x 2<(1+λ)(x 1-x 2)x 1+λx 2恒成立.令t =x 1x 2,t ∈(0,1),则不等式ln t <(1+λ)(t -1)t +λ在t ∈(0,1)上恒成立.令h (t )=ln t -(1+λ)(t -1)t +λ,又h ′(t )=1t -(1+λ)2(t +λ)2=(t -1)(t -λ2)t (t +λ)2,①当λ2≥1时,可见t ∈(0,1)时,h ′(t )>0,所以h (t )在t ∈(0,1)上单调递增. 又h (1)=0,h (t )<0在t ∈(0,1)恒成立,符合题意.②当λ2<1时,可见t ∈(0,λ2)时,h ′(t )>0,t ∈(λ2,1)时,h ′(t )<0, 所以h (t )在t ∈(0,λ2)时单调递增,在t ∈(λ2,1)时单调递减. 又h (1)=0,所以h (t )在t ∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1·x λ2恒成立,只需λ2≥1.又λ>0,所以λ≥1.考法05 导数与数列、不等式等知识的综合问题(2016·黑龙江哈尔滨模拟,21,12分)设函数f (x )=ln x -px +1.(1)求函数f (x )的极值点;(2)当p >0时,若对任意的x >0,恒有f (x )≤0,求p 的取值范围;(3)证明:ln 2222+ln 3232+…+ln n 2n 2<2n 2-n -12(n +1)(n ∈N ,n ≥2).【知识揭秘】 揭秘1:函数f (x )的极值点,即在定义域内使f ′(x )=0的点. 揭秘2:f (x )≤0⇔f (x )max ≤0.揭秘3:先令p =1,由(2)知,当x >0时,ln x -x +1≤0,从而ln n 2≤n 2-1,结合裂项求和及放缩法即可得证.【思维揭秘】 (1)先求函数f (x )的定义域,再讨论满足f ′(x )=0的点,在定义域内根据导数符号的变化情况来确定极值点;(2)要使f (x )≤0恒成立,只需函数f (x )的最大值小于等于零即可;(3)令p =1,结合(2)得到ln x ≤x -1⇒n ∈N ,n ≥2时,lnn 2≤n 2-1⇒ln n 2n 2≤n 2-1n 2=1-1n 2,再根据1n 2>1n (n +1)放缩求证.【解析揭秘】 (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1x -p =1-px x .当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点; 当p >0时,令f ′(x )=0,得x =1p .当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出,当p >0时,f (x )在(0,+∞)上有唯一的极大值点x =1p . (2)当p >0时,f (x )在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是f (x )在(0,+∞)上的最大值,要使f (x )≤0在x >0时恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0,∴p ≥1,即p 的取值范围为[1,+∞).(3)证明:令p =1,由(2)知,当x >0时,ln x -x +1≤0, ∴ln x ≤x -1.∵n ∈N ,n ≥2,∴ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 2222+ln 3232+…+ln n 2n 2 ≤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2 <(n -1)-⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =(n -1)-⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=(n -1)-⎝ ⎛⎭⎪⎫12-1n +1=2n 2-n -12(n +1).即ln 2222+ln 3232+…+ln n 2n 2<2n 2-n -12(n +1)(n ∈N ,n ≥2).【名师点睛】 使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上构造正负相消是此法的根源与目的.有关数列的不等式的证明要注意两点:一:灵活构造函数,通过函数的单调性、极值、最值等得出不等式,再通过此不等式赋值得出数列中的初始不等式,进而利用不等式的性质证明.二:对数列不等式需对中间过程及最后结果进行适当放缩,转化为熟悉的数列求和问题.1.(2016·湖南长沙联考,21,12分)已知函数f (x )=x (1+a ln x )x -1(x >1).(1)若g (x )=(x -1)2f ′(x )在(1,+∞)是增函数,求实数a 的取值范围; (2)当a =1时,若f (x )>n 恒成立,求满足条件的正整数n 的最大值;(3)求证:(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>e 2n -32.1.解:(1)f ′(x )=ax -a ln x -a -1(x -1)2所以g (x )=ax -a ln x -a -1, 由g ′(x )=a -a x =a (x -1)x≥0⇒a ≥0,所以a >0时,g (x )在(1,+∞)上单调递增;又a =0时,g (x )=-1为常函数,不具有单调性,故a >0.(2)a =1时,g (x )=x -ln x -2, g (3)=3-ln 3-2=ln e3<0, g (4)=4-ln 4-2=ln e 24>0. 设g (b )=0,则b ∈(3,4),因为此时g (x )在(1,+∞)上单调递增,可知当x ∈(1,b )时,g (x )<0;当x ∈(b ,+∞)时,g (x )>0, 所以当x ∈(1,b )时,f ′(x )<0; 当x ∈(b ,+∞)时,f ′(x )>0,所以当x =b 时,f (x )min =f (b )=b (1+ln b )b -1,g (b )=0,所以b -ln b -2=0,即b -1=ln b +1,所以f (b )=b . 因为b ∈(3,4),所以f (b )∈(3,4),所以n ≤3, 故满足条件的正整数n 的最大值为3.(3)证明:由(2)知,当a =1时,f (x )>3恒成立,即x (1+ln x )x -1 >3,1+lnx >3(x -1)x ,ln x >3(x -1)x -1=2-3x (x >1). 令x =1+(2n -1)(2n +1), ln[1+(2n -1)(2n +1)] >2-31+(2n -1)(2n +1)>2-3(2n -1)(2n +1)=2-32⎝ ⎛⎭⎪⎫12n -1-12n +1, ln(1+1×3)>2-32⎝ ⎛⎭⎪⎫11-13,…,ln[1+(2n -1)(2n +1)]>2-32⎝ ⎛⎭⎪⎫12n -1-12n +1,以上n 个式子相加得:ln(1+1×3)+ln(1+3×5)+…+ln[1+(2n -1)(2n +1)]>2n -32⎝ ⎛⎭⎪⎫1-12n +1 >2n -32,ln(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>2n -32,即(1+1×3)×(1+3×5)×…×[1+(2n -1)(2n +1)]>e 2n -32.2.(2016·江西上饶模拟,21,12分)已知函数f (x )=x sin x +cos x (x >0). (1)当x ∈(0,2π)时,求f (x )的极值;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个极值点,证明:1x 22+1x 23+…+1x 2n<29(n ≥2,n ∈N ).2.解:(1)f ′(x )=sin x +x cos x -sin x =x cos x ,x ∈(0,2π). 令f ′(x )=0,得x =π2或3π2.∴f (x )在⎝ ⎛⎭⎪⎫0,π2或⎝ ⎛⎭⎪⎫3π2,2π上单调递增,在⎝ ⎛⎭⎪⎫π2,3π2上单调递减, f (x )极小值=f ⎝ ⎛⎭⎪⎫3π2=3π2sin 3π2+cos 3π2=-3π2,f (x )极大值=f ⎝ ⎛⎭⎪⎫π2=π2sin π2+cos π2=π2.(2)证明:∵f ′(x )=0,x >0, ∴x i =(2n -1)π2, ∴94×1x 2i =⎣⎢⎡⎦⎥⎤3(2n -1)π2<1(2n -1)2, ∴94⎝ ⎛⎭⎪⎫1x 22+1x 23+…+1x 2n <132+152+…+1(2n -1)2 <11×3+13×5+15×7+…+1(2n -3)(2n -1)=12⎝ ⎛11-13+13-⎭⎪⎫15+15-17+…+12n -3-12n -1=12⎝⎛⎭⎪⎫1-12n -1=12-14n -2<12, ∴1x 22+1x 23+…+1x 2n<49×12=29(n ≥2,n ∈N ). 3.(2016·陕西西安模拟,21,12分)设函数f (x )=e x -ax -1. (1)若函数f (x )在R 上单调递增,求a 的取值范围; (2)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;(3)求证:对任意的正整数n ,都有⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<1. 3.解:(1)由题意得f ′(x )=e x -a ≥0对x ∈R 均成立,且e x >0, 故a 的取值范围是a ≤0.(2)证明:由a >0及f ′(x )=e x -a 可得函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1, 则g ′(a )=-ln a ,故当a ∈(0,1)时,g ′(a )>0,当a ∈(1,+∞)时,g ′(a )<0,所以g (a )在(0,1)上单调递增,在(1,+∞)上单调递减.则g (a )在x =1处取得极大值,也为最大值.又g (1)=0,故g (a )≤0.(3)证明:由(2)可知当a =1时,总有f (x )=e x -x -1≥0,当且仅当x =0时,等号成立.当x >0时,总有e x >x +1, 所以(x +1)n +1<(e x )n +1=e (n +1)x .令x +1=1n +1,即x =-n n +1,可得⎝ ⎛⎭⎪⎫1n +1n +1<e -n ;令x +1=2n +1,即x =-n -1n +1,可得⎝ ⎛⎭⎪⎫2n +1n +1<e -(n -1);令x +1=3n +1,即x =-n -2n +1,可得⎝ ⎛⎭⎪⎫3n +1n +1<e -n -2;……令x +1=n n +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1.以上各式相加得⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1=e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1<1,故对任意的正整数n ,都有⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<1成立.。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

高中数学函数与导数综合题型分类总结.doc

高中数学函数与导数综合题型分类总结.doc

函数综合题分类复习题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立。

例1.已知函数/(x) = -x3- bx2 +2x +a ,兀=2是/⑴的一个极值点•7(I )求/⑴的单调递增区间;(II)若当*[1,3]时,f(x)-a2>-恒成立,求d的取值范围. 例2.已知函数f(x) = x3+ax2 +ax + b的图象过点P(0 ,2).(1)若函数/(兀)在x = -l处的切线斜率为6,求函数=f(x)的解析式;(2)若°〉3,求函数y = /(x)的单调区间。

、2x2例3•设/(%) = ——, g(x) = ax + 5-2a(a >0)。

x + 1(1)求/(X)在X€[0,l]上的值域;(2)若对于任意x{G[0,1],总存在x0G[0,1]?使得g(x0) = /(%!)成立,求a的取值范围。

例4.已知函数/(%) = ? +血$图象上一点pg)的切线斜率为-3 ,g(X)= x" + -~- x2 - (t + l)x + 3 (t > 0)2(I )求a, 〃的值;(II )当XG[-1,4]时,求/(x)的值域;(III)当"[1,4]时,不等式f(x)<g(x)恒成立,求实数t的取值范围。

例5.已知定义在/?上的函数f(x) = ax3-2ax2^bCa>0)在区间[-2,1]上的最大值是5,最小值是一11.(I )求函数/(兀)的解析式;(II)若虫[-1,1]时,f\xUtx< 0恒成立,求实数兀的取值范围.例6.已知函数/(%) = %3 + 3/7?%2 + nx + m2 ,在x = -l时有极值0,则加+ n = _______例7.已知函数/(x) = ^图象上斜率为3的两条切线间的距离为厶迥,函数cr 5(、“、3kxg(x) = f(x)---- +3.cr(1)若函数g(x)在x = 1处有极值,求g(尢)的解析式;(2)若函数g(兀)在区间[-1,1]上为增函数,且b2-mb + 4>g(x)在区间[-1,1]上都成立,求实数加的取值范围.题型二:已知函数在某个区间上的单调性求参数的范围及函数与x轴即方程根的个数问题;(1)已知函数在某个区间上的单调性求参数的范围的常用方法有三种:(2)函数与x轴即方程根的个数问题解题步骤例8・已知函数/(X)二丄疋-坐虫兀2, g(兀)=丄_总,且门兀)在区间(2,+oo)上为增函数.3 2 3(1)求实数£的取值范围;(2)若函数/(力与g(R的图象有三个不同的交点,求实数£的取值范围.3 例9.已知函数f(x) = ax3 -3x2 +1--.a(I)讨论函数/(x)的单调性。

高中数学高考导数题型分析及解题方法(20200618174545)

高中数学高考导数题型分析及解题方法(20200618174545)

第 1 页 共 11 页
题型三:利用导数研究函数的单调性,
极值、最值
1.已知函数 f (x)
3
x
2
ax
bx
c, 过曲线 y
f (x)上的点 P(1, f (1)) 的切线方程为 y=3x+1
(Ⅰ)若函数 f (x)在 x 2 处有极值, 求 f ( x) 的表达式;
(Ⅱ)在(Ⅰ)的条件下,
求函数 y f ( x) 在 [ - 3, 1] 上的最大值;
x0 3 ②,
由①②联立方程组得,
x0 1或 x0 5
y0 1 y0 25 , 即切点为( 1, 1 )时, 切
线斜率为 k1 2x0 2;;当切点为( 5, 25 )时, 切线斜率为 k2 2x0 10 ;所以所求的切线有
两条, 方程分别为 y 1 2( x 1) 或y 25 10( x 5),即y 2 x 1 或y 10 x 25
12b b2 12
0, 则0 b 6.
第 2 页 共 11 页
综上所述, 参数 b 的取值范围是 [ 0, )
3
2
2.已知三次函数 f (x) x ax bx c 在 x 1 和 x 1时取极值, 且 f ( 2) 4 .
(1) 求函数 y f (x) 的表达式;
(2) 求函数 y f (x) 的单调区间和极值;
(3) 若函数 g ( x) f ( x m) 4m ( m 0) 在区间 [ m 3, n] 上的值域为 [ 4,16] , 试求 m 、 n 应满 足的条件. 解: (1) f ( x) 3x 2 2 ax b , 由题意得, 1, 1 是 3x 2 2ax b 0 的两个根, 解得, a 0, b 3 . 再由 f ( 2) 4 可得 c 2 .∴ f (x) x 3 3x 2 . (2) f (x) 3x2 3 3(x 1)(x 1) , 当 x 1 时, f ( x) 0 ;当 x 1时, f (x) 0 ;

高考导数大题题型总结

高考导数大题题型总结

高考导数大题题型总结一、导数的概念导数是微积分中非常重要的一个概念,它描述的是函数在某一点上的变化率。

在高考中,导数是一道常见的题型,考查学生对导数概念的理解和运用能力。

二、常见的高考导数题型及解题思路1. 求导数求导数是高考中最常见的一种题型。

题目会给出一个函数,要求求出它的导数。

解题的关键就是掌握各种函数的求导法则,例如幂函数、指数函数、对数函数、三角函数等。

同时,也要注意使用链式法则和导数的四则运算法则。

2. 求切线方程求切线方程也是高考中较为常见的一种题型。

题目中会给出一个函数和一点,要求求出该点处的切线方程。

解题的关键是掌握求导数和切线方程的相关知识。

首先,求出函数在给定点处的导数,然后带入切点的坐标和导数的值,即可得到切线方程。

3. 求最值求最值也是高考中常见的一种题型,通常会给出一个函数的定义域,要求求出函数在该定义域内的最大值或最小值。

解决这类问题的关键是找到函数的导函数,然后求出导函数的零点,再将这些零点和边界值代入函数,比较得出最值。

4. 优化问题优化问题是高考中较为复杂的一种题型,要求在给定条件下使一个函数达到最大或最小值。

解答这类问题需要通过构建函数模型,并使用导数的相关知识进行求解。

首先,根据问题的条件建立函数模型,然后求出函数的导数,并通过求导数的零点解出最优解。

三、解题技巧和注意事项除了掌握基本的求导法则,还有一些解题技巧和注意事项值得注意。

首先,要善于化简和分解函数,将函数转化为求导更简单的形式。

例如,对于复杂的函数,可以使用对数、指数和三角函数的换元法进行化简。

其次,要注意运用求导法则的逆运算,即积分。

在一些题型中,求导是基本的方法,但是求出导数之后还需要将它们积分得到原函数。

另外,要掌握好导数与函数图像的关系。

通过分析导数的正负、增减性,可以判断函数图像的趋势和特点,进而解答一些与函数图像有关的问题。

最后,要反复练习高考真题和模拟题。

通过不断的练习,掌握各种导数题型的解题方法和技巧,提高解题的速度和准确度。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

高考数学题型全归纳

高考数学题型全归纳

高考数学题型全归纳高考数学必考七个题型第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

题型1、集合的基本概念题型2、集合间的基本关系题型3、集合的运算题型4、四种命题及关系题型5、充分条件、必要条件、充要条件的判断与证明题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假题型8、含有一个量词的命题的否定题型9、结合命题真假求参数的范围题型10、映射与函数的概念题型11、同一函数的判断题型12、函数解析式的求法题型13、函数定义域的求解题型14、函数定义域的应用题型15、函数值域的求解题型16、函数的奇偶性题型17、函数的单调性(区间)题型18、函数的周期性题型19、函数性质的综合题型20、二次函数、一元二次方程、二次不等式的关系题型21、二次方程ax2+bx+c=0(a0)的实根分布及条件题型22、二次函数动轴定区间、定轴动区间问题题型23、指数运算及指数方程、指数不等式题型24、指数函数的图像及性质题型25、指数函数中的恒成立的问题题型26、对数运算及对数方程、对数不等式题型27、对数函数的图像与性质题型28、对数函数中的恒成立问题题型29、幂函数的定义及基本性质题型30、幂函数性质的综合应用题型31、判断函数的图像题型32、函数图像的应用题型33、求函数的零点或零点所在区间题型34、利用函数的零点确定参数的取值范围题型35、方程根的个数与函数零点的存在性问题题型36、函数与数列的综合题型37、函数与不等式的综合题型38、函数中的创新题题型39、导数的定义题型40、求函数的导数题型41、导数的几何意义题型42、利用原函数与导函数的关系判断图像题型43、利用导数求函数的单调区间题型44、含参函数的单调性(区间)题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解题型47、方程解(函数零点)的个数问题题型48、不等式恒成立与存在性问题题型49、利用导数证明不等式题型50、导数在实际问题中的应用题型51、终边相同的角的集合的表示与识别题型52、等分角的象限问题题型53、弧长与扇形面积公式的计算题型54、三角函数定义题题型55、三角函数线及其应用题型56、象限符号与坐标轴角的三角函数值题型57、同角求值---条件中出现的角和结论中出现的角是相同的题型58、诱导求值与变形题型59、已知解析式确定函数性质题型60、根据条件确定解析式题型61、三角函数图像变换题型62、两角和与差公式的证明题型63、化简求值题型64、正弦定理的应用题型65、余弦定理的应用题型66、判断三角形的形状题型67、正余弦定理与向量的综合题型68、解三角形的实际应用题型69、共线向量的基本概念题型70、共线向量基本定理及应用题型71、平面向量的线性表示题型72、平面向量基本定理及应用题型73、向量与三角形的四心题型74、利用向量法解平面几何题型75、向量的坐标运算题型76、向量平行(共线)、垂直充要条件的坐标表示题型77、平面向量的数量积题型78、平面向量的应用题型79、等差、等比数列的通项及基本量的求解题型80、等差、等比数列的求和题型81、等差、等比数列的性质应用题型82、判断和证明数列是等差、等比数列题型83、等差数列与等比数列的综合题型84、数列通项公式的求解题型85、数列的求和题型86、数列与不等式的综合题型87、不等式的性质题型88、比较数(式)的大小与比较法证明不等式题型89、求取值范围题型90、均值不等式及其应用题型91、利用均值不等式求函数最值题型92、利用均值不等式证明不等式题型93、不等式的证明题型94、有理不等式的解法题型95、绝对值不等式的解法题型96、二元一次不等式组表示的平面区域题型97、平面区域的面积题型98、求解目标函数的最值题型99、求解目标函数中参数的取值范围题型100、简单线性规划问题的实际运用题型101、不等式恒成立问题中求参数的取值范围题型102、函数与不等式综合题型103、几何体的表面积与体积题型104、球的表面积、体积与球面距离题型105、几何体的外接球与内切球题型106、直观图与斜二测画法题型107、直观图三视图题型108、三视图直观图---简单几何体的基本量的计算题型109、三视图直观图---简单组合体的基本量的计算题型110、部分三视图其余三视图题型111、证明点共面、线共面或点共线及线共点题型112、异面直线的判定题型113、证明空间中直线、平面的平行关系题型114、证明空间中直线、平面的垂直关系题型115、倾斜角与斜率的计算题型116、直线的方程题型117、两直线位置关系的判定题型118、有关距离的计算题型119、对称问题题型120、求圆的方程题型121、直线系方程和圆系方程题型122、与圆有关的轨迹问题题型123、圆的一般方程的充要条件题型124、点与圆的位置关系判断题型125、与圆有关的最值问题题型126、数形结合思想的应用题型127、直线与圆的相交关系题型128、直线与圆的相切关系题型129、直线与圆的相离关系题型130、圆与圆的位置关系题型131、椭圆的定义与标准方程题型132、离心率的值及取值范围题型133、焦点三角形题型134、双曲线的定义与标准方程题型135、双曲线的渐近线题型136、离心率的值及取值范围题型137、焦点三角形题型138、抛物线的定义与方程题型139、与抛物线有关的距离和最值问题题型140、抛物线中三角形、四边形的面积问题题型141、直线与圆锥曲线的位置关系题型142、中点弦问题题型143、弦长与面积问题题型144、平面向量在解析几何中的应用题型145、定点问题题型146、定值问题题型147、最值问题题型148、已知流程框图,求输出结果题型149、根据条件,填充不完整的流程图题型150、求输入参量题型151、算法综合应用题型152、算法案例题型153、古典概型题型154、几何概型的计算题型155、抽样方式题型156、茎叶图与数字特征题型157、直方图与数字特征题型158、频(数)率表与数字特征题型159、统计图表与概率综合题型160、线性回归方程题型161、独立性检验题型162、归纳推理题型163、类比推理题型164、综合法与分析法证明题型165、反证法证明题型166、复数的分类、代数运算和两个复数相等的条件题型167、复数的几何意义题型168、相似三角形题型169、相交弦定理、切割线定理及其应用题型170、四点共圆题型171、空间图形问题转化为平面问题题型172、参数方程化普通方程题型173、普通方程化参数方程题型174、极坐标方程化直角坐标方程题型175、含绝对值的不等式题型176、不等式的证明。

2020年高考数学考点题型全归纳(理)

2020年高考数学考点题型全归纳(理)

2020年高考数学考点题型全归纳随着2020年高考的结束,我们不禁要对其中的数学考点题型进行一个全面的总结和归纳。

数学作为高考中的一门重要科目,其考点题型的总结对于备战高考的同学们具有重要的指导意义。

本文将对2020年高考数学考点题型进行全面的归纳,希望能够对广大学生提供帮助。

一、选择题2020年高考数学选择题考点主要集中在以下几个方面:1.函数与导数函数与导数作为数学的基础知识,在高考中占据了相当重要的地位。

在2020年高考中,函数与导数的选择题主要涉及函数的性质、导数的运算和应用等方面。

2.数列与数学归纳法数列与数学归纳法同样是高考中的热门考点。

2020年高考数学选择题涉及了等差数列、等比数列等常见数列的性质和求和公式,同时还出现了一些利用数学归纳法证明结论的题型。

3.平面向量平面向量是高考数学的难点之一,但也是一大考点。

2020年高考选择题中的平面向量题主要涉及了向量的运算、共线、垂直和平行等基本性质的运用。

4.平面几何平面几何一直是高考数学的重要考点,2020年高考选择题中的平面几何题型主要涉及了三角形、圆、直线与圆的性质和应用等方面。

5.概率统计概率统计是高考数学中的另一个热门考点,2020年高考选择题中的概率统计题目主要涉及了基本概率,包括事件的概率、概率的计算和概率分布等内容。

二、计算题2020年高考数学计算题的考点主要集中在以下几个方面:1.导数与微分导数与微分是高考数学计算题中的热门考点,包括了函数的求导、高阶导数、微分中值定理等内容。

在2020年高考中,导数与微分题型的难度也较大,考查了考生对导数与微分的灵活应用能力。

2.几何向量几何向量题型的难度适中,主要涉及了向量的运算、共线、垂直和平行等基本性质的灵活运用。

在2020年高考中,几何向量题型的难度相对较大,需要考生具备较强的解题能力。

3.平面解析几何平面解析几何是高考数学计算题中的重要考点,涉及了平面直角坐标系、直线和圆的方程等内容。

2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶..

2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶..

韩哥智慧之窗-精品文档精品文档韩哥智慧之窗-精品文档精品文档 1专题03 二次求导函数处理(二阶导数)一、考情分析1、在历年全国高考数学试题中,函数与导数部分是高考重点考查的内容,并且在六道解答题中必有一题是导数题。

利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,从而不能进一步判断函数的单调性及极值、最值情况,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。

此时解题受阻。

此时解题受阻。

需要利用需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题,必须“再构造,再求导”。

本文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。

文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。

3、解决这类题的常规解题步骤为:、解决这类题的常规解题步骤为: ①求函数的定义域;①求函数的定义域;②求函数的导数)('x f ,无法判断导函数正负;,无法判断导函数正负; ③构造求)(')(x f x g =,求'(x)g ; ④列出)(),(',x g x g x 的变化关系表;的变化关系表; ⑤根据列表解答问题。

⑤根据列表解答问题。

二、经验分享方法方法 二次求导二次求导使用情景使用情景对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出.解题步骤解题步骤设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.三、题型分析(一) 利用二次求导求函数的极值或参数的范围例1.【2020届西南名校联盟高考适应月考卷一,12】(最小整数问题-导数的单调性和恒成立的转化) 已知关于x 的不等式()22ln 212x m x mx +-+≤在()0,∞上恒成立,则整数m 的最小值为(的最小值为( ) A.1 B.2 C.3 D.4 【答案】B .【解析】【第一种解法(排除法)(秒杀)】:令1=x 时,m m ≤+⨯-+21)1(21ln 2化简:34≥m ;令2=x 时,m m 422)1(22ln 2≤+⨯-+,化简42ln 22+≥m你还可以在算出3,4,选择题排除法。

高中数学导数题型归纳总结

高中数学导数题型归纳总结

高中数学导数题型归纳总结高中数学中,导数是一个重要的概念,它描述了函数在某一点的变化率。

在学习导数的过程中,我们需要掌握各种不同类型的导数题型。

下面我将对高中数学导数题型进行归纳总结,并为每种题型提供一些相关的例题。

1. 函数的基本导数公式:- f(x) = k (常数函数)的导数为0;- f(x) = x的导数为1;- f(x) = x^n的导数为nx^(n-1) (n为整数);- f(x) = e^x的导数为e^x;- f(x) = a^x的导数为a^x * ln(a) (a为正实数);- f(x) = sin(x)的导数为cos(x);- f(x) = cos(x)的导数为-sin(x);- f(x) = tan(x)的导数为sec^2(x)。

2. 导数的四则运算法则:- 若f(x)和g(x)可导,则(f+g)' = f'(x) + g'(x);- 若f(x)和g(x)可导,则(f-g)' = f'(x) - g'(x);- 若f(x)和g(x)可导,则(f*g)' = f'(x)*g(x) + f(x)*g'(x); - 若f(x)和g(x)可导,则(f/g)' = (f'(x)*g(x) - f(x)*g'(x)) / g(x)^2 (g(x) ≠ 0)。

3. 复合函数的导数:- 若y = f(g(x)),且f(x)和g(x)都可导,则y的导数为dy/dx= f'(g(x)) * g'(x)。

4. 高阶导数:- 若y = f(x)的导数f'(x)存在,则f'(x)的导数为f''(x),称为f(x)的二阶导数;- 同理,f(x)的n阶导数记为f^n(x)。

5. 隐函数求导:- 对于方程F(x, y) = 0,若y可以用x表示,即y = f(x),则y的导数dy/dx可以通过对方程两边求导得到。

2020高考数学 导数的11个专题

2020高考数学    导数的11个专题

目录导数专题一、单调性问题 (2)导数专题二、极值问题 (38)导数专题三、最值问题 (53)导数专题四、零点问题 (77)导数专题五、恒成立问题和存在性问题 (118)导数专题六、渐近线和间断点问题 (170)导数专题七、特殊值法判定超越函数的零点问题 (190)导数专题八、避免分类讨论的参变分离和变换主元 (201)导数专题九、公切线解决导数中零点问题 (214)导数专题十、极值点偏移问题 (219)导数专题十一、构造函数解决导数问题 (227)导数专题一、单调性问题【知识结构】【知识点】一、导函数代数意义:利用导函数的正负来判断原函数单调性;二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系.三、分类讨论的思路步骤:第一步、求函数的定义域、求导,并求导函数零点;第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论);第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间;第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值.四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点:1.最高次项系数是否为0;2.导函数是否有极值点;3.两根的大小关系;4.根与定义域端点讨论等。

五、求解函数单调性问题的思路:(1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立;(2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围;(3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解.六、原函数单调性转化为导函数给区间正负问题的处理方法(1)参变分离;(2)导函数的根与区间端点直接比较;(3)导函数主要部分为一元二次时,转化为二次函数根的分布问题.这里讨论的以一元二次为主。

高考导数问题常见题型总结

高考导数问题常见题型总结

一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1. 32()32f x x x =-+在区间[]1,1-上的最大值是 22.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P Θ所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数综合题分类复习题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知;不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;参考例4;例1.已知函数321()23f x x bx x a =-++,2x =是)(x f 的一个极值点.(Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3f x a ->恒成立,求a 的取值范围.例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P .(1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。

例3.设22(),1x f x x =+()52(0)g x ax a a =+->。

(1)求()f x 在[0,1]x ∈上的值域;(2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。

例4.已知函数32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2t g x x x t x t -=+-++>(Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

例5.已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m例7.已知函数23)(ax x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22+-=abx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式;(2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b≥+-在区间]1,1[-上都成立,求实数m 的取值范围.答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点,∴2x =是方程2220x bx -+=的一个根,解得32b =.令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞.(Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >,∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2. 由题意知⎩⎨⎧=+-=-'==623)1(2)0(a a f b f ,得 ⎩⎨⎧=-=23b a .∴ 233)(23+--=x x x x f .(Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=∆a a .33由0)(<'x f 解得333322aa a x a a a -+-<<---. (10)∴ )(x f 的单调增区间为:)33,(2a a a ----∞和),33(2+∞-+-aa a ;)(x f 的单调减区间为: )33,33(22aa a a a a -+----.……12分 3、解:(1)法一:(导数法)22224(1)224()0(1)(1)x x x x xf x x x +-+'==≥++ 在[0,1]x ∈上恒成立. ∴()f x 在[0,1]上增,∴()f x 值域[0,1]。

法二:220,022(),(0,1]111x x f x x x x x=⎧⎪⎪==⎨∈+⎪+⎪⎩, 复合函数求值域. 法三:2222(1)4(1)22()2(1)4111x x x f x x x x x +-++===++-+++用双勾函数求值域. (2)()f x 值域[0,1],()52(0)g x ax a a =+->在[0,1]x ∈上的值域[52,5]a a --.由条件,只须[0,1][52,5]a a ⊆--,∴52054512a a a -≤⎧⇒≤≤⎨-≥⎩.特别说明:要深刻理解本题的题意及子区间的解题思路,联想2008年全国一卷第21题,那是单调区间的子区间问题;4、解:(Ⅰ)/2()32f x x ax =+∴/(1)31f b a⎧=-⎨=+⎩, 解得32a b =-⎧⎨=-⎩(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减又min max (1)4,(0)0,{()}(2)4,{()}(4)16f f f x f f x f -=-===-== ∴()f x 的值域是[4,16]-(Ⅲ)令2()()()(1)3[1,4]2t h x f x g x x t x x =-=-++-∈∴要使()()f x g x ≤恒成立,只需()0h x ≤,即2(2)26t x x x -≥-(1)当[1,2)x ∈时226,2x t x x-≤- 解得1t ≤-; (2)当2x =时 t R ∈;(3)当(2,4]x ∈时2262x t x x-≥-解得8t ≥;综上所述所求t 的范围是(,1][8,)-∞-+∞特别说明:分类与整合,千万别忘了整合即最后要写“综上可知”,分类一定要序号化;5、解:(Ⅰ)32'2()2,()34(34)f x ax ax b f x ax ax ax x =-+∴=-=-令'()f x =0,得[]1240,2,13x x ==∉-因此)0(f 必为最大值,∴50=)(f 因此5=b , (2)165,(1)5,(1)(2)f a f a f f -=-+=-+∴>-,即11516)2(-=+-=-a f ,∴1=a ,∴ .52(23+-=x x x f )(Ⅱ)∵x x x f 43)(2-=',∴0(≤+'tx x f )等价于0432≤+-tx x x , 令x x xt t g 43)(2-+=,则问题就是0)(g ≤t 在]1,1[-∈t 上恒成立时,求实数x 的取值范围,为此只需⎩⎨⎧≤≤-0)10)1((g g ,即⎩⎨⎧≤-≤-005322x x x x ,解得10≤≤x ,所以所求实数x 的取值范围是[0,1].6、11 ( 说明:通过此题旨在提醒同学们“导数等于零”的根不一定都是极值点,但极值点一定是“导数等于零”方程的根;)7、解:∵223)(x a x f ⋅=',∴由3322=⋅x a有a x ±=,即切点坐标为),(a a ,),(a a -- ∴切线方程为)(3a x a y -=-,或)(3a x a y +=+,整理得023=--a y x 或023=+-a y x∴5102)1(3|22|22=-+--a a ,解得1±=a ,∴3)(x x f =,∴33)(3+-=bx x x g 。

(1)∵b x x g 33)(2-=',)(x g 在1=x 处有极值,∴0)1(='g ,即03132=-⨯b ,解得1=b ,∴33)(3+-=x x x g(2)∵函数)(x g 在区间]1,1[-上为增函数,∴033)(2≥-='b x x g 在区间]1,1[-上恒成立,∴0≤b ,又∵)(42x g mb b ≥+-在区间]1,1[-上恒成立,∴)1(42g mb b ≥+-,即b mb b 3442-≥+-,∴3+≥b m 在]0,(-∞∈b 上恒成立,∴3≥m ∴m 的取值范围是[)+∞,3题型二:已知函数在某个区间上的单调性求参数的范围及函数与x 轴即方程根的个数问题; (1)已知函数在某个区间上的单调性求参数的范围的常用方法有三种: 第一种:转化为恒成立问题即0)(0)(''≤≥x f x f 或在给定区间上恒成立,然后转为不等式恒成立问题;用分离变量时要特别注意是否需分类讨论(看是否在0的同侧),如果是同侧则不必分类讨论;若在0的两侧,则必须分类讨论,要注意两边同处以一个负数时不等号的方向要改变呀!有时分离变量解不出来,则必须用另外的方法; 第二种:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;参考08年高考题;第三种方法:利用二次方程根的分布,着重考虑端点函数值与0的关系和对称轴相对区间的位置;可参考第二次市统考试卷; 特别说明:做题时一定要看清楚“在(a,b )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别;请参考资料《高考教练》83页第3题和清明节假期作业上的第20题(金考卷第5套); (2)函数与x 轴即方程根的个数问题解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可;例8.已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1)求实数k 的取值范围;(2)若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.例9.已知函数.313)(23ax ax x f -+-=(I )讨论函数)(x f 的单调性。

相关文档
最新文档