材料力学第5版(孙训方编)第四章资料.
材料力学孙训方
剪力 弯矩
1. 剪力(shear force):Q
构件受弯时,横截面上其 作用线平行于截面的内力。
m XA A
YA
x
m
P B
RB
A
Q
C
YA
Q
M
C
M P
RB
•17
弯曲内力
2. 弯矩(bending moment):M
构件受弯时,横截面上其作用面垂直于截面的内力偶矩。
3.内力的正负规定:
①剪力Q: 绕研究对象顺时针转为正剪力;反之为负。
•6
弯曲内力
•7
弯曲内力
4. 平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一
平面内。
对称弯曲(如下图)—— 平面弯曲的特例。
P1
q
P2
M
纵向对称面
•8
弯曲内力
非内嵌在本机的视频文件,无法获取该视频文件。
非对称弯曲—— 若梁不具有纵对称面,或者,梁虽具有纵 对称面但外力并不作用在对称面内,这种 弯曲则统称为非对称弯曲。
弯曲内力
二、剪力、弯矩与外力间的关系
1、几何关系
2、突变规律
外力
无外力段 q=0
均布载荷段
q>0
q<0
集中力
P C
集中力偶 m
C
水平直线
Q 图
Q
Q
特
征
x
x
Q>0 Q<0
M
斜直线
图
x
x
特
征M
M
增函数 降函数
斜直线
自左向右突变
无变化
Q
Q
x
x
增函数 降函数
【材料力学】孙训方第五版4-4
O1 B1 y
x
A1 B 1 AB AB A1 B 1 OO 1
x
OO1
y
( y )dq dq
dq
竖向对称轴为y轴,中性轴为z轴
x
y
......
(1)
2012-6-6
10
(二)物理关系: 假设:纵向纤维互不挤压。于是,任意一点均处于单向应 力状态。
A
o
y
zdA
A
z
z
dA
分别称为对坐标轴x和y的静矩 或一次矩。 静矩的量纲: L
3
y
2012-6-6
29
S 静矩: z
ydA ,
A
S
y
zdA
A
二. 形心 回顾理论力学的 质心计算公式: 均质等厚薄板质 心位于中面形心
yc Sz A , zc
yc
ydm
V
o zc yc
●
m ax
W z [ ]
2012-6-6
16
空心圆形:
矩形: b z
圆形: d
D d z z
h
y
Iz
Wz Iz h 2
2012-6-6
y
3
bh 12
Iz
2
d
64
4
y
Iz
3
d
(1 )
4
D
D
64
4
bh 6
Wz
Iz d 2
d
32
Wz
孙训方《材料力学》(第5版)笔记和课后习题(含考研真题)详解
目录分析
1.2课后习题详解
1.1复习笔记
1.3名校考研真题 详解
2.2课后习题详解
2.1复习笔记
2.3名校考研真题 详解
3.2课后习题详解
3.1复习笔记
3.3名校考研真题 详解
4.2课后习题详解
4.1复习笔记
4.3名校考研真题 详解
5.2课后习题详解
5.1复习笔记
5.3名校考研真题 详解
16.1复习笔记
16.3名校考研真题 详解
作者介绍
读书笔记
这是《孙训方《材料力学》(第5版)笔记和课后习题(含考研真题)详解》的读书笔记模板,可以替换为自 己的心得。
精彩摘录
这是《孙训方《材料力学》(第5版)笔记和课后习题(含考研真题)详解》的读书笔记模板,可以替换为自 己的精彩内容摘录。
6.2课后习题详解
6.1复习笔记
6.3名校考研真题 详解
7.2课后习题详解
7.1复习笔记
7.3名校考研真题 详解
8.2课后习题详解
8.1复习笔记
8.3名校考研真题 详解
9.2课后习题详解
9.1复习笔记
9.3名校考研真题 详解
10.2课后习题详解
10.1复习笔记
10.3名校考研真题 详解
11.2课后习题详解
孙训方《材料力学》(第5版) 笔记和课后习题(含考研真题)
详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
习题
真题
习题
笔记
分析
真题
材料
笔记
材料力学第五版孙训方版课后习题答案高等教育出版社
材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
(精品)材料力学第五版(孙训方)课后题答案
材料力学第五版课后答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F kF l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+-du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100udu d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学(I)第五版课后习题答案完整版
第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:;; (b )解:;;(c )解: ; 。
(d) 解: 。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx ²(k 为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1) 求内力 取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
材料力学第五版孙训方版课后习题答案
2-6 (1)轴力Fnac=-100kN, Fnbc=-260kN(2) 应力Ϭac=Fnac/A=-2.5MPa Ϭbc=Fnbc/A=-6.5MPa (A 截面积)(3)应变 Ɛac=Ϭac/E=-0.00025 Ɛbc=Ϭbc/E=-0.00065 (4)位移 ΔL=Ɛac*Lac+Ɛbc*Lbc=-1.35mm4-30 由 ƩMb=0和 ƩFy=0 得Fa=12kN ,Fb=36kN 则 4-32 由 ƩMb=0和 ƩFy=0 得Fa=1.62kN ,Fb=3.91kN 则 最大剪力Fsmax=2.28kN 最大弯矩 Mmax=1.01kN.m 最大正应力 Ϭmax=Mmax/Wz=7.01MPa最大切应力 тmax=3Fsmax/2A=0.475MPa 显然 Ϭmax<[Ϭ] ,тmax<[Ϭ].故安全 4-34 由 ƩMb=0和 F (1-x )-Fa=0 得Fa=F (1-x )最大弯矩在荷载作用点处 M=Fa*x=Fx-Fx^2 当移动满足dM/dx=0 ,d^2M/dx^2<0时,M 取极大值, 则x=1/2m Mmax=M|x=1/2=F/4=10kN.m 根据条件 Ϭmax=Mmax/Wz=6Mmax/bh^2 <=[Ϭ]=10000000 得 b>=0.1387m=138.7mm 则 h=3/2b=208mm 则有Fsmax=F=40kN最大剪应力тmax=3Fsmax/2A=2.08MPa 显然 тmax<[т],满足剪应力强度要求 故尺寸可选b=138.7mm ,h=208mm8-14 图中Mx=P*1/2=0.15P,Mz=F*L1 可得Fay=0.5P ,Fby=0.2P, Faz=Fbz=0.5P , F=0.3P[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
材料力学第五版(孙训方)课后题答案
材料力学第五版课后答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl Fk F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+-du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100udu d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
【材料力学】孙训方第五版2-4
dx x
x 0
6、x点处的横向线应变:
ac ac
5、杆的横向变形: 如果沿杆长均匀变形
2012-6-4
ac a c ac
L L
d d
2
二、拉压杆的弹性定律 1、等内力拉压杆的弹性定律
L
L
FL A
FL EA FN L EA
F
F
※“E”称为弹性模量,是由实验 2、变内力拉压杆的弹性定律 测定的,表征材料抵抗弹性变形 的能力. N ( x) FN(x) ※“EA”称为杆的抗拉压刚度。
(dx ) FN ( x )dx EA ( x ) dL
x
dx dx
(d x )
L
FN ( x )dx EA ( x )
L1
C
L2
变形图严格画法,图中弧线; L2 变形图近似画法,图中弧之切线。
P C'
L1
求解时注意利用小变形条件,“以切代弧”。
2012-6-4 7
C"
2、写出图2中B点位移与两杆变形间的关系 A L1
B
L2
L1
uB
F
L2
C
vB
B' 解:变形图如图, B点位移至B'点,由图知:
力11所示的阶梯形杆中,右端固定。已知:FA =10kN, FB=20kN, L=100mm,AB段与BC段横截面面积分别为100mm2,200mm2, 材料的弹性模量E=200GPa。试求:1)杆的轴向变形;2)端面A与 D-D截面间的相对位移。 D FB 解: AB 段与BC 段的轴力 F
FN AB l E AAB
孙训方材料力学第五版课后习题答案详细讲解
Microsoft Corporation训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
材料力学第五版孙训方版课后习题答案
[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:3323311,,3/()3/(/)llNfdx F kl F k F lF x Fx l dx F x l=====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高ml10=,其横截面面尺寸如图所示。
荷载kNF1000=,材料的密度3/35.2mkg=ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:gAlFGFNρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN-=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22mA=⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPakPamkNAN34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx截离体(微元体)。
则微元体的伸长量为:)()(xEAFdxld=∆,⎰⎰==∆llxAdxEFdxxEAFl0)()(lxrrrr=--121,22112112dxlddrxlrrr+-=+⋅-=,2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
[工程科技]【材料力学】孙训方第五版4-5
(2)根据截面几何参数,计算截面形心及关于中性轴 的 , I , W , W S
z z1 z2
z max
2019/1/29
19
(3)综合考虑内力及截面几何特点,找出梁的危 险截面、危险点位置。 s , s (4)分别计算 max max , max 并带入强度 条件校核。
翼 缘
z
水平
FS S Z IZ
y0
Sz A y0 zy0
2019/1/29
8
(2)圆形、圆环形截面上的弯曲切应力 FS 最大切应力在中性轴处: y
y
K
y
max
z
4 FS 4 max 3 A 3
FS
FS S z 任意水平线上某点处 y 切应力的 y 方向分量 I zb
8
208
210
M max s Wz
(M )
41 .8
45 kN m
23
例题2
查表,初选I22a,截面参数为:
F
q
F B
Wz 309cm
3
d 7.5mm
FS max 210kN
I z : S z 18.9cm A
a a
3.校核切应力强度
210 kN
* z max
l
max
的腹、翼相交处。(以后讲)
M
FS
s
s
2019/1/29
13
2、正应力和剪应力强度条件:
s max s max s max s max
M=Fl/4
C
正应力强度条件 当截面上下对称时:
s max
材料力学第5版(孙训方编,高等教育出版社)第四章
FB
Fa l
AC段梁
FS(x)
M x
FSx FA
Fb l
0 x a
M x
FA x
Fb x l
0
x
a
第30页 / 共207页
材料力学 F
F
FS(x)
x
M x
如截面法,保留右侧梁, 计算更简便。
第四章 弯曲应力
Fb
Fa
FA l , FB l
CB段梁
FS x
Fb l
F
F
l
l
b
Fa a x l
非对称弯曲——梁不具有纵对称面(例如Z形截面梁),因 而挠曲线无与它对称的纵向平面;或梁虽有纵对称面但外力并 不作用在纵对称面内,从而挠曲线不与梁的纵对称面一致。
第6页 / 共207页
材料力学
第四章 弯曲应力
对称弯曲时和特定条件下的非对称弯曲时,梁的挠曲线 与外力所在平面相重合,这种弯曲称为平面弯曲(对称弯曲 以及特殊条件下的非对称弯曲)。
l
F l a x
l
第15页 / 共207页
材料力学
第四章 弯曲应力
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力(参见课本P8);梁的 横截面上作用在纵向平面内的 内力偶矩是与梁的弯曲相对应, 故称为弯矩。
第16页 / 共207页
体(图b)的平衡条件可知:
FS
FA
Fl
l
a,
M
FA x
Fl a
l
x
第13页 / 共207页
材料力学
第四章 弯曲应力
它们的指向和转向如图b中
材料力学第五版孙训方版课后习题答案高等教育出版社
材料力学高等教育出版社孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:3323311,,3/()3/(/)llNfdx F kl F k F lF x Fx l dx F x l=====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高ml10=,其横截面面尺寸如图所示。
荷载kNF1000=,材料的密度3/35.2mkg=ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:gAlFGFNρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN-=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22mA=⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPakPamkNAN34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪力方程和弯矩方程(表示沿梁各横截面上剪力和弯
矩的变化规律)
FS FS x
Ms M x
第四章 弯曲应力
例题4-1(补充) 图a所示悬臂梁受集度为q的满布 均布荷载作用。试作梁的剪力图和弯矩图。
22
所示。显然这些内力是 m-m
右边的梁段对于左边梁段的作 用力和作用力矩。
故根据作用与反作用原理,m-m左边的梁段对于右边
梁段(图c)的作用力和作用力矩数值应与上式所示相同,但指
向和转向相反。这一点也可由m-m右边分离体的平衡条件加
以检验:
第四章 弯曲应力
Fy 0, FS F FB 0
从而有
1. 不论在左侧梁段上或右侧梁段 上,向上的外力均将引起正值的弯矩, 而向下的外力则引起负值的弯矩。
2. 截面左侧梁段上顺时针转向的 外力偶引起正值的弯矩,而逆时针转 向的外力偶则引起负值的弯矩;截面 右侧梁段上的外力偶引起的弯矩其正 负与之相反。
第四章 弯曲应力
第四章 弯曲应力
Ⅱ. 剪力方程和弯矩方程·剪力图和弯矩图
第四章 弯曲应力
对称弯曲时和特定条件下的非对称弯曲时,梁的挠曲线 与外力所在平面相重合,这种弯曲称为平面弯曲(对称弯曲 以及特殊条件下的非对称弯曲)。
本章讨论对称弯曲时梁的内力和应力。
Ⅱ. 梁的计算简图
第四章 弯曲应力
对于对称弯曲的直梁,外力为作用在梁的纵对称面内的 平面力系,故在计算简图中通常就用梁的轴线来代表梁。
(2) 梁的基本形式 悬臂梁
简支梁
外伸梁
第四章 弯曲应力
第四章 弯曲应力
(3) 静定梁和超静定梁
在竖直荷载作用下,图a,b,c所示梁的约束力均可由 平面力系的三个独立的平衡方程求出,称为静定梁。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
第四章 弯曲应力
§4-2 梁的剪力和弯矩·剪力图和弯矩图
22
0 x l
第四章 弯曲应力
2. 作剪力图和弯矩图 根据剪力方程和弯矩方程作出剪力图和弯矩图分别如
图b和图c。按照习惯,剪力图中正值的剪力值绘于x轴上方, 弯矩图中正值的弯矩值则绘于x轴的下方(即弯矩值绘于梁 弯曲时其受拉的边缘一侧)。
(b)
FSx qx 0 x l
M x qx x qx2
第四章 弯曲应力
剪力正负号:dx微段, 左端向上右端向下时, 为正。反之为负。
弯矩正负号:dx微段下 凸为正,及下半部纵向 受拉。反之为负。
为使无论取横截面左边或右边为分离体,求得同一横 截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号 要以其所在横截面处梁的微段的变形情况确定,如图。
第四章 弯曲应力
简化计算:梁某截面上的剪力和弯矩可直接从横截面任意 一侧梁上的外力进行简化:
(1) 横截面上的剪力在数值上等于截面左侧 (或右侧)梁段上外力的代数和。左侧梁段 上向上的外力(或右侧梁段上向下的外力) 将引起正值的剪力;反之,则引起负值的剪 力。 (2) 横截面上的弯矩在数值上等于截面左侧 (或右侧)梁段上外力对该截面形心的力矩 之代数和。
Ⅰ. 梁的剪力和弯矩(shearing force and bending moment)
截面法
图a所示跨度为l的简支梁其
约束力为
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
体(图b)的平衡条件可知:
FS
FA
Fl
l
a,
M
FA x
Fl a
l
x
第四章 弯曲应力
它们的指向和转向如图b中
惯性矩和主惯性积
第四章 弯曲应力
§4-1 对称弯曲的概念及梁的计算简图
Ⅰ. 关于弯曲的概念
受力特点: 杆件在包含其轴线的纵向平面内,承受垂直于轴线的 横向外力或外力偶作用(区别于扭转)。 变形特点: 直杆的轴线在变形后变为曲线。 梁——以弯曲为主要变形的杆件称为梁。
弯曲变形
第四章 弯曲应力
工程实例
(a)
第四章 弯曲应力
解:1. 列剪力方程和弯矩方程 当求悬臂梁横截面上的内力(剪力和弯矩)时,若取包 含自由端截面的一侧梁段来计算,则可不求出约束力。
FS(x)
M x
距右端为x的任意横截面上的剪力FS(x)和弯矩M(x),根
据截面右侧梁段上的荷载有
FSx qx 0 x l M x qx x qx2
第四章 弯曲应力
§4-1 对称弯曲的概念及梁的计算简图
§4-2 梁的剪力和弯矩·剪力图和弯矩图
§4-3 平面刚架和曲杆的内力图
§4-4 梁横截面上的正应力·梁的正应力强度条件
§4-5 梁横截面上的切应力·梁的切应力强度条件
§4-6 梁的合理设计 §Ⅰ-3 惯性矩和惯性积的平行移轴公式·组
合截面的惯性矩和惯性积 §Ⅰ-4 惯性矩和惯性积的转轴公式·截面的主
F1
F2
第四章 弯曲应力
纵向对称面
第四章 弯曲应力
对称弯曲——外力作 用于梁的纵向对称面内, 因而变形后梁的轴线(挠曲 线)是在该—梁不具有纵对称面(例如Z形截面梁),因 而挠曲线无与它对称的纵向平面;或梁虽有纵对称面但外力并 不作用在纵对称面内,从而挠曲线不与梁的纵对称面一致。
Fa Fl a
FS F FB F l l
MC 0
M Fa x FB l x 0
从而有
M F a x FB l x
F a x Fa l x
l
F l a x
l
第四章 弯曲应力
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力(参见课本P8);梁的 横截面上作用在纵向平面内的 内力偶矩是与梁的弯曲相对应, 故称为弯矩。
这里加“通常”二字是因为简支梁在水平面内对称弯 曲时不能用轴线代表梁。
F
(1) 支座的基本形式
第四章 弯曲应力
FRx
MR FRy (b) (c) (a)
1. 固定端——实例如图a,计算简图如图b, c。
第四章 弯曲应力
2. 固定铰支座——实例 如图中左边的支座,计算简 图如图b,e。
3. 可动铰支座——实例如图a中右边的支座,计算简图 如图c,f。