几种求二次函数的方法

合集下载

二次函数求解公式

二次函数求解公式

二次函数求解公式二次函数是一种常见的二次方程,其定义为y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。

二次函数也被称为二次多项式函数。

求解二次函数的一般方法有图像法、配方法和根的关系。

其中,图像法可以帮助我们直观地理解二次函数的性质,配方法和根的关系则能帮助我们求解二次函数的交点、极值点等。

一、图像法使用图像法求解二次函数的步骤如下:1.绘制二次函数的图像:可以通过画出二次函数的图像来直观地了解函数的性质,比如判断开口方向、极值点等。

2.确定顶点坐标:顶点是二次函数的最高点或最低点,通过观察图像,我们可以找到顶点的坐标。

顶点坐标可以表示函数的极值点。

3.确定对称轴:对称轴是二次函数的图像关于y轴的对称轴线,通过观察图像,我们可以找到对称轴的方程。

4.确定交点坐标:交点是二次函数与x轴的交点,通过观察图像,我们可以找到交点的坐标。

交点坐标可以表示函数的根。

二、配方法使用配方法求解二次函数的步骤如下:1. 对于一般的二次函数y = ax^2 + bx + c,如果a ≠ 0,则可以通过配方法将其写成形如y = a(x + p)^2 + q的标准形式,其中p和q为待确定的常数。

2.使用配方法将二次函数展开:将二次函数展开后,与原函数进行比较,可以确定标准形式中的p和q的值。

3.根据标准形式求解顶点坐标:由于标准形式中(x+p)^2≥0,所以a(x+p)^2+q的最小值为q,当x=-p时取到。

4.根据标准形式求解根:当a>0时,a(x+p)^2+q=0的解为x=-p;当a<0时,方程无解。

三、根的关系根的关系是二次函数的一个重要性质,可以帮助我们求解二次函数的交点坐标。

根的关系有以下两种情况:1. 二次函数有两个不相等的实根:对于一般的二次函数y = ax^2 + bx + c,如果b^2 - 4ac > 0,则可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)求解实根。

求二次函数解析式的三种方法

求二次函数解析式的三种方法

求二次函数解析式的三种基本方法四川 倪先德二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。

熟练地求出二次函数的解析式是解决二次函数问题的重要保证。

二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c (a ≠0)。

2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。

3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。

求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。

2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。

3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。

探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。

解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0)依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。

例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。

分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。

解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0) 又抛物线与y 轴交于点)3,0(。

∴a(0-4)2-1=3 ∴a=41∴这个二次函数的解析式为y=41(x -4)2-1,即y=41x 2-2x+3。

二次函数解析式的8种求法

二次函数解析式的8种求法

二次函数解析式的8种求法河北 高顺利二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 .分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一)三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.解: 253212++=χχy = ()23212-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的.这两类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y2、设二次函数解析式为:y = a ( x – h )2 + k , 图象顶点是(-2,3)∴h =-2,k =3, 依题意得:5=a ( -1 + 2)2+3,解得:a =2∴y = 2( x +2)2 + 3=11822++x x3、设二次函数解析式为:y = a ( x – 1χ) ( x – 2χ).图像与x 轴交于(-2,0),(4,0)两点,∴1χ=-2,2χ=4依题意得:-29= a ( 1 +2) ( 1– 4) ∴a =21 ∴ y = 21 ( x +1) ( x – 4)=223212--x χ. 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于轴对称(也可以说沿轴翻折);轴对称及经过其顶点且平行于轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于轴对称的两个图象的顶点关于轴对称,两个图象的开口方向相反,即互为相反数.(2)关于轴对称的两个图象的顶点关于轴对称,两个图象的形状大小不变,即相同.(3)关于经过其顶点且平行于轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即互为相反数.例6 已知二次函数,求满足下列条件的二次函数的解析式:(1)图象关于轴对称;(2)图象关于轴对称;(3)图象关于经过其顶点且平行于轴的直线对称.x x y x x x a y y ax a 5632+-=x x y x y x解:可转化为,据对称式可知 ①图象关于轴对称的图象的解析式为, 即:. ②图象关于轴对称的图象的解析式为:,即:;③图象关于经过其顶点且平行于轴的直线对称的图象的解析式为,即.八、数形结合数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,37cot =∠PBO .()1求P 点的坐标;()2求抛物线的解析式.解: 设P 的坐标为(-1,y ), ∵P 点在第三象限∴y <0,过点P 作PM ⊥X 轴于点M . 点M 的坐标为(-1,0)|BM| = |BA |+ |AM|5632+-=x x y 2)1(32+-=x y x 2)1(32---=x y 5632-+-=x x y y 2)1(32++=x y 5632++=x x y x 2)1(32+--=x y 1632++-=x x y∵∠PAO =45∴ |PM | = |AM| = |y | =-y ∵374cot =--==∠y y PM BM PBO ∴y = -3∴P 的坐标为(-1,-3)∴A 的坐标为(2,0)将点A 、点P 的坐标代如函数解析式 ⎪⎪⎩⎪⎪⎨⎧+--=-++-=c b c b 7132740 解得:87b = ; 127c =- ∴抛物线的解析式为:21812777y χχ=-+-.。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。

下面将详细介绍这四种方法。

方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。

对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。

1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。

其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。

所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。

方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。

1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法二次函数是一个形如y = ax^2 + bx + c的函数,其中a、b和c是实数且a不为0。

解析式是一种表示函数的方式,它可以用来求解函数的性质和方程的解。

下面是十种二次函数解析式求解方法:1. 一般式:二次函数的一般式为y = ax^2 + bx + c。

通过将函数写成一般式,可以快速识别出a、b和c的值,进而求解一些重要的性质,如顶点、轴对称线、开口方向等。

2.标准式:二次函数的标准式为y=a(x-h)^2+k,其中(h,k)为顶点的坐标。

通过将一般式转化为标准式,可以直观地找出顶点的坐标及与x轴的交点。

3.因式分解:有时候,二次函数的解析式可以通过因式分解的方式得到。

例如,对于函数y=x^2-5x+6,我们可以将其因式分解为y=(x-2)(x-3),从而得到x=2和x=3是方程的解。

4.完全平方:如果二次函数的解析式可以表示为一个完全平方的形式,那么我们可以通过提取出完全平方的方式得到方程的解。

例如,对于函数y=x^2-4x+4,我们可以将其写成y=(x-2)^2的形式,从而得到x=2是方程的解。

5. 配方法:对于一般的二次方程ax^2 + bx + c = 0,我们可以通过配方法将其转化为一个完全平方的形式。

通过配方法,我们可以找到一个常数k使得ax^2 + bx + c = a(x + p)^2 + k,从而得到方程的解析式。

6.求导方法:通过对二次函数求导,我们可以得到函数的导数。

导数可以帮助我们找到函数的最值点和切线,进而求解其他问题。

7.顶点公式:二次函数的顶点公式为(h,k),其中h=-b/(2a),k=f(h)。

通过顶点公式,我们可以快速找到二次函数的顶点,进而求解一些重要的性质。

8. 零点公式:二次函数的零点公式为x = (-b ± √(b^2 -4ac))/(2a)。

通过零点公式,我们可以求解二次函数的零点或解方程。

9. 判别式:二次函数的判别式为Δ = b^2 - 4ac。

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法〈一〉三点式。

1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。

2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。

〈二〉顶点式。

1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。

2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。

〈三〉交点式。

1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。

2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。

〈四〉定点式。

1, 在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。

2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。

3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。

1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。

2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。

1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。

2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。

〈七〉对称轴式。

1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。

求二次函数解析式的五种常见类型

求二次函数解析式的五种常见类型
A B = A N 2 + B N 2 = 4 2 + 4 2 = 42 ,
因此AM+OM的最小值为4 2 .
返回
方法2 利用顶点式求二次函数解析式
4.在平面直角坐标系内,二次函数图象的顶点为A(1,
-4),且过点B(3,0),求该二次函数的解析式.
解:∵二次函数图象的顶点为A(1,-4),
∴设y=a(x-1)2-4.
x2+4x. 解得a=- .
解:把A(-2,-4),O(0,0),B(2,0)三
故y=(x-1)2-4,即y=x2-2x-3.
点的坐标代入y=ax +bx+c, 方法1 利用一般式求二次函数解析式
由函数的基本形式求二次函数解析式)
2
当x=0时,y=-1;
4 a- 2 b+ c= - 4, a = - 1 , 即y=-x2+4x-3.
解法三:∵抛物线的顶点坐标为(-2,4),与x轴的一个交点坐标为(1,0), 解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
设抛物线的解析式为y=a(x-2)2,
OM的最小值. 由函数的基本形式求二次函数解析式)
解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
返回
2.一个二次函数,当自变量x=-1时,函数值y=2; 当x=0时,y=-1;当x=1时,y=-2.那么这个 二次函数的解析式为____y_=__x_2-__2_x_-__1____.
返回
3.如图,在平面直角坐标系中,抛 物线y=ax2+bx+c经过A(-2, -4),O(0,0),B(2,0)三点.
组,得 (2)将抛物线C1向左平移3个单位长度,可使所得的抛物线C2经过坐标原点.如图,所求抛物线C2对应的函数解析式为y=x(x+4),即y=

二次函数的解析式三种方法

二次函数的解析式三种方法

二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。

本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。

每种方法的步骤和注意事项都将被详细介绍。

一、公式法公式法是一种求解二次函数解析式的基本方法。

二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。

一个常见的二次函数的例子为y = x²。

1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。

通常情况下,这些值可以从已知的条件中直接得到。

如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。

可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。

可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。

具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。

如果二次函数的解析式没有实数根,则说明这个二次函数不存在。

在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。

二次函数解析式的几种求法

二次函数解析式的几种求法

二次函数解析式的几种求法一次函数是形如y=ax+b的函数,其中a和b为常数,且a≠0。

而二次函数是形如y=ax^2+bx+c的函数,其中a,b和c为常数,且a≠0。

解析式是用来表示函数关系的公式,可以将二次函数的解析式分为以下几种求法:1.根据已知的顶点和过顶点的直线方程求解。

二次函数的标准形式是y=a(x-h)^2+k,其中(h,k)为顶点的坐标。

如果已知顶点的坐标和过该顶点的一条直线的方程,可以将方程代入二次函数的标准形式,确定a的值。

这样就可以得到二次函数的解析式。

2.根据已知的两个点求解。

如果已知二次函数过两个点,可以利用这两个点的坐标,构建并解方程组。

假设已知点的坐标分别是(x1,y1)和(x2,y2),代入二次函数的标准形式得到两个方程,然后解方程组求解出a,b和c。

这样就可以得到二次函数的解析式。

3.根据已知的轴对称性质求解。

二次函数的图像一般是一个开口向上或向下的抛物线。

如果已知抛物线的轴对称轴和顶点的坐标,可以利用这些信息确定二次函数的解析式。

根据轴对称性质,可得到二次函数的解析式。

4.根据已知的根求解。

二次函数的解析式与其根的关系密切,如果已知二次函数的根,可以根据根的性质得到二次函数的解析式。

设二次函数的根为x1和x2,则根据因式定理,二次函数可表示为y=a(x-x1)(x-x2)的形式。

将已知的根代入该式,可以得到二次函数的解析式。

5. 根据已知的导数求解。

二次函数的导数是一次函数,可以根据已知的导数求解二次函数的解析式。

设二次函数的导数为y'=2ax+b,将一次函数的表达式与二次函数的标准形式进行比较,可以得到a和b的值。

然后,代入二次函数的标准形式,可以得到二次函数的解析式。

以上是求解二次函数解析式的几种方法,每种方法都有其适用的情况和优劣势。

具体选择哪种方法需要根据具体的题目和已知条件来决定。

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。

本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。

二次函数的解析式的求法有很多种,但常见的也就以下几种。

(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。

解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。

例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。

例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。

解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。

专题训练(二)确定二次函数的表达式常见的五种方法.docx

专题训练(二)确定二次函数的表达式常见的五种方法.docx

专题训练(二)确定二次函数的表达式常见的五种方法>方法一利用一般式求二次函数表达式1•已知抛物线过点A(2,0),B(—l,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为()A• y = x2—x—2B• y = —X2+X+2C - y=x? —x—2 或y= —x?+x + 2D• y=—x'—x—2 或y=x? + x+22•若二次函数y = x?+bx+c的图象经过点(一4,0),(2,6),则这个二次函数的表达式为 _____________ •3•—个二次函数,当自变量x= —1时,函数值y = 2;当x=0时,y= —1;当x=l时,y=—2.那么这个二次函数的表达式为______________ .4• [2016-安庆外国语学校月考]如图2-ZT-1,在平面直角坐标系中,抛物线y=ax? + bx+c 经过A(-2,-4)> 0(0,0),B(2,0)三点.⑴求抛物线y=ax?+bx+c的表达式;(2)若M是该抛物线对称轴上的一点,求AM + OM的最小值.o V/\图2-ZT-1>方法二利用顶点式求二次函数表达式5•已知二次函数y=ax2+bx+c,当x=l时,有最大值8,其图象的形状、开口方向与抛物线y=—2x?相同,则这个二次函数的表达式是()A• y=—2x2—x+3 B. y=—2x2+4C・y= —2x?+4x + 8 D. y=-2x2+4x+66•已知y是x的二次函数,根据表中的自变量x与函数y的部分对应值,可判断此函数表达式为()A.y = xB. y=—x237.某广场中心有高低不同的各种喷泉,其中一支高度为㊁米的喷水管喷水的最大高度为4米,此时喷水的水平距离为+米,在如图2-ZT-2所示的坐标系屮,这支喷泉喷水轨迹的函数表达式是____________ .图2-ZT-28•已知抛物线y]=ax2+bx+c的顶点坐标是(1,4),它与直线y2=x+l的一个交点的横坐标为2.(1)求抛物线的函数表达式;(2)在如图2-ZT-3所示的平面直角坐标系中画出抛物线yj=ax2+bx+c及直线y2 = x + 1,并根据图象,直接写出使得yi^y2成立的x的取值范闱.图2-ZT-3>方法三利用交点式求二次函数表达式259•若抛物线的最高点的纵坐标是手,且过点(一1,0),(4,0),则该抛物线的表达式为()A• y=—X2+3X+4B. y=—X2—3X+4C • y = x‘一3x—4 D. y=x? —3x+410•抛物线y=ax2+bx+c与x轴的两个交点坐标为(一1,0),(3,0),其形状及开口方向与抛物线y=—2/相同,则抛物线的函数表达式为()A• y=—2x‘一x + 3 B. y=—2x2+4x + 5C - y=—2X2+4X +8D. y = —2X2+4X+611・[2016揪阳实验中学期中]已知抛物线与x 轴交于A (1 ‘ 0),B (-4 ‘ 0)两点‘与y 轴交于点C ,且AB = BC ,求此抛物线对应的函数表达式.>方法四利用平移式求二次函数表达式12 • [2017-绍兴]矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1). 一张透明 纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达 式为y=x?,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为()A - y=x 2 + 8x+ 14 B. y=x 2 —8x+14C • y=x 2+4x + 3 D. y=x 2—4x+313. [2017-盐城]如图2-ZT-4,将函数y =鬆一2)2+1的图象沿y 轴向上平移得到一 条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点Z ,B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图彖的函数表达式是()A • y=*(x —2)2—2 B. y=|(x-2)2 + 7图 2-ZT-414 •如果将抛物线y = 2x 2+bx+c 先向左平移3个单位,再向下平移2个单位,得到了 抛物线 y=2x?—4x+3.⑴试确定b ,c 的值;⑵求出抛物线y=2x?+bx+c 的顶点坐标和对称轴.>方法五 利用对称轴求二次函数表达式15 •如图2-ZT-5 »已知抛物线y = — x?+bx+c 的对称轴为直线x= 1,且与x 轴的一c . y=|(x —2)2—5个交点坐标为(3 ‘ 0),那么它对应的函数表达式是__________y:X=1/f v/ 01图2-ZT-516.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图2-ZT-6,二次函数y, = x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”.(1)直接写出两条“关于y轴对称二次函数”图象所具有的特点.(2)二次函数y=2(x+2)?+l的“关于y轴对称二次函数”表达式为________________ ;二次函数y = a(x—hF+k的“关于y轴对称二次函数”表达式为 _____________ ;(3)平面直角坐标系屮,记“关于y轴对称二次函数”的图彖与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C,得到一个面积为24的菱形‘教师详解详析1 •[解析]C 由题意可知点C 的坐标是(0 ' 2)或(0 ‘ 一2).设抛物线的表达式为r4a+2b+c=0 ‘r a= — \+bx+c.由抛物线经过点(2,0),(—1,0),(0,2),得v a-b+c=0, 解得< b=l , .c=2,lc=2,物线的表达式是j=-?+x+2.同理,由抛物线经过点(2,0),(—1,0),(0,— 2)求得该抛物线的表达式为y=x 2-x~2.故这条抛物线的表达式为),=—d+x+2或y=F —x —2.2 •[答案]y=?+3x-4(16一4Z?+c=0, (b=3,[解析]将点(—4、0)、(2 ‘ 6)代入y=,+bx+c 、得] 解得]l4+2b+c=6, lc=—4,・・・这个二次函数的表达式为y=/ + 3兀一4.3 • y=x~2x — 14a —2b+c=—4,4a+2b+c=0, c=0,r 1a=~2 '解这个方程组,得<b=},、c=0,所以抛物线的表达式为 尸~y+x.(2)由 y= —|x 2+x= —|(x —1)2+| »平分线段 OB 、:・OM=BM » :.AM+OM=AM+BM.连接4B 交直线x=\于点则此时AM+OM 的值最小.过点A 作AN 丄x 轴于点N , 在RtAABTV 中,AB=y ]AN 2+BN 2=^/42+42=4 ^2,因此 AM+OM 的最小值为 4 迈.5 • D6 •[解析]D J 函数图象过点(0,为和(2,弓),・・・函数图象的对称轴为直线x=\,故该 函数图彖的顶点坐标为(1,2).设函数表达式为.尸吩一1F+2.把(一1,— 1)代入,得4a+2 =—1,解得d=—扌,・•・此函数表达式为y=— |(x —1)2+2.7 •[答案]J =-10(X -|)2+4I 解析]设喷泉喷水轨迹的函数表达式为y=a (x —护+4.将点(0,为代入,得| +4,解得a=-l0,故喷泉喷水轨迹的函数表达式为y= —10(x —护+4.8・解:(I );•抛物线与直线y 2=x+\的一个交点的横坐标为2,・••交点的纵坐标为2+1{则抛可得抛物线的对称轴为直线x=\,并冃.对称轴垂直=3即此交点的坐标为(2,3). 设抛物线的表达式为yi=tz(x—1)2+4. 把(2 » 3)代入,得3=d(2—1)'+4,解得a= — 1,抛物线的表达式为yi = —(X— l)2+4=—x24-Zr+3.(2)令yi=0,即一d+2兀+3=0,解得%i=3 »x2= —1,二抛物线与兀轴的交点坐标为(3,0)和(一1,0).在平面直角坐标系中画出抛物线与直线,如图所示:根据图象、iij知使得yi$y2成立的x的取值氾圉为一1W X W2.1 39 •[解析]A由抛物线的轴对称性可知该抛物线的对称轴为直线1 +4)=^,故该抛物线的顶点坐标为(号,乎).设该抛物线的表达式为尸心+l)(x—4).将(扌,手)代入,得晋=dg+l)(号一4)解得a= —1,故该抛物线的表达式为y=—(兀+1)(尢一4)=—,+3x+4.注意: 本题也可运用顶点式求抛物线的表达式.10•[解析]D设所求的函数表达式为X!)(x—%2)-因为抛物线y=ax2 + bx+c与兀轴的两个交点坐标为(一1,0),(3,0),所以y=a(x~3)(x+l).又因为其形状及开口方向与抛物线y=—2x1相同» 所以y= — 2(兀一3)(x+l),即y=—2x2+4x+6.11•解:由4(1,0),B(_4,0)可知AB=5,OB=4.又・:BC=AB,・・・BC=5.在RtABCO 中,寸52_42=3,・••点C的坐标为(0,3)或(0,-3).设抛物线对应的函数表达式为y=a(x— 1)(兀+4).将点(0 ' 3)代入‘得3=a(0-1)(0+4) >3将点(0,一3)代入,得一3=a(0-l)(0+4),解得°=才3 3该抛物线对应的函数表达式为y=—^(x—l)(x+4)或),=才(兀一l)(x+4),即y= _討_条+3或『=条2+条_3.12 •[解析]A 根据题意可知点C的坐标为(一2,—1),故一个点由点4平移至点C,向左平移了4个单位,向下平移了2个单位.又・・•该点在点A时,抛物线的函数表达式为丿= x2,・••该点在点C时,抛物线的函数表达式为y=(兀+4)2—2=/+8兀+14.O x13•[解析]D 如图,连接AB »B r,过点4作AC丄交BE的延长线于点C,则AC=3.由于平移前后的抛物线形状相同,根据割补的思想可知阴彫部分的面积等于平行四边形ABBA的面积,:・BB‘・AC=3BB,=9,:・BB‘ =AA f=3 ‘故平移后的抛物线的表达式14•解:(1)・・了=2?一4兀+3 = 2(”一2兀+1 — 1) + 3 = 2(.丫一1)2+1,・・・将其向上平移2个单位,再向右平移3个单位可得原抛物线,即y=2(x-4)2+3,.•・),=2,—16兀+35,.*./?= —16,c=35.(2)由y=2(x~4)2+3得顶点坐标为(4,3),对称轴为直线兀=4.15・[答案]y=-?+2x+3c b[解析「・•抛物线y=—/+加+c的对称轴为直线x=l,•逬=1,解得b=2,又・・•与x轴的一个交点坐标为(3,0),・・・0=—9 + 6+c,解得c=3,故函数表达式为)=一"+2兀+3.16•解:(1)(答案不唯一)顶点关于y轴对称,对称轴关于y轴对称.c °(2)y=2(x—2)~ + 1 y=a(x+/?)~+k(3)若点A在y轴的正半轴上,如图所示:顺次连接点A,B,O,C得到一个而积为24的菱形,由BC=6,得OA = S,则点4的坐标为(0,8),点B的坐标为(一3,4).设一个抛物线的表达式为少=°(兀+3尸+4.4将点A的坐标代入,得9d+4=8,解得a=g.4 4二次函数少=刖兀+3F+4的“关于y轴对称二次函数”的表达式为〉=彳(兀一3)2+4.根据对称性,开口向下的抛物线也符合题意,则“关于),轴对称二次函数”的表达式还4 c 4 o可以为y= _§(兀+3)2_4,y=—^(x—3)^-4.综上所述,“关于y轴对称二次函数”的表达式为)=£(X+3)2+4,),=詁一3尸+4或y4 4 o=一姿+3) —4,>=一尹一3)2—4.。

二次函数的8种求解

二次函数的8种求解

h
10
(1)关于轴对称的两个图象的顶点关于轴对称,两个图象的开口方向相反,即互为相反数.
(2)关于轴对称的两个图象的顶点关于轴对称,两个图象的形状大小不变,即相同.
(3)关于经过其顶点且平行于轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,
即互为相反数.
h
11
例6 已知二次函数,求满足下列条件的二次函数的解析式:(1)图象关于轴对称;(2)图象关于轴对称 ;(3)图象关于经过其顶点且平行于轴的直线对称.
h
7
五、顶点式
若已知抛物线的顶点或对称轴、极值,则设为顶点式
y a 这顶x 点 坐标h 为(2h ,kk ),对称轴方程x = h,极值为当x = h时,y极值=k 来求出相应的系数;
h
8
六、两根式
已知图像与 x轴交于不同的两点,设二次函数的解析式为,根 据题目条件求出a的值.
例4、根据下面的条件,求二次函数的解析式:
h
4
例3、二次函数 的图像是由的图像先向 _____平移 _____
_____ 平移 _____ 个单位得到的.
个 _____ 单位,再向
h
5
图像是由的图像先向左平移3个单位,再向下平 移2个单位得到的.
y12 35
2
2
1 32 2
2
h
6
四、一般式
当题目给出函数图像上的三个点时,设为一般式,转化成一个三元一次方程组,以求得a,b,c的 值;
y3x26x5
h
12
h
13
八、数形结合
数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何 问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待 定系数,以达到目的.

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法1. 使用配方法:当二次函数无法直接因式分解时,可以使用配方法来求解。

假设二次函数的解析式为y=ax^2+bx+c,先将常数项c移到等式的另一边,得到y=ax^2+bx=-c。

然后再在x^2的系数a前面添加一个实数k,使得ax^2+bx=-c可以表示为(ax^2+bx+k^2)-k^2=-c。

然后将等式两边进行平移,即得到(ax^2+bx+k^2)=k^2-c。

这样,原本的二次函数就可以表示为一个完全平方的形式加上一个常数。

然后可以通过完全平方公式来求解。

2.利用零点的性质:二次函数的解析式可以表示为y=a(x-x1)(x-x2),其中x1和x2分别是二次函数的两个零点。

通过求解方程a(x-x1)(x-x2)=0,即可得到这两个零点的值。

3. 利用判别式:对于一元二次方程ax^2+bx+c=0,方程的判别式Δ=b^2-4ac可以判断方程的解的情况。

当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根,但有两个共轭的复数根。

4.利用顶点的性质:二次函数的解析式可以表示为y=a(x-h)^2+k,其中(h,k)是二次函数的顶点的坐标。

通过将方程和y=k相等,然后通过解方程(x-h)^2=(k-k)/a,可以得到x的值。

然后将x的值代入二次函数的解析式,即可得到y的值。

5. 利用对称性:二次函数的解析式可以表示为y=ax^2+bx+c。

二次函数的对称轴的方程为x=-b/2a。

通过将x=-b/2a代入二次函数的解析式,即可得到对称轴上的y的值。

6. 利用平方差公式:对于二次函数的解析式y=(x-p)^2-q,其中p 和q分别是二次函数的顶点的横坐标和纵坐标。

通过展开平方得到y=x^2-2px+p^2-q,然后将原始的二次函数的解析式和展开后的二次函数的解析式相等,即可得到p和q的值。

7.利用导数的性质:二次函数的导数为一次函数,通过求解一次函数的解析式,可以得到二次函数的极值点,即顶点。

二次函数解析式的8种求法(9年级下)

二次函数解析式的8种求法(9年级下)

二次函数解析式的8种求法二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、经过点A (1,3)的抛物线的解析式是 .三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,a 的值不变,口诀为:左加右减,上加下减.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.以上三类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29)4.已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。

求二次函数解析式的常用方法

求二次函数解析式的常用方法

求二次函数解析式的常用方法求二次函数解析式,就是确定其中的某些常数值。

但由于所用的解析式可因题设条件相异而选取不同的形式,就产生有多种求法,现举例说明如下,供同学们在学习时参考。

一、用一般式y = ax2+b+c如果题设是图象经过某三点,常选用一般式来求解。

例1、已知二次函数的图象经过点(-2,-15)、(0,5)、(1,9)三点,求这个二次函数的解析式。

解:设二次函数的解析式为y = ax2+b+c,由题意得:4a-2b+c=-15c=5a+b+c=9解之得,a =-1, b =-4, c=5 故所求得二次函数的解析式为:y =-x2-4x+5二、用顶点式y =a(x-h)2+k当题设条件与函数图象的顶点或对称轴或函数的最大(小)值有关时,选顶点式求解较好。

例2、已知抛物线的顶点坐标为(-1,-2),且图象经过(1,10)点,求抛物线的解析式。

解:设抛物线的解析式为:y =a(x-h)2+k由题意可得,y =a(x+1)2-2又抛物线经过点(1,10)∴10= a(1+1)2-2解得:a = 3 故抛物线的解析式为:y =3(x+1)2-2或y =3x2 +6x+1三、用两根式y = a(x-x1)(x-x2)当题设给出图象与x轴两交点坐标时,选用两根式求解为宜(在只交于一点,即切于点(x,0)时,两根式变为y = a(x-x1)2)例3、函数y = ax2+bx+c(a≠0)有最大值8,且方程ax2+bx+c=0的两根为x1=6,x2=2,求二次函数的解析式解:方程ax2+bx+c = 0的两根为x1=6,x2=2,即抛物线y=ax2+bx+c与x轴两交点的横坐标为x1=6,x2=2,故设所求的解析式为y = a(x-6)(x-2)化成一般式为:y=ax2-8ax+12a4ac-b2又因函数的最大值为8,∴———— =84a48a2-64 a2即:————— =8 解得:a=-24a故函数解析式为y = -2(x-6)(x-2)或y =-2 x2+16x-24四、综合运用除上述三种常见方法外,有些题目需要综合运用各种表达式。

二次函数解析式的几种求法

二次函数解析式的几种求法

二次函数解析式的几种求法一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m2+ m )xm2 – 2m -1是二次函数,则m = .解:由m2+ m ≠0得:m ≠0,且 m ≠- 1由m2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、已知三点求二次函数的解析式当已知二次函数的图象经过三已知点时,通常把这三点的坐标代入一般式c bx ax y ++=2(a ≠0)中,可得以a 、b 、c 为未知数的三元方程组,解此方程组求得a 、b 、c 的值再代入一般式可得所求函数解析式。

例 已知二次函数的图象经过点A (1,1)、B (0,2)、C (2,4),求这个二次函数的解析式。

三、已知顶点坐标、对称轴、极值求二次函数的解析式当已知顶点坐标、对称轴、或极值时,可设其解析式为k h x a y +-=2)((即顶点式)较为简便。

例 已知二次函数图象的顶点为(2,5),且与y 轴的交点的纵坐标为13,求这个二次函数的解析式。

解:设这个二次函数的解析式为5)2(2+-=x a y . ∵它与y 轴的交点为(0,13), ∴135)20(2=+-a , ∴2=a故所求的解析式为5)2(22+-=x y .即 13822+-=x x y例 已知二次函数的图象过点(-1,2),对称轴为1=x 且最小值为-2,求这个函数的解析式。

解:由题设知抛物线的顶点为(1,-2),因此,设所求二次函数为2)1(2--=x a y 。

∵抛物线过点(-1,2)∴22)11(2=---a∴1=a 故所求的解析式为2)1(2--=x y ,即122--=x x y 。

四、已知图象与x 轴两交点坐标求解析式当已知二次函数图象与x 轴的两交点坐标时,可设其解析式为))((21x x x x a y --=较为简便。

例4、已知二次函数的图象与x 轴交于)0,1(-A 、)0,3(B 两点,与y 轴交点的纵坐标为2,求此二次函数的解析式。

求二次函数解析式的三种方法

求二次函数解析式的三种方法

求二次函数解析式的三种基本方法二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c(a ≠0).2、顶点式:y=a(x -h)2+k(a ≠0),其中点(h,k)为顶点,对称轴为x=h.3、交点式:y=a(x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标. 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式.2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式.3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式. 例1、已知二次函数的图象经过点(-1,-5)、(0,-4)和(1,1).求这个二次函数的解析式.分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c(a ≠0).解:设这个二次函数的解析式为y=ax 2+bx+c(a ≠0),则依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4 .例2、已知抛物线y=ax 2+bx+c 的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.分析:此题给出抛物线y=ax 2+bx+c 的顶点坐标为(4,-1),最好抛开题目给出的y=ax 2+bx+c ,重新设顶点式y=a(x -h)2+k(a ≠0),其中点(h,k)为顶点.解:依题意,设这个二次函数的解析式为y=a(x -4)2-1(a ≠0),则∵抛物线与y 轴交于点(0,3) ∴a(0-4)2-1=3 ∴a=41 ∴这个二次函数的解析式为y=41(x -4)2-1,即y=41x 2-2x+3 . 例3、已知抛物线y=ax 2+bx+c 与x 轴交于两点A(-8,0),(2,0),与y 轴交于点C(0,4),求这条抛物线的解析式.分析:A 、B 两点是抛物线与x 轴的交点,所以可设交点式y=a(x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标.解:依题意,设这个二次函数的解析式为y=a(x+8)(x -2),则∵抛物线与y 轴交于点C(0,4)∴a(0+8)(0-2)=4 ∴a=41-∴这个二次函数的解析式为y=41-(x+8)(x -2),即y=41-x 2-23x+4 .练习:1. 已知二次函数y=ax2+bx+c,当x=0时,y=0;x=1时,y=2;x=-1时,y=1.求该函数解析式.2. 抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3 .求这个抛物线的解析式.3. 在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这名男同学出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).⑴求这个二次函数的解析式;)⑵该同学把铅球推出多远?(精确到0.01 3.8734. 如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.5. 已知二次函数y=ax2+bx+c,当x=2时,有最大值2,其图象在x轴截得的线段长为2,求这个二次函数的解析式.6. 已知抛物线y=x2-2x+m与x轴有两个不同的交点A、B,其坐标为A(x1,0),B(x2,0),其中x1<x2,且x12+x22=4 .⑴求这条抛物线的解析式;⑵设所求抛物线顶点为C,P是此抛物线上的一点,且∠PAC=90°,求P点的坐标.7. 如图所示,△OAB 是边长为2的等边三角形,过点A 的直线y=x +m 与x 轴交于点E .(1) 求点E 的坐标;(2) 求过A 、O 、E 三点的抛物线的解析式.8.如图所示,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1) 求点B 的坐标;(2) 求过点A ,O ,B 的抛物线的表达式.9. 如图所示,已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1) 求抛物线的解析式;(2) 将△OAB 绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式.10. 如图所示,抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,与x 轴交于另一点B .(1) 求抛物线的解析式;(2) 已知点D (m ,m +1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试一试: 试一试:
2、把抛物线y=ax2+bx+c向下平移 个单位, 、把抛物线 向下平移1个单位 向下平移 个单位, 再向左平移5个单位时的顶点坐标为 个单位时的顶点坐标为( , ), 再向左平移 个单位时的顶点坐标为(-2,0), 的值。 且a+b+c=0,求a、b、c的值。 , 、 、 的值 点拔: 点拔: 设原抛物线的解析式为y=a(x+m)2+n 设原抛物线的解析式为 ( ) 则平移后抛物线的解析式为y=a(x+m+5)2+n-1 则平移后抛物线的解析式为 ( ) 根据题意得: 根据题意得: − ( m + 5) = −2
n − 1 = 0
m = −3 n = 1
∴y=a( ∴y=a(x-3)2+1=ax2-6ax+9a+1 ∴a∴a-6a+9a+1=0 ……
讲例: 讲例:
3、 已知:抛物线 、 已知:抛物线y=ax2+bx+c的图象如图所示: 的图象如图所示: 的图象如图所示 y (1)求此抛物线的解析式; )求此抛物线的解析式; 取何值时, (2)当x取何值时,y>0? ) 取何值时 ? (3)将抛物线作怎样的一次 ) 平移,才能使它与坐标轴仅有 平移 才能使它与坐标轴仅有 两个交点,并写出此时抛物线 两个交点 并写出此时抛物线 的解析式。 的解析式。 A B 5 x
则解析式为y=-3(x-2)2+5 则解析式为
试一试: 试一试:
1、已知:二次函数y=ax2+bx+c的图象的顶点为 、已知:二次函数 的图象的顶点为P 的图象的顶点为 ),且与 轴有两个交点A、 ( 左 右 (-2,9),且与 轴有两个交点 、B(A左B右), , ),且与x轴有两个交点 S△ABC=27,求:( )二次函数的解析式;( )A、 ;(2) 、 , :(1)二次函数的解析式;( B两点的坐标;( )画出草图;( )若抛物线与 轴 两点的坐标;( ;(4)若抛物线与y轴 两点的坐标;(3)画出草图;( 交于C点 求四边形ABCP的面积。 的面积。 交于 点,求四边形 的面积 (1)y=-x2-4x+5 (2)A(-5,0),B(1,0) (4)S=30
-1 o -2.5 D C
讲例: 讲例:
3、 已知:抛物线 、 已知:抛物线y=ax2+bx+c的图象如图所示: 的图象如图所示: 的图象如图所示 y (1)求此抛物线的解析式; )求此抛物线的解析式; 取何值时, (2)当x取何值时,y>0? ) 取何值时 ? (3)将抛物线作怎样的一次 ) 平移,才能使它与坐标轴仅有 平移 才能使它与坐标轴仅有 两个交点,并写出此时抛物线 两个交点 并写出此时抛物线 的解析式。 的解析式。 A B 5 x
二次函数解析式的求法
(二)
回味知识点: 回味知识点:
二次函数解析式常见的三种表示形式: 二次函数解析式常见的三种表示形式: (1)一般式 y = ax2 + bx + c(a ≠ 0) 一般式
y = a(x − m)2 + n(a ≠ 0)顶点坐标( , n) 顶点坐标( m (2)顶点式 顶点式
16a + 4b + c = 8 c = 0
A o C x
∴y=∴y=-x2+6x
4、如图,抛物线y=ax2+bx+c与直线 、如图,抛物线 与直线y=kx+4相交 与直线 相交 ),B( , )两点, 于A(1,m), (4,8)两点,与x轴交于原点 ( , ), 轴交于原点 ;(2) 及C点,( )求直线和抛物线的解析式;( ) 点,(1)求直线和抛物线的解析式;( 3 S△OCB, 在抛物线上是否存在点D, 在抛物线上是否存在点 ,使S△OCD= 2 若存在,求出点D;若不存在,请说明理由。 若存在,求出点 ;若不存在,请说明理由。 y (1)y=x+4 ) y=y=-x2+6x B 4,8) ( , ) A o (6,0) , ) C x
4、如图,抛物线y=ax2+bx+c与直线 、如图,抛物线 与直线y=kx+4相交 与直线 相交 ),B( , )两点, 于A(1,m), (4,8)两点,与x轴交于原点 ( , ), 轴交于原点 ;(2) 及C点,( )求直线和抛物线的解析式;( ) 点,(1)求直线和抛物线的解析式;( 3 S△OCB, 在抛物线上是否存在点D, 在抛物线上是否存在点 ,使S△OCD= 2 若存在,求出点D;若不存在,请说明理由。 若存在,求出点 ;若不存在,请说明理由。 y (2)S△OCB=24 ) 设点D坐标为( , ) 设点 坐标为(x,y) 坐标为
(3)交点式 y = a(x − x )( x − x )(a ≠ 0) 交点式 1 2
2 + bx + c 条件: y 条件:若抛物线 = ax X轴交于两点( x 与 轴交于两点( ,0)( x ,0)
1 2
讲例: 讲例:
1、已知:抛物线 、已知:抛物线y=ax2+bx+c过直线 过直线 式; 分析: 分析: 3 ∵直线 y = − x + 3 与x轴、y轴的交点为 轴 轴的交点为 ),(0, ) (2,0),( ,3)则: 4a + 2b + c = 0 , ),( c = 3 a + b + c = 1
-1 o -2.5 D C
讲例: 讲例:
3、 已知:抛物线 、 已知:抛物线y=ax2+bx+c的图象如图所示: 的图象如图所示: 的图象如图所示 y (1)求此抛物线的解析式; )求此抛物线的解析式; 取何值时, (2)当x取何值时,y>0? ) 取何值时 ? (3)将抛物线作怎样的一次 ) 平移,才能使它与坐标轴仅有 平移 才能使它与坐标轴仅有 两个交点,并写出此时抛物线 两个交点 并写出此时抛物线 的解析式。 的解析式。 A B 5 x
n = −1 则: 2 k + n =x2+bx+c的顶点坐标为 抛物线y=x +bx+c的顶点坐标为
4c − b 2 − b = 3 ⋅ − 1 ∴ 4 2 4 + 2b + c = 5
b 4c − b (− , ) 2 4
2
试一试: 试一试:
2、已知:二次函数y=ax2+bx+c有最大值,它与直 、已知 有最大值, 有最大值 讲例: :二次函数 讲例: 交于A( , )、 )、B( , ), ),且其中一 线 y=3x-1交于 (m,2)、 (n,5),且其中一 交于 个交点为该抛物线的顶点, 个交点为该抛物线的顶点,求(1)此二次函数的解 ) 析式;( ;(2) 取何值时, 随 的增大而增大 的增大而增大。 析式;( )当x取何值时,y随x的增大而增大。 取何值时 分析: 分析: 先求出A、 两点的坐标 两点的坐标: ( , )、 )、B( , ) 先求出 、B两点的坐标:A(1,2)、 (2,5) A(1,2)为顶点: ①若A(1,2)为顶点: 设解析式为y=a(x-1)2+2 设解析式为 ∵5=a+2 ∴a=3 又∵函数有最大值, 函数有最大值, ∴a=3不合,舍去. ∴a=3不合,舍去. 不合 ②若B(2,5)为顶点: ( , )为顶点: 设解析式为y=a(x-2)2+5 设解析式为 ∵2=a+5 ∴a=∴a=-3
2、已知:抛物线 、已知 抛物线 抛物线y=ax2+bx+c过点(-5,0)、 过点( , )、 过点 5 (0, )( ,6)三点,直线 的解析式为 , )(1, )三点,直线L的解析式为 2 y=2x-3,( )求抛物线的解析式;( )求证: ,(1)求抛物线的解析式;( ;(2)求证: ,( 抛物线与直线无交点;( )若与直线L平行的直 抛物线与直线无交点;(3)若与直线 平行的直 ;( 线与抛物线只有一个交点P,求P点的坐标。 点的坐标。 线与抛物线只有一个交点 , 点的坐标 1 5 点拔: 点拔:(1)y = x + 3 x + ) 2 2 (2)证抛物线和直线的解析式组成的方程组无解 ) (3)设与L平行的直线的解析式为 )设与 平行的直线的解析式为y=2x+n 平行的直线的解析式为 则:此直线和抛物线的解析式组成的方程组只有一 个解。 个解。即△=0
-1 o -2.5 D C
讲例: 讲例:
3、 已知:抛物线 、 已知:抛物线y=ax2+bx+c的图象如图所示: 的图象如图所示: 的图象如图所示 y (1)求此抛物线的解析式; )求此抛物线的解析式; 取何值时, (2)当x取何值时,y>0? ) 取何值时 ? (3)将抛物线作怎样的一次 ) 平移,才能使它与坐标轴仅有 平移 才能使它与坐标轴仅有 两个交点,并写出此时抛物线 两个交点 并写出此时抛物线 的解析式。 的解析式。 A B 5 x
1 3 ∴ × 6⋅ | y |= × 24 2 2
∴y=± ∴y=±12 ……
B 4,8) ( , ) A o y=-x2+6x y=(6,0) , ) C x
小结: 小结:
-1 o -2.5 D C
讲例: ,抛物线 讲例如图 抛物线y=ax2+bx+c与直线 4、如图, 与直线y=kx+4相交 、: 与直线 相交
),B( , )两点, 于A(1,m), (4,8)两点,与x轴交于原点 ( , ), 轴交于原点 ;(2) 及C点,( )求直线和抛物线的解析式;( ) 点,(1)求直线和抛物线的解析式;( 3 S△OCB, 在抛物线上是否存在点D, 在抛物线上是否存在点 ,使S△OCD= 2 若存在,求出点D;若不存在,请说明理由。 若存在,求出点 ;若不存在,请说明理由。 y (1)y=x+4 ) A(1,5) ( , ) B a + b + c = 5
相关文档
最新文档