第六章 微分方程 第六节 微分方程的冥级数解法
幂级数解法
线性微分方程的幂级数解法常系数齐次线性微分方程可以用代数的方法进行求解,然而,对于变系数线性微分方程来说,由于方程的系数是自变量的函数,就不能用代数的方法求解。
微积分学的知识告诉我们,在满足某一些条件下,可以用幂级数表示一个函数,由此自然想到能否用幂级数表示微分方程的解呢?本章以二阶方程为例,讨论线性微分方程的幂级数解法。
考虑变系数线性微分方程 (5.1)0)()()(22=++y x c dxdy x b dxy d x a 其中)(),(),(x c x b x a 均为x 的解析函数。
如果系数函数)(),(),(x c x b x a 中含有公因子)(0x x -,那么可把其削去,考虑原方程的同解方程即可。
因此,不妨假设系数函数没有公因子)(0x x -。
下面分两种情况考虑方程)1.5(的初值问题解的存在唯一性。
)1( 0)(0≠x a ,则由)(x a 的解析性,在0x x =的某一邻域内0)(≠x a 。
此时,可把方程)1.5(改写成如下形式(5.2)0)()(22=++y x q dxdy x p dxy d 其中)()()( ,)()()(x a x c x q x a x b x p ==在0x x =的某一邻域内是解析函数。
考虑方程)2.5(的初值条件)(是给定的常数)其中3.5 ,()( ,)(2120'10y y y x y y x y ==则初值问题)3.5()2.5(+的解是存在且唯一的。
此时,称0x x =为方程)1.5(的一个常点。
)2( 0)(0=x a ,由于)(),(),(x c x b x a 中不含有公因子)(0x x -,则)(0x b 和)(0x c 中至少有一个不等于零。
因此,在|)(|0x p 和|)(|0x q 中至少有一个为∞+。
此时,无法确定初值问题)3.5()2.5(+的解是存在且唯一的。
在这一种情况下称0x x =为方程)1.5(的一个奇点。
高等数学(四)12-函数的幂级数展开式的应用-微分方程的幂级数解法、欧拉公式
n
n!
绝对收敛,
因此级数 1 zn 在整个复平面上是绝对收敛的.
n0 n! ez
1 xn ex
n0 n!
定义 ez 1 z 1 z2 1 zn
2!
n!
当 x 0 时, z 为纯虚数 yi ,
( z )
e yi 1 yi 1 ( yi)2 1 ( yi)3 1 ( yi)n
n2
n2
2a2
3
2a3 x
(4
3a4
1)x 2
(5
4a
a
)x 3
5
2
(6 5a a )x4 63
(n 2)(n 1)an2 an1 xn+
0. y xy 0
a2 0 , a3 0 , a4
1 43
,
a5
0
,
a6
0
,
,
一般地
an 2
(n
an1 2)(n
1)
(n 3, 4,
un
u2 n
vn2
,
vn
u2 n
vn2
(
n 1, 2,
)
则级数 un 、 vn 绝对收敛,
n1
n1
从而级数 (un vni) 绝对收敛.
n1
复数项级数 1 z 1 z2 1 zn (z x yi) ,
2!
n!
1
x2 y2 1
x2 y2
2
2!
1
x2 y2
2!
3!
n!
1 yi 1 y2 1 y3i 1 y4 1 y5i 2 3! 4! 5!
(1 1 y2 1 y4 ) (y 1 y3 1 y5 )i
微分方程的数值解法与近似求解技巧
微分方程的数值解法与近似求解技巧微分方程是数学中的重要概念,广泛应用于物理、工程、经济等领域。
在实际问题中,我们常常遇到无法直接求解的微分方程,这时候就需要借助数值解法和近似求解技巧来解决。
本文将介绍微分方程的数值解法和近似求解技巧,帮助读者更好地理解和应用这些方法。
一、数值解法1. 欧拉法欧拉法是最基础的数值解法之一,通过离散化微分方程,将其转化为差分方程,从而得到近似解。
欧拉法的基本思想是将微分方程中的导数用差商代替,然后通过迭代逼近真实解。
以一阶常微分方程为例,欧拉法的迭代公式如下:\[y_{n+1} = y_n + hf(x_n, y_n)\]其中,\(y_n\)表示第n个点的近似解,\(x_n\)表示对应的自变量的取值,h为步长,\(f(x_n, y_n)\)表示微分方程中的导数。
2. 改进的欧拉法改进的欧拉法是对欧拉法的改进,通过使用两个近似解的平均值来计算下一个点的近似解,从而提高了数值解的精度。
改进的欧拉法的迭代公式如下:\[y_{n+1} = y_n + \frac{h}{2}(f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n)))\]3. 二阶龙格-库塔法龙格-库塔法是一种常用的数值解法,通过计算多个近似解的加权平均值来提高数值解的精度。
其中,二阶龙格-库塔法是最简单的一种。
二阶龙格-库塔法的迭代公式如下:\[k_1 = hf(x_n, y_n)\]\[k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})\]\[y_{n+1} = y_n + k_2\]二、近似求解技巧1. 线性化方法线性化方法是一种常用的近似求解技巧,通过将非线性微分方程线性化,然后使用线性方程的求解方法来得到近似解。
以二阶线性微分方程为例,线性化方法的基本思想是将非线性项进行线性化处理,然后使用线性微分方程的求解方法来得到近似解。
微分方程幂级数解法
P( x)与Q( x)可在− R < x < R内展为x 的幂级数,
那么在− R < x < R内原方程必有形如
的解.
∞
∑ y = an xn n=0
∞
作法 设解为 y = ∑ an x n , n=0
将 P( x),Q( x), f ( x) 展开为 x − x0 的幂级数,
比较恒等式两端x的同次幂的系数, 确定y.
∑ ∞
∞
∑ (n + 2)(n + 1)an+2 x n− x ∑ nan x n−1−
∞
an xn
= 0,
n=0
n=0
n=0
∞
∑[(n + 2)(n + 1)an+2 − (n + 1)an ]x n ≡ 0,
n=0
an+2
=
an , n+2
n = 0,1,2,L
a2
=
a0 2
,
a3
=
a1 3
,
1、 y′ − xy − x = 1; 2、 xy′′ − ( x + m) y′ + my = 0.( m 为自然数 )
二、试用幂级数求下列方程满足所给初始条件的特解:
1、 y′
=
y2
+
x3
,
y x=0
=
1; 2
2、d 2 x dt 2
+
x cos t
=
0
,
x t=0
=
a
,
dx dt
t=0
=
0.
练习题答案
= =
3 2
y y
微分方程的经典解法
01
02
03
非线性变量代换法
变量代换法的应用
变量代换法在解决各种实际问题中有着广泛的应用,如物理、工程、经济等领域。
通过选择适当的代换变量,可以简化复杂的微分方程,从而更方便地求解。
变量代换法是解决微分方程的一种重要技巧,尤其在处理非标准形式的微分方程时非常有效。
01
高阶非线性微分方程的解法通常包括迭代法、摄动法和数值方法等。
02
迭代法是通过不断迭代方程的解来逼近真实解,常用的方法有牛顿迭代法和欧拉迭代法等。
03
摄动法是将非线性微分方程转化为摄动方程,然后通过小参数展开求解。
04
数值方法是通过离散化微分方程,然后使用计算机求解离散化后的方程组。
高阶微分方程在物理、工程、经济等领域有广泛应用,如振动分析、控制系统、信号处理等。
04
积分因子法
积分因子法是一种求解微分方程的方法,通过引入一个积分因子来消除方程中的导数项,从而将微分方程转化为代数方程进行求解。
积分因子法适用于可分离变量、线性、部分线性以及某些非线性微分方程。
积分因子法的关键是找到一个函数,使得该函数与微分方程的每一项相乘后,能够消去方程中的导数项。
方法概述
高阶线性微分方程的一般形式为$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + cdots + a_0(x)y(x) = 0$。
变量分离法是将方程转化为多个一阶微分方程,然后分别求解。
幂级数法是通过将解表示为幂级数的形式,然后代入初始条件求解系数。
高阶非线性微分方程的解法
02
通过引入新变量 (u = ax + by),可以将原方程转化为 (y^{prime} = frac{1}{a} f(u))。
《常微分方程》第六章 非线性微分方程
定理6.1 (稳定性的Liapunov判别法) 设有定义在 D Rn
上的定正(定负)函数 V (x), dV dt
(6.2)
表示 V (x) 沿系统(6.2)的轨线
的全导数
dV (1) 若 dt (6.2)
dV (2) 若 dt (6.2)
在 D 上是常负(常正)的,则 x 0 是稳定的; 在 D 上是定负(定正)的,则 x 0 是渐近稳定的;
称为 x 0 吸引域;如果吸引域是全空间,则称 x 0 是全局渐近
稳定的.
(3) 若 0 0, 0, 都 x0 与 t1 t0 , 使 x0 ,
但 x(t;t0, x0 , 则称 x 0 是不稳定的;
例如, 微分方程 dx ax
dt
满足初值条件 x(t0 ) x0 ,
(a)
(b)
又知,对任意常数,函数x cos(t ), y sin(t ), 也是方程组的解,它的积分曲线是经过(,1, 0)的螺旋
线,但是它们与解x cos t, y sin t有同一条轨线 x2 y2 1.
同是,我们也可以看出, x cos(t ), y sin(t )
(6.1)称为非自治系统, (6.2)称为自治系统,
6.1.1 非自治系统与自治系统的主要区别
自治系统不论是在相空间还是增广相空间,轨线匀不相交. 而非自
治系统在增广相空间积分曲线不相交,但在相空间轨线可能相交.
定义6.1 若存在 x* D 使 f (x*) 0, 则点 x* 称为系统(6.2)
的解为
x x0ea(tt0 ) .
6.3 判定稳定性的Liapunov函数法
定义6.3 设 D x x H Rn,V C(1) (D).
微分方程问题的解法
电磁学研究
02
在电磁学中,微分方程被用来描述电场、磁场的变化以及电磁
波的传播。
热传导问题
Байду номын сангаас
03
微分方程可以用来描述物体的热量传导过程,例如温度随时间
变化的规律。
在经济中的应用
供需关系
微分方程可以用来描述市场的供需关系,例如商品价格随 时间变化的规律。
01
经济增长模型
微分方程可以用来建立经济增长模型, 例如描述一个国家或地区的GDP随时间 变化的规律。
线性稳定性分析
定义
线性稳定性分析是指通过线性化微分方程,来研究系统的稳定性。
方法
将非线性微分方程线性化,然后利用线性系统的性质来分析系统 的稳定性。
应用
线性稳定性分析广泛应用于物理学、化学、生物学等领域。
非线性稳定性分析
定义
非线性稳定性分析是指通过非线性微分方程的性质, 来研究系统的稳定性。
方法
总结词
通过将微分方程转化为代数方程,简化求解过程。
详细描述
将微分方程中的变量分离到等式的两边,然后对等式两边同时进行积分,从而求解微分方程。
变量代换法
总结词
通过引入新的变量替换原微分方程中的复杂表达式,简化微分方程的形式。
详细描述
通过引入新的变量,将微分方程中的复杂表达式替换为新变量的表达式,从而 简化微分方程的形式,方便求解。
有限元素法
总结词
有限元素法是一种将微分方程转化为线性方程组进行求 解的方法。
详细描述
有限元素法的基本思想是将微分方程的求解区域划分为 一系列小的子区域(或元素),然后在每个子区域上定 义一个近似函数,将微分方程转化为线性方程组进行求 解。这种方法在求解一些复杂的微分方程时非常常用。
数学物理方法 级数
第四节 Laurent级数表示
双边幂级数
a n ( z z0 ) n a 2 ( z z0 ) 2 a1 ( z z0 ) 1 a0 a1 ( z z0 ) a2 ( z z0 ) 2 an ( z z0 ) n
2 4 6 8
数学物理方法2015.02
第一节 复数项级数
复数项级数 概念
形如 w1 w2 wn wn 的表达
式被称为复数项级数,其中wn是复数。
n 1
收敛与发散
若 wn 的前n项和 Sn w j 有极限(n), 则称该级数收敛,且称此极限值为该无穷级数的 和;否则称为发散。
n 1
可积性
在C上连续,则
C n 1 n
n 1
w ( z)dz w ( z)dz
n 1 C n
数学物理方法2015.02
第一节 复数项级数
级数 wn ( z ) 在B内一致收敛f(z),且
n 1
解析性
wn(z)在B内解析,则f(z)在B内解析,且
函数 f(z)=1/(1-z2) 分别在1<|z|< 和 0<|z-1|<2内的 Laurent级数展开
2 1 -1
1 -1
1
1<|z|<
数学物理方法2015.02
0<|z-1|<2
第五节 孤立奇点的分类
概念 若函数 f(z) 在点z0处不可导,而在z0的某邻域
内除z0外连续可导,则称z0为f(z)的孤立奇点; 若在z0的无论多小的邻域内总可以找到z0以外 的不可导点,则称z0为f(z)的非孤立奇点。
第六节 函数的幂级数展开式的应用
提示: 这个幂级数收敛速度较慢 用于求ln2较困难. 因此需要寻找收敛速度较快的幂级数.
ln 1 1
x x
ln(1
x) ln(1
x)
2(x
1 3
x3
1 5
x5
)
(1 x 1)
.
ln
1 x 1 x
ln(1 x) ln(1 x)
2(x
1 3
x3
1 5
x5
)
(1
x 1)
.
以
x
1 3
代入得
.
例4
计算
1
0
sin x
x
dx
的近似值,
精 确 到10 4 .
解 展开被积函数 有
sin x 1 x2 x4 x6 ( x ) .
x
3! 5! 7!
在区间[0 1]上逐项积分 得
收敛的交错级数
1sin xdx 1 1 1 1 .
0x
33! 55! 7 7!
因为第四项
1 1 7 7! 30000
(1 x)
1 x ( 1) x 2 ( 1) ( n 1) x n
2!
n!
x (1,1)
1 1 x x2 x3 (1)n xn (1,1) 1 x
arctan x
(1)n
x 2 n1 ,
n0
2n 1
x [1,1]
ln(1 x)
(1)n
x n1 ,
2!
(2n)!
cos x
i( x 1 x3 (1)n x2n1 )
1 5
1 1111 11 53535 77 3377
)
0
..66993311.
微分方程的幂级数解法
dy 例如 = x2 + y2, dx
解不能用初等函数或其积分式表达. 寻求近似解法: 幂级数解法; 卡比逐次逼近法; 数值解法.
dy = f ( x, y) 特解求法 二、 dx
dy 问题 求 = f ( x , y ) 满足 y dx
x = x0
∞
n
∞
n −1
∞
n= 0
n=0
n [( n + 2 )( n + 1 ) a − ( n + 1 ) a ] x ≡ 0, ∑ n+ 2 n n=0
a n+ 2
an = , n+ 2
n = 0,1,2,L
a0 a0 a2 = , a4 = , 8 2
a1 a3 = , 3 a1 a5 = , 15
∴ 方程组通解为
x = α 3C1e − αt − α 3C 2e αt − β 3C 3 cos β t 3 t C sin t 2 e + β β − 4 − αt αt t y C e C e C cos t C sin t e = + + β + β + 1 2 3 4
(n) ( n −1 ) y + a y + L + a n −1 y ′ + a n y = f ( x ) 例如, 1
用记号 D 可表示为
( D + a1 D
n
n −1
+ L + a n −1 D + a n ) y = f ( x )
注意:
D n + a1 D n−1 + L + a n−1 D + a n 是 D 的多项式
微分方程解法.ppt
阶段汽车运动规律的函数S=S(t),应满足方程:
d 2s 4 2 dt ds 及条件 S t 0 0, v t 0 t 0 10 dt 对( 5)式两端积分一次,得 ds v 4 t c1 dt 在积分一次,得 S 2 t 2 c1t c 2 将条件 v
2
y x 1 只是其中过( 1 , 2 )点的一条积分曲
8.2
可分离变量的一阶微分方程
一阶微分方程(differential equation of first order)
f( y x ,y ) ( 1 ) 如果能化成 g ( y ) dy f( x ) dx ( 2 )
的形式,即可表示为一 端只含 y 的函数和 dy ,而另一端只
对于高阶线性微分方程,其通解结构也有类似的 结论。
例 1求方程 xy y e x的通解 y ex 解 将方程改写为 y x x 它是一阶线性微分方程 ,其中
1 ex P( x) , Q( x) x x 方法一 利用常数变易法,先求 对应齐次方程 1 y y 0 的通解,为此,分离 量: x 1 1 dy dx y x
将其代入( 4 )式,就得到了一阶线 性非其次方 1 )的 通解:y e
p ( x ) dx Q ( x ) e dx C ( 5 ) 上述将对应的齐次方程通解中的任意常数C替换成 P ( x ) dx
x的待定函数,并将其代入非齐次方程中以确定C(x), 从而求得非齐此方程的通解的方法叫做常数变易法 (method of constant). 将(5)式改写成两项之和的形式
t 0
(5) (6)
(7 ) (8 )
t 0
10 代入( 7)式中,将条件 S v 4 t 10
北京大学数学物理方法(上)课件_6 二阶线性常微分方程的幂级数解法
∞
w1(z) = (z − z0)ρ1
ck(z −gw1(z) ln(z − z0)
∞
+ (z − z0)ρ2
dk(z − z0)k
k=−∞
(10) (11)
其中 ρ1, ρ2 和 g 为复常数.
Proof 为简单起见, 假设奇点为 z0 = 0. 方程的两个线性无关的解为 w1(z), w2(z). 不失一般性, 设解为多值函数, z0 = 0 为枝点. 沿正实轴方向作割线, 规定割线上岸的辐角值为 arg z = 0.
即
正是我们要证的形式. 下面来构造 w(z), 设
b1, b2 为待定系数. 则
∞
w(z) = zρ
cnzn
n=−∞
w = b1w1 + b2w2
w(ze2πi) = b1w1(ze2πi) + b2w2(ze2πi) = (b1a11 + b2a21)w1(z) + (b1a12 + b2a22)w2(z) = λw(z) = λb1w1(z) + λb2w2(z)
=0
如果 z0 是方程的奇点, 则 z0 点可能是方程的解的奇点: 可能为解的极点, 本性奇点; 如果解为多值函数, 还 可以是解的枝点.
Theorem 6.3. 如果 z0 是二阶线性微分方程的孤立奇点, p(z), q(z) 在区域 0 < |z − z0| < R 内解析, 则在 环形区域 0 < |z − z0| < R 内, 方程有两个线性无关的解.
w1(ze2πi) = a11w1(z) + a12w2(z) w2(ze2πi) = a21w1(z) + a22w2(z)
第六章 二阶线性常微分方程的幂级数解法
2n
二者的任意线性组合即为通解。
求解过程中,ck+2 只与ck 有关,而与ck+1 无关,
w1(z) 是偶函数,w2(z)是奇函数。
对于 z → -z 变换, 1 ( z )
2
d w d ( z )
2
2
2( z )
dw d ( z )
l ( l 1)w 0
勒让德方程的形式不变,故 w(-z) 也是方程的解,
2 t 1 t21Fra bibliotekp t和
1 t
4
1 q t
不含 t 负幂项
1 4 5 q b4 t b5 t t
1 2 3 p 2t a 2 t a 3 t t
p z q z
2 z
a2 z
2
( 2n 1 l )( 2n 3 l )(1 l )( 2n l )( 2n 2 l ) ( 2 l )
l 1 l 1 c1 ( 2n 1)! 2 n 2 n
∴勒让德方程在
z 1
内的解就是
2
2n
w( z ) c0
w 0
p( z )
(1 ) z
z (1 z )
q( z )
z (1 z )
有限远处 p(z)、q(z) 有两个奇点, z = 0 和 z = 1 。
所以,z = 0 和 z = 1 是超几何方程的奇点,有限远处 的其它点为方程的常点。
举例
且 w(z)+w(-z) 是偶函数,w(z)-w(-z) 是奇函数。
w( z ) w( z ) c0 w1 ( z ) c1 w 2 ( z ) c0 w1 ( z ) c1 w 2 ( z ) 2c0 w1 ( z )
幂级数解法
幂级数解法幂级数解法是求解微分方程的一种技术,它可用于求解普通微分方程的无穷多解,也可用于求解常微分方程的特解,以及线性微分方程的非独立解。
因此,在研究微分方程的求解过程中,对“幂级数解法”的研究具有重要的实际意义。
一、幂级数的概念幂级数是由不同幂次的可积函数的和所组成的级数,可以表示为: $$sum_{k=0}^{infty}a_{k}x^{k}$$其中,$a_{k}$叫做幂级数的系数,$x$叫做幂级数的变量,$k$叫做幂级数的项次,$infty$叫做幂级数的项数。
幂级数不仅可用于数学上的应用,也可用于物理学上的应用,像振动波、涡旋波、周期性复原函数等物理概念都可以用幂级数来表示。
二、幂级数解法的内容1.入一类特殊的线性微分方程:$$y^{(n)}+p_{n-1}(x)y^{(n-1)}+cdots+p_{1}(x)y+p_{0}(x)y=Q(x)$$式中,$y^{(n)}$表示微分方程的最高次导数,$p_{n-1}(x)$,$cdots$,$p_{1}(x)$,$p_{0}(x)$表示微分方程的n-1次,$cdots$,1次,0次项的系数函数,$Q(x)$表示微分方程右端项的函数。
2.先检查保守性,判断微分方程是否具有定常解。
微分方程具有定常解的充要条件是$p_{n-1}(x)=p_{n-2}(x)=cdots=p_{2}(x)=0$,此时微分方程可以化简为:$$y^{(n)}+p_{1}(x)y+p_{0}(x)y=Q(x)$$无论$p_{1}(x)$、$p_{0}(x)$是否全等于0,都可以说明它具有定常解。
3.后利用相关定理,在特定条件下构造一个“幂级数解”,其形式为:$$y=sum_{k=0}^{infty}c_{k}x^k$$其中$c_{k}$是待求的系数,由解法的特殊条件所确定。
4.所得“幂级数解”代入微分方程,并根据其定义,求出$c_{0}$,$c_{1}$,$c_{2}$,$cdots$,$c_{n-1}$的值,即求出微分方程的解的系数。
级数法求解微分方程
级数法求解微分方程
级数法是一种求解微分方程的方法,它的基本思想是把未知函数表示成一系列幂函数的和,然后带入微分方程并求解系数。
具体步骤如下:
1. 假设未知函数为幂级数形式:
y(x) = a0 + a1(x - x0) + a2(x - x0) + ...
2. 将幂级数带入微分方程,得到幂级数的递推关系式
y'(x) = a1 + 2a2(x - x0) + 3a3(x - x0) + ...
y''(x) = 2a2 + 6a3(x - x0) + 12a4(x - x0) + ...
将递推关系式带入微分方程,可得到每个系数的表达式。
3. 确定级数的收敛域
级数法的关键在于收敛性,因为级数的收敛域决定了幂级数是否能够表示出原函数。
一般情况下,收敛域可以通过比值判别法或根值判别法求得。
4. 求解系数
将微分方程带入递推关系式,得到每个系数的表达式,然后根据初始条件求解系数。
5. 检验解的正确性
最后,将求解得到的幂级数带入原微分方程中,检验解的正确性。
级数法适用于一类特殊的微分方程,如欧拉方程、超几何微分方
程等。
虽然该方法计算过程较为繁琐,但其具有求解一些非常规微分方程的优势,因此在某些应用领域中得到广泛应用。