2014年上海市中考真题数学试卷及答案

合集下载

2014年上海市中考数学试卷-答案

2014年上海市中考数学试卷-答案

上海市2014年初中毕业统一学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】BB .【考点】二次根式的乘法运算法则.2.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a <≤,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,几为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即1060800000000 6.0810=⨯,故选C .【考点】科学记数法.3.【答案】C【解析】抛物线2y x =的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到顶点的坐标为(1,0),所以所得的抛物线的表达式为2(1)y x =-,故选C .【考点】二次函数图像的平移4.【答案】D【解析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,可得1∠的同位角是5∠,故选D .【考点】同位角的识别.5.【答案】A【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,众数可能不止一个.从小到大排列此数据为37,40,40,50,50,50,73,数据50出现次数最多,所以50为众数,处在第4位是中位数50,故选A .【考点】中位数,众数.6.【答案】B【解析】选项A ,∵四边形ABCD 是菱形,∴AB BC AD ==,∵AC BD ≠,∴ABD △与ABC △的周长不相等,A 错误;选项B ,∵12ABD ABCD S S =棱形△,12ABC ABCD S S =棱形△,∴ABD △与ABC △的面积相等,B 正确;选项C ,菱形的周长与两条对角线之和不存在固定的数量关系,C 错误;选项D ,菱形的面积等于两条对角线之积的12,D 错误,故选B. 【考点】菱形的性质应用.第Ⅱ卷二、填空题7.【答案】2a a +【解析】利用代数式的乘法运算的法则计算得原式2a a =+,故答案为2a a +.【考点】代数式的乘法运算.8.【答案】1x ≠【解析】根据分母不等式0得10x -≠,解得1x ≠,故答案为1x ≠.【考点】函数自变量的取值范围.9.【答案】34x <<【解析】先求出不等式组中每一个不等式的解集,它们的公共部分就是不等式组的解集.即1228x x ->⎧⎨<⎩①,②,由①得3x >,由②得4x <,则不等式组的解集是34x <<,故答案为34x <<.【考点】解一元一次不等式组.10.【答案】352【解析】三月份销售各种水笔的支数比二月份增长了10%,即三月份销售的水笔支数是二月份的()110%+,由此得出三月份销售各种水笔()320110%320 1.1352⨯+=⨯=(支),故答案为352.【考点】解应用题,列出算式解决问题.11.【答案】1k <【解析】∵关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,∴0∆>,即()22410k --⨯⨯>,解得1k <,∴k 的取值范围为1k <,故答案为1k <.【考点】一元二次根的判定式.12.【答案】26【解析】如图,由题意得斜坡AB 的1:2.4i =,10AE =(米)AE BC ⊥,∵12.4AE i BE ==,∴24BE =(米),∴在Rt ABE △中,26AB ==(米),故答案为26.【考点】解直角三角形的应用——坡度问题.13.【答案】13【解析】初三(1)(2)(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,恰好抽到初三(1)班的概率是13,故答案为13. 【考点】概率公式的应用.14.【答案】1y x=-(答案不唯一) 【解析】对于反比例函数k y x=,当0k >时,在每一个象限内,函数值y 随自变量x 的增大而减小;当0k <时,在每一个象限内,函数值y 随自变量x 增大而增大.根据题意只要令0k <即可,可取1k =-,则反比例函数的解析式是1y x =-,故答案是1y x=-. 【考点】反比例函数的性质.15.【答案】23a b - 【解析】∵3,AB EB AB a ==,∴2233AE AB a ==,∵在平行四边形ABCD 中,BC b =,∴A D B C b ==,∴23DE AE AD a b =-=-,故答案是23a b -. 【考点】平面向量.16.【答案】乙【解析】数据波动越小,数据越稳定,根据图形可得乙的乘积波动最小,数据最稳定,则三人中成绩最稳定的是乙,故答案为乙.【考点】方差,折线统计图.17.【答案】9-【解析】∵从第三个数起0,前两个数依次为,a b ,紧随其后的数就是2a b -,∴7223y ⨯-=,解得9y =-,故答案为9-.【考点】数字的变化规律.18.【答案】【解析】如图,连接BD ',由翻折的性质得CE C E '=,∵2BE CE =,∴2BE C E '=,又∵90C C '∠=∠=︒,∴30EBC '∠=︒.∵90FD C D ''∠=∠=︒,∴=60BGD '∠︒,∴60FGE BGD '∠=∠=︒,∴AD BC ∥,∴60AFG FGE ∠=∠=︒, ∴()()11180180606022EFG AFG ∠=︒-∠=︒-︒=︒,∴EFG △是等边三角形,∵AB t =,∴EF t ==,∴EFG △的周长3==,故答案为.【考点】翻折变换的性质.19.【解析】原式22=+【考点】实数的综合运算能力.三、解答题20.【答案】解:去分母,整理得20x x +=.解方程,得121,0x x =-=.经检验:11x =-是增根,舍去;20x =是原方程的根.所以原方程的根是0x =.【考点】解分式方程.21.【答案】解:(1)设y 关于x 的函数解析式为()y kx b k =+≠0.由题意,得 4.235,8.240.k b k b +=⎧⎨+=⎩解得5,4119.4k b ⎧=⎪⎪⎨⎪=⎪⎩ 所以y 关于x 的函数解析式为511944y x =+. (2)当 6.2x =时,37.5y =.答:此时该体温计的读数为37.5℃.【考点】待定系数法求一次函数的解析式,根据自变量的值求函数值的运用.22.【答案】(1(2)3【解析】解:(1)∵在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线,∴22AB CD BD ==,所以DCB B ∠=∠.∵AH CD ⊥,∴90AHC CAH ACH ∠=∠+∠=︒.又∵90DCB ACH ∠+∠=︒,∴CAH DCB B ∠=∠=∠.∴ABC CAH ~△△.∴AC CH BC AH=. 又∵2AH CH =,∴2BC AC =.可设,2AC k BC k ==,在Rt ABC △中,AB ==∴sin AC B AB ==. (2)∵2,AB CD CD ==AB =.在Rt ABC △中,sin 2AC AB B =⋅===. ∴24BC AC ==.在Rt ACE △和Rt AHC △中,1tan 2CE CH CAE AC AH ∠===. ∴112CE AC ==,∴3BE BC CE =-=. 【考点】解直角三角形,直角三角形斜边上的中线.24.【答案】(1)证明:∵四边形ABCD 是梯形,,AD BC AB DC =∥,∴ADC DAB ∠=∠.∵AD BE ∥,∴ADC DCE ∠=∠,∴DAB DCE ∠=∠.在ABD △和CDE △中,,,,DAB DCE AB CD ABD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD CDE ≅△△,∴AD CE =.又∵AD CE ∥,∴四边形ACDE 是平行四边形.(2)证明:∵四边形ACED 是平行四边形,∴FC DE ∥. ∴DF CE DB BE=. ∵AD BE ∥,∴DG AD GB BE=. 又∵AD CE =,∴DG DF GB DB =.【考点】比例的性质,平行四边形的判定及其应用.24.【答案】(1)1x =(2)()1,4(3)5【解析】(1)∵点()1,0A -和点()0,2C -在抛物线223y x bx c =++上, ∴210,32,b c c ⎧⨯-+=⎪⎨⎪=-⎩ 解得4,32.b c ⎧=-⎪⎨⎪=-⎩ ∴该抛物线的表达式为224233y x x =--,对称轴为直线1x =. (2)∵点E 为该抛物线的对称轴与x 轴的交点,∴()1,0E .∵四边形ACEF 为梯形,AC 与y 轴交于点C ,∴AC 与EF 不平行,在AF CE ∥.∴FAE OEC ∠=∠.在Rt AEF △中,90,tan EF AEF FAE AE∠=︒∠=, 同理,在Rt OEC △中,tan OC OEC OE ∠=,∴EF OC AE OE =. ∵2,1,2OC OE AE ===,得4EF =.∴点F 的坐标是()1,4.(3)该抛物线的顶点D 的坐标是81,3⎛⎫- ⎪⎝⎭,点B 的坐标是()3,0. 由点(),0P t ,且3t >,得点P 在点B 的右侧(如下图).()18434233BOD S t t =⨯-⨯=-△ ()1812111121232323CDPS t t t =⨯+⨯-⨯-⨯⨯=+△.∵BOD CDP S S =△△,∴414133t t -=+. 解得5t =.即符合条件的t 的值是5.【考点】待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用.25.【答案】(1)5(2)74(3【解析】(1)过点A 作AH BC ⊥,垂足为点H .连接AC .在Rt AHB △中,90AHB ∠=︒,4cos ,55BH B AB AB ===, ∴4BH =.∵8BC =,∴AH 垂直平分BC .∴5AC AB ==.∵圆C 经过点A ,∴5CP AC ==.(2)过点C 作CM AD ⊥,垂足为点M .设圆C 的半径长为x .∵四边形ABCD 是平行四边形,∴,,AB DC AD BC B D ==∠=∠可得4,3DM CM ==.在Rt EMC △中,90EMC ∠=︒,EM ==又∵点F 在点E 右侧,∴4DE EM DM =+=∴4AE AD DE =-=-由,AD BC AP CG ∥∥,得四边形APCE 是平行四边形.∴AE CP =,即4x .解得258x =. 经检验:258x =是原方程的根,且符合题意.∴78EM ==在圆C 中,由CM EF ⊥得724EF EM ==. ∴当AP CG ∥时,弦EF 的长为74. (3)设圆C 的半径长为x ,则CE x =,又∵点F 在点E 的右侧,∴4DE =.∵四边形ABCD 是平行四边形,∴AB DC ∥.∴AGE DCE △△由AGE △是等腰三角形,可得DCE △是等腰三角形.①若GE GA =,即CE CD =,又∵CD CA =,∴CE CA = 又∵点,A E 在线段AD 的垂直平分线CM 的同侧,∴点E 与点A 重合,舍去.②若AG AE =,即DC DE =45=.解得x =x =不符合题意,舍去.∴x =③若GE AE =,即CE DE =4x =. 解得258x =,不符合题意,舍去.综上所述,当AGE △是等腰三角形时,圆C 【考点】相似三角形的判定与性质,勾股定理,锐角三角函数关系.。

【中考数学】2014年上海市中考真题(含详解)

【中考数学】2014年上海市中考真题(含详解)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)的结果是().1.计算23(A)5;(B)6;(C)23;(D)32.2.据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为().(A)608×108;(B)60.8×109;(C)6.08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2;(D)y=(x +1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A)∠2;(B)∠3;(C)∠4;(D)∠5.5.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a (a +1)=_________.8.函数11y x =-的定义域是_________.9.不等式组12,28x x ->⎧⎨<⎩的解集是_________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a = ,BC b = ,那么DE =_________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为__________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为______________(用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分)计算:131128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2…8.29.8体温计的读数y (℃)35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .(1)求sin B 的值;(2)如果CD =5,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .(1)求证:四边形ACED 是平行四边形;(2)联结AE ,交BD 于点G ,求证:DG DF GB DB.24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t ,0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1备用图参考答案:1.B2.C3.C4.A5.A6.B7.a 2+a 8.x ≠19.3<x <410.35211.k <112.2613.1314.1(0y k x=-<即可)15.23a b 16.乙17.-918.23t 19题:23320题:0;1(x x ==舍)21题:(1) 1.2529.75y x =+(2)37.522题:(1)5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==(2)5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-= 23题:(1)证明:/,,///,ABCD ADB DACABD CDE ABDCDE AC DEAD CE A DCA DCA DEC ∠∴∆≅∆∴∠=∠∠∠∴∠=∴∴=等腰梯形,为为(2)证明://,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BC ADEC AD CE AD BC BEDF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴= 为24题:25题:。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.12二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_______________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x , 7, y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.3 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .424.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.5 25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、23、(1)求证:四边形ACED 是平行四边形;(2)联结AE,交BD于点G,求证:DG DFGB DB.24、25、6。

2014上海中考数学试卷(附答案)

2014上海中考数学试卷(附答案)
2014 年上海市初中毕业统一学业考试
数学试卷
(满分 150 分,考试时间 100 分钟)
考生注意: 1.本试卷含三个大题,共 25 题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤.
k (k 是常数,k≠0),在其图像所在的每一个象限内,y 的值随着 x x
▲ (只需写一个).
的值的增大而增大,那么这个反比例函数的解析式是
15. 如图 3, 已知在平行四边形 ABCD 中, 点 E 在边 AB 上, 且 AB=3EB. 设 AB a , BC b , 那么 DE =

24. (本题满分 12 分,每小题满分各 4 分)
初中学业考试(2014)数学试卷 第 6页(共 4 页)
初中学业考试(2014)数学试卷 第 7页(共 4 页)
25. (本题满分 14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小题满分 6 分)
真题放送:上海历年中考数学试题+答案(2001-2014) 需要的请关注上海中考微信(扫描下面的二维码) ,给我留言,我发到你邮箱。 留言格式:中考数学+你的邮箱
DG AD DF AD ; GB BE FB BC DF AD DF AD , FB BC DF FB AD BC ADEC 为, AD CE ; AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB AD / / BC ,
初中学业考试(2014)数学试卷 第 8页(共 4 页)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.。

2014上海中考真题数学(含解析)

2014上海中考真题数学(含解析)

F 的坐标;
( 3 )点 D 为该抛物线的顶点,设点 P(t , 0) ,且 t 3 ,如果 △BDP 和 △CDP 的面积相等,求
t 的值.
25. (本题满分 14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小题满分 6 分) 4 如图 1 ,已知在平行四边形 ABCD 中, AB 5 , BC 8 , cos B ,点 P 是边 BC 上的动点, 5 以 CP 为半径的圆 C 与边 AD 交于点 E 、 F (点 F 在点 E 的右侧) , 射线 CE 与射线 BA 交于点 G . ( 1 )当圆 C 经过点 A 时,求 CP 的长; ( 2 )连结 AP ,当 AP∥CG 时,求弦 EF 的长; ( 3 )当 △AGE 是等腰三角形时,求圆 C 的半径长.
DG DF . GB DB
4 / 11
24. (本题满分 12 分,每小题满分各 4 分) 在平面直角坐标系中(如图) ,已知抛物线 y
2 2 x bx c 与 x 轴交于点 A(1, 0) 和点 B ,与 3
y 轴交于点 C (0 , 2) .
( 1 )求该抛物线的表达式,并写出其对称轴; ( 2 )点 E 为该抛物线的对称轴与 x 轴的交点,点 F 在对称轴上,四边形 ACEF 为梯形, 求点
k 14.已知反比例函数 y ( k 是常数, k 0 ) ,在其图像所在的每一个象限内,y 的值随着 x 的值 x
的增大而增大,那么这个反比例函数的解析式是______________(只需写一个) . 15.如图,已知在平行四边形 ABCD 中,点 E 在边 AB 上,且 AB 3EB . 设 AB a , BC b ,那么 DE __________________(结果用 a 、 b 表示) . 16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那 么三人中成绩最稳定的是_____________________.

2014年上海市中考数学试题(附答案)

2014年上海市中考数学试题(附答案)

2014年上海市中考数学试题(附答案)2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算的结果是(B).(A);(B);(C);(D).2.据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为(C).(A)608×108;(B)60.8×109;(C)6.08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(C).(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2;(D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是(A).(此题图可能有问题)(A)∠2;(B)∠3;(C)∠4;(D)∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是(A).(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(B).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=.8.函数的定义域是.9.不等式组的解集是.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.14.已知反比例函数(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设,,那么=(结果用、表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是乙.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为-9.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分)计算:.20.(本题满分10分)解方程:.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.37.522.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A 作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)联结AE,交BD于点G,求证:.24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP 的面积相等,求t的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E 的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1备用图。

资料:上海市2014年中考数学试题及答案(word版)

资料:上海市2014年中考数学试题及答案(word版)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是(B ).(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(C ).(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(C ).(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是(A ).(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是(A ).(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(B ).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=2a a+.8.函数11yx=-的定义域是1x≠.9.不等式组12,28xx->⎧⎨<⎩的解集是34x.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是1k.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是13.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是1(0y kx=-即可)(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=23a b-(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是乙.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为-9.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为23t(用含t 的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分) 计算:131128233--+-.233=20.(本题满分10分)解方程:2121111x x x x +-=--+.0;1(x x ==舍) 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2… 8.2 9.8 体温计的读数y (℃) 35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域); 1.2529.75y x =+ (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.37.522.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .(1)求sin B 的值;5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==(2)如果CD =5,求BE 的值.5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-= 23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .(1) 求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABDCDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF ADDF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cos B=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图。

2014年上海市中考数学试卷-含答案详解

2014年上海市中考数学试卷-含答案详解

2014年上海市中考数学试卷一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 计算√2×√3的结果是( )A. √5B. √6C. 2√3D. 3√22. 据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为( )A. 608×108B. 60.8×109C. 6.08×1010D. 6.08×10113. 如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )A. y=x2−1B. y=x2+1C. y=(x−1)2D. y=(x+1)24. 如图,已知直线a、b被直线c所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠55. 某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是( )A. 50和50B. 50和40C. 40和50D. 40和406. 如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( )A. △ABD 与△ABC 的周长相等B. △ABD 与△ABC 的面积相等C. 菱形的周长等于两条对角线之和的两倍D. 菱形的面积等于两条对角线之积的两倍二、填空题(本大题共12小题,共48.0分)7. 计算:a(a +1)=______. 8. 函数y =1x−1的定义域是______. 9. 不等式组{x −1>22x <8的解集是______.10. 某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔______支.11. 如果关于x 的方程x 2−2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12. 已知传送带与水平面所成斜坡的坡度i =1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为______米.13. 如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是______.14. 已知反比例函数y =kx (k 是常数,k ≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是______(只需写一个).15. 如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB.设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,那么DE ⃗⃗⃗⃗⃗⃗ =______(结果用a ⃗ 、b ⃗ 表示).16. 甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是______.17. 一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a−b”,例如这组数中的第三个数“3”是由“2×2−1”得到的,那么这组数中y表示的数为______.18. 如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______(用含t的代数式表示).三、计算题(本大题共3小题,共30.0分)19. 计算:√12−1√3−813+|2−√3|.20. 解方程:x+1x−1−2x2−1=1x+1.21. 已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.四、解答题(本大题共4小题,共48.0分。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分) 【请将结果直接填入答题纸的相应位置】 7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________.9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r=_______________(结果用a r 、b r表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分) 19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x p p ; 10、352 ; 11、1k p ; 12、26 ;13、13; 14、1(0y k x=-p 即可); 15、23a b -r r ; 16、乙; 17、-9; 18、23t .三、 解答题 19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、。

上海市2014年中考数学试题(含答案)

上海市2014年中考数学试题(含答案)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1).(A) (B) (C) ;(D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是____________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设A B a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分101382-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图参考答案: 1-6, BCCAAB,7,2a a + 8,1x ≠ 9,34x 10,352 11,1k 12,26 13,1314,1(0y k x =-即可) 15,23a b - 16,乙 17,-918,19,=20,0;1(x x ==舍) 21,(1) 1.2529.75y x =+, (2)37.52,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;5cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23,求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABDCDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BCDF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24,17、(本小题满分13分)已知二次函数()y f x =的图像经过坐标原点,其导函数为()62f x x '=-。

上海市2014年中考数学试题(含答案)

上海市2014年中考数学试题(含答案)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是().(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是____________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分)计算:13128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2… 8.2 9.8 体温计的读数y (℃) 35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图参考答案: 1-6, BCCAAB,7,2a a + 8,1x ≠ 9,34x 10,352 11,1k 12,26 13,1314,1(0y k x =-即可)15,23a b - 16,乙 17,-9 18,23t 19,233=20,0;1(x x ==舍)21,(1) 1.2529.75y x =+, (2)37.5 25,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23,求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24,。

上海2014年初中数学中考试卷(含答案)

上海2014年初中数学中考试卷(含答案)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)B ).1(A)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(C ).(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(C ).(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y =(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是(A ).(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是(A ).(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( B ).(A)△ABD 与△ABC 的周长相等;(B)△ABD 与△ABC 的面积相等;(C)菱形的周长等于两条对角线之和的两倍; (D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a (a +1)=2a a +.8.函数11y x =-的定义域是1x ≠. 9.不等式组12,28x x ->⎧⎨<⎩的解集是34x .10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是1k .12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是13.14.已知反比例函数k y x =(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是1(0y k x =-即可)(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设A B a =,BC b =,那么DE =23a b -(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是乙.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为-9.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F与BE 交于点G .设AB =t ,那么△EFG 的周长为(用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分)1382-+.=20.(本题满分10分)解方程:2121111xx x x+-=--+.0;1(x x==舍)21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的定义域);1.2529.75y x=+(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.37.522.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sin B的值;,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==(2)如果CD,求BE 的值.5;5cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .(1) 求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DACA CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为 (2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BC DF AD DF AD FB BC DF FB AD BCADEC AD CE AD BCBE DFAD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分),如图1,已知在平行四边形ABCD中,AB=5,BC=8,cos B=45点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F (点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:〔本大题共6题,每题4分,总分值24分〕【以下各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1〕.;(C) ;(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为〔〕.(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是〔〕.(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是〔〕.〔此题图可能有问题〕(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.15.某事测得一周PM2.5的日均值〔单位:〕如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是〔〕.(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么以下结论一定正确的选项是〔〕.(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:〔每题4分,共48分〕【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0〔k为常数〕有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三〔1〕、〔2〕、〔3〕班中随机抽取一个班与初三〔4〕班进行一场拔河比赛,那么恰好抽到初三〔1〕班的概率是__________.14.已知反比例函数kyx=〔k是常数,k≠0〕,在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________〔只需写一个〕.15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________〔结果用a、b表示〕.316.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如下图,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3,x, 7,y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________〔用含t的代数式表示〕三、解答题:〔此题共7题,总分值78分〕19.〔此题总分值1013128233-+.520.〔此题总分值10分〕解方程:2121111x x x x +-=--+.21.〔此题总分值10分,第〔1〕小题总分值7分,第〔2〕小题总分值3分〕已知水银体温计的读数y 〔℃〕与水银柱的长度x 〔cm 〕之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰〔如图〕,表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.〔1〕求y 〔2〕cm ,求此时体温计的读数.22.〔此题总分值10分,每题总分值各5分〕如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.〔1〕求sinB的值;〔2〕如果CD=5,求BE的值.23.〔此题总分值12分,每题总分值各6分〕已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.724.〔此题总分值12分,每题总分值各4分〕在平面直角坐标系中〔如图〕,已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).〔1〕求该抛物线的表达式,并写出其对称轴;〔2〕点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; 〔3〕点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.〔此题总分值14分,第〔1〕小题总分值3分,第〔1〕小题总分值5分,第〔1〕小题总分值6分〕如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F〔点F在点E的右侧〕,射线CE与射线BA交于点G.〔1〕当圆C经过点A时,求CP的长;〔2〕联结AP,当AP//CG时,求弦EF的长;〔3〕当△AGE是等腰三角形时,求圆C的半径长.图1 备用图92014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2) 22、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、〔1〕求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为〔2〕联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为 24、1125、12。

上海市2014年中考数学试题(含答案)

上海市2014年中考数学试题(含答案)

2014年市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值围是____________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个). 15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r=_______________(结果用a r 、b r 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示) .三、解答题(本题共7题,满分78分) 19.(本题满分10分)计算:13128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm ) 4.2 … 8.29.8体温计的读数y (℃) 35.0…40.0 42.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE 分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC 延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图参考答案:1-6, BCCAAB,2a a + 8,1x ≠ 9,34x p p 352 11,1k p 12,2613,1314,1(0y k x=-p 即可) 15,23a b -r r16,乙 17,-9 18,19,=0;1(x x ==舍)21,(1) 1.2529.75y x =+, (2)37.52,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==cos 4;sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g23,求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24,2517、(本小题满分13分)已知二次函数()y f x =的图像经过坐标原点,其导函数为()62f x x '=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年上海市中考真题数学试卷及答案
一、选择题(每小题4分,共24分)
1 ).
(A)
; (B)
; (C) ; (D) .
2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).
(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011. 3.如果将抛物线y =x 2向右平移1个单位,那么所得的抛物线的表达式是( ). (A) y =x 2-1; (B) y =x 2+1; (C) y =(x -1)2; (D) y =(x +1)2. 4.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是( ). (A)∠2; (B) ∠3; (C) ∠4; (D) ∠5.
5.某事测得一周PM2.5的日均值(单位:)如下:
50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是( ). (A)50和50; (B)50和40; (C)40和50; (D)40和40. 6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论
一定正确的是( ).
(A)△ABD 与△ABC 的周长相等; (B)△ABD 与△ABC 的周长相等;
(C)菱形的周长等于两条对角线之和的两倍; (D)菱形的面积等于两条对角线之积的两倍. 二、填空题(每小题4分,共48分) 7.计算:a (a +1)=_________. 8.函数1
1
y x =
-的定义域是_________. 9.不等式组12,
28x x ->⎧⎨<⎩
的解集是_________.
10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.
11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是_________.
12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.
13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.
14.已知反比例函数
k
y
x
=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着
x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).
15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a
=,BC b
=,那么DE=_________(结果用a、b表示).
16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.
17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.
18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).
三、解答题(本题共7题,满分78分) 19.(本题满分10分)
1
3
82
+-
20.(本题满分10分)
解方程:
2121
111
x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)
已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.
22.(本题满分10分,每小题满分各5分)
如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sin B 的值;
(2)如果CD ,求BE 的值.
23.(本题满分12分,每小题满分各6分)
已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形;
(2)联结AE ,交BD 于点G ,求证:DG DF
GB DB
=.
24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线2
23
y x bx c =
++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).
(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;
(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.
25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)
如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =4
5,点P 是边BC 上的
动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .
(1)当圆C 经过点A 时,求CP 的长;
(2)联结AP ,当AP //CG 时,求弦EF 的长;
(3)当△AGE 是等腰三角形时,求圆C 的半径长.
图1 备用图
2014年上海市初中毕业统一学业考试数学试卷参考答案选择题:
1.B
2.C
3.C
4.D
5.A
6.B
填空题:
7.a2+a
8.x≠1
9.3<x<4
10.352
11.k<1
12.26
20.x=0
21. 37.5
22.BE=3 23题
24题
25题。

相关文档
最新文档